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ABSTRACT

Time series of production capital and total factor productivity (or
"technol ogy") are fundanental to understanding the processes of output and
productivity growth. Unfortunately, capital and technology are unobserved
except at the nopst disaggregated levels of production units and capital
conponents and nust be estimated prior to being used in enpirical analysis.
Standard nethods for estimating capital and technol ogy were devel oped decades
ago and are based on analytical and conputational methods of that era. W
develop and apply a new nethod for estimating production capital and
technol ogy, based on advances in econonics, dynamc optimization, statistics,
and conputing over the intervening years. The nethod involves specifying and
estimating a detailed structural dynam c economic nodel of a representative
production firm in an industry and using the estimated nodel to conpute
Kal man- snoot hed estinmates of unobserved capital and technol ogy for the sanple
period. We apply the nethod to annual data from 1947-97 for U S. total
manufacturing industries and conpare its capital and technology estinates
with standard estimtes reported by the Bureau of Labor Statistics.
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1. Introduction.

Time series of production capital and total factor productivity (or
"technology," as we call the latter here) are fundamental to understanding
the processes of output and productivity growh. Unfortunately, capital and
technology are wunobserved except at the npbst disaggregated |evels of
production units and capital components and nust be estimated prior to being
used in enpirical analysis. Standard nethods for estimating capital and
technol ogy were devel oped decades ago (Jorgenson, 1963; Solow, 1957) and are
based on analytical and conputational nethods of that era. W develop and
apply a new nethod for estimating production capital and technol ogy, based on
advances in economics, dynamic optimzation, statistics, and conputing over
the intervening years.

W apply the nethod to annual data from 1947-97 for U S. total
manuf acturing industries and conpare its estinmates of capital and technol ogy
with standard estimates reported by the Bureau of Labor Statistics (1998,
1999). We offer the nethod and results as a fresh approach for understanding
and estimating capital and technol ogy using nodern methods. The four najor
findings of the application are: (1) The nodel -based capital estinmates are 10
times nore uncertain than the nodel -based technol ogy estinmates. (2) The trends
of the nodel -based capital and technology estinates broadly conform to the
trends of standard estimates. (3) The nodel-based capital and technol ogy
estimates inply that above average capital growh in the 1990s -- not above
average technology growh -- explains above average growh in manufacturing
output in the 1990s. (4) In this context, changes in paraneter estimates to
suit prior views, can cause large changes in the nodel-based capital and
technol ogy estimates and, therefore, should be made cautiously.

W are interested in estimating aggregate capital, i.e., at the I|evel
of total production capital (equiprment and structures) of all manufacturing
i ndustries. The present nethod has two mmjor steps, a nodel-paraneter
estimation step followed by an unobserved-variable estimation step. In the
first step, we specify and estimate by maximum I|ikelihood a structural
dynam c econom ¢ nodel of a representative production firmin an industry. W
assune the firm solves a dynamic optimzation problem which is a standard
adjustrment cost problem except that adjustnment costs on capital and
technology are derived from a parsinoniously paraneterized production
function, rather than being stated directly as is usually done. W compute

and incorporate the resulting optimal decision rules into the two estimation



steps. W estimate the nodel's structural paraneters w thout wusing any
observations on capital or technology. W use only observations on prices and
gquantities of output, i nvest ment , research (short for "research and
devel opnent"), labor, and materials inputs. W overconme the l|lack of capital
and technology data by using a missing-data variant of the Kalman filter to
conpute the likelihood function and by using the overidentifying restrictions
on reduced-form paraneters in terms of structural paraneters inplied by the
optimal decision rules. The reduced-form equations of the estimted nodel
imply correl ati ons between unobserved capital and technol ogy and the observed
variables in the nobdel. In the second step, we use these correlations to
conpute linear |east squares estinates (LLSE) of capital and technol ogy, and
their standard errors, in terns of the observed variables in the nodel. The
LLSEs are implenented using a version of the Kalman smoothing algorithm
(Anderson and Moore, 1979).

W now review the standard nmethods for estimating aggregate production
capital and technology and, then, discuss the relative advantages of the
present estinmation nethod. Aggregate production capital stocks are often
estimted using the perpetual inventory equation (PIE), ki = &ki.1 + iy, where
ki is the capital stock being estimated, i, is observed investnment flow, and &
is one mnus a constant capital depreciation rate. Variants of the PIE can
accommpdate non-constant or non-geonetric depreciation (Bureau of Labor
Statistics, 1998). Aggregate production capital is also estimted as an index
of the service flows of capital conponents (equipnent, structures, and other
di saggregates). The conmponent service flows are estimated using Jorgenson's
(1963) rental prices and are indexed using expenditure weights. Accordingly,
di saggregated data are used in estimating aggregate capital, but, in either
case, the estimates depend entirely on investnent flows and capital
depreciation rates and do not depend on other possible factors such as
decision errors (msallocations), which the present nmethod accounts for

implicitly. Technology is usually estimated in percentage growmh form as the

Sol ow (1957) residual, dt, = dqg; - Z” s,,dx,,, where dt, dgq, and dx;; are

i=17it
percentage growth of technol ogy, output, and production inputs, and s;; are
i nput cost shares.

CGenerally, the relative advantages of the present nethod over standard
net hods are those of an el aborate econonetric nodel over a sinple econonetric
nodel . The advantages are greater generality (fewer restrictions) and nore
details, hence, nmore inplications. The disadvantages are the need for nore



and better data, hence, a greater risk of specification error in practice,
and greater mathematical and conputational conplexity. The standard methods
for estimating capital and technol ogy, while not in theoretical conflict with
each other, are conputationally independent. The present nethod takes the
view that capital and technology are jointly determned as the result of
pur poseful , coordinated, investnment and research decisions driven by the sane
val ue-maxi m zing motive. Thus, the nodel inplicitly "disenbodies" technol ogy
from capital (Jorgenson, 1966b; Hercowitz, 1998). In the standard nethod,
technol ogy is an unexpl ained residual. Wereas the present nethod allows for
adj ustment costs, the standard nethods do not. However, the standard nethods
are nonparanetric, except for having to specify capital depreciation, and are
much easier to apply.

The present nethod automatically produces standard errors of the
estimates of capital and technology and, therefore, quantifies uncertainty
about the estinmates. The standard nethods have no neasures of uncertainty
and, therefore, in effect, present their estinates as being certain. W
i ntroduce uncertainty by adding disturbances to the PIEs of capital and
technol ogy. The disturbances may be viewed as representing subjective
uncertainty or exogenous shocks. |In practice, npost of the uncertainty about
capital concerns its depreciation. As the paper shows, adding disturbances to
the PIEs has |arge consequences for the estinmates of capital and technol ogy.
VWen the PIE disturbances are excluded, the estimates follow snooth trends,
very simlar to the standard estimtes. Wien the disturbances are included,
the estimates exhibit short-run variations -- random noises and economc
cycles -- around their trends and the standard estinates. The econom c cycles
are transnmtted fromobserved variabl es through the PIE disturbances.

Recently econom sts have estimated technology as filtered or snpothed
estimates of an unobserved, estimated, exogenous process (Slade, 1989;
French, 2000). The present paper goes further, by treating capital and
technol ogy as joint endogenous processes. W are unaware of other attenpts to
estimate joint, endogenous, capital and technol ogy processes using filtering
and snoothing nmethods, although these nethods have been used to estimte
endogenous (rational) inflationary expectations (Burneister and \Wall, 1982;
Ham | ton, 1985; Zadrozny, 1997). Regression nethods have been wused to
estimate GNP, aggregate capital, and other nacroeconom ¢ variables (Romer,
1989; Levy and Chen, 1994; Levy, 2000) but they have nore limted
applicability and are less efficient. Unlike filtering and snoot hi ng nethods,

regression nmethods require the estimated variables to be observed in sone



peri ods and cannot exploit correlations at all |eads and |ags. Qur approach
to modelling capital and technology as joint endogenous processes could be
seen as an extension of Lucas (1967), with the benefit of nodern anal ytical
and conputational nethods. Finally, we note Jorgenson, Gollop, and Frauneni
(1987), Adans (1990), Giliches (1995), Caballero (1999), Nadiri and Prucha
(1999), and references therein as recent exanples of work on production
capital and technol ogy.

The paper continues as follows. Section 2 specifies the nodel and
explains how the representative firms dynamic optimzation problem is
solved. Section 3 prepares the nodel for estimation of paraneters, capital,
and technology by assenbling its equations as a vector autoregression (VAR
and, then, restating the VAR as a state representation. Section 3 also
di scusses the paraneter identification and reconstructibility conditions
underlying the estimations. Section 4 discusses the application to aggregated
U.S. manufacturing data. It discusses sources and properties of the data,
statistical and econom c properties of the estinmated nodel, and conpares the
estimates of capital and technology with those published by the Bureau of
Labor Statistics. Section 5 contains concluding remarks. Sone technical

details are in the appendix.
2. Specification and Sol ution of the Mbdel.

Foll owi ng Zadrozny (1996), we describe an industry in terns of a
representative firm (henceforth, "the firm'). Except for scale differences,
firm and industry-level variables are identical. Every period, t, the firm
nmaxi m zes the expected present value of profits,

(2. 1) Ve = B 8T,

with respect to a feedback decision rule, where the maximization is subject to
equations to be specified, E denotes expectation conditional on the firms
information in period t, 6 O (0,1) denotes a constant real discount factor, and
" = rq — (Cqe + Cit + Cr;) denotes real profits equal to revenues minus costs,
such that ¢, 1is the cost of production and <c¢;; and ¢, are direct
(nonadj ustnent) costs of investment in capital and research in technol ogy.

Throughout, a real value is a nominal (current dollar) value divided by the GDP



deflator. The firmis optimzation problem is stated precisely at the end of
this section.

To obtain a conpetitive rational-expectations-equilibrium solution,

followi ng Lucas and Prescott (1971), we set revenues in 1T to the area under
the inverse output-demand curve as rg = qutzo P{X d)dx, where pq(Q] is the

i nverse output-demand curve, ¢; is the production of saleable output, and d; is
the output-demand state. Alternately, when rg = pg(q;,di)g,, the solution
represents the nonopoly equilibrium

To obtain linear solution equations, which facilitate estimation and to
which the Kal man snoother can be applied, we specify rg, Cq, Ciy, and c,; as
gquadratic forms (constant and linear ternms can be ignored). Accordingly, we

assume the industry's inverse output-demand curve is

(2.2) Pge = -N0c + di + pgts

where n > 0 is the slope paraneter, d; is the demand state generated by the

second-order autoregressive (AR(2)) process
(2.3) di = @udi-a + @di2 + Qo

and {pq ¢ and g are disturbances. Actually, ¢ is introduced for purely
technical reasons. Its variance is set snmall enough so that it has no practical
effect on the results but large enough so that it nunerically stabilizes the
Kalman filter and smoother. The full set of distributional assunptions on
di sturbances is stated in section 3.

To specify cq, we first assume that the firmuses capital (k), labor (),
and materials (nm), to produce saleable output (q), install investnent goods
(i), and conduct research activities (r) (subscript t is omtted sonmetinmes). W
assume that the "output activities," g, i, and r, are restricted according to

t he separabl e production function

(2.4) h(q,i,r) = Ttg(k,¢,m,

where 1 is the Hicks-neutral stock of technology. Although T is also total-
factor productivity, because g(0] and h([l are indexes of inputs and outputs,

we refer to 1 as technology. If 1 were capital augnenting or |abor augnenting,



t he production function would be witten as h(q,i,r) = g(tk,4 n or h(q,i,r) =

g(k, ¢, m. More specifically, following Kydland and Prescott's (1982)
treatment of the utility function, we assune g(-) and h(-) are the constant
elasticity functions,

(2.5) g(k,0,m = (okP + o + ognf) VP,

h(a,i,r) = (yig® + yai ? + yar?) Ve,

where o >0, a; + 0, + a3 =1, B<1, v >0, i + Y.+ vy =1, and p > 1. CES
(B-1)* is the constant elasticity of substitution anong inputs, and CET =
(p-1)"' is the constant elasticity of transformation anong outputs. Including i

and r in h(Q) is a parsinmonious way of specifying internal adjustment costs. The
idea is that positive rates of investnment and research use capital, |abor, and
materials resources, which could otherwi se be used to produce nore output, and
that this trade-off sacrifices ever nore output per unit increases in
i nvestment and research.

W need the adjustment costs to generate dynamic decision rules for the
firm which determine correlations anong current and |agged variables, which
are used to estimate unobserved variables in terms of observed variables.
Adj ustment costs are commonly specified as convex investnment costs, which are
incurred in addition to purchase costs of investnment goods. Here "investnent"
means investnent in production capital and research in technology. In the next
step, we derive a quadratic approximation of the dual variable production cost
function (DVPCF) from production function (2.4)-(2.5). The DVPCF includes
convex, investnent and research, adjustnent costs. Thus, having already
i ntroduced investnent and research purchase costs, pjii¢ + pife, We obtain a

conventionally structured specification of investnent and research adjustment

costs. Although the DVPCF is conventionally structured, it is unconventionally

paraneterized. W derive the DVPCF from (2.4)-(2.5) to ensure that structural

paraneters are identifiable. If we had specified a general DVPCF, subject only
to symmetry, honmpbgeneity, and curvature restrictions, it would have 28 free
paraneters, too many for the structural paranmeters to be identified, hence,
estimated. The identification problem arises because 4 of 13 variables in the
nodel are conpletely unobserved. The nissing-data and identification problens
are solved by specifying the DVPCF in terns of the 6 free paraneters of (2.4)-



(2.5). For recent reviews of the investnent adjustnent cost literature, see,
for exanmple, Caballero (1999) and Nadiri and Prucha (1999).

Mat hematically, convex internal adjustnent costs arise in (2.4)-(2.5)

when, for given technology, 1, and inputs, (k,4 m, the transformation surfaces
of the outputs, (q,i,r), are concave to the origin. The adjustnent costs are
"convex" because the derived DVPCF is convex in (q,i,r). Hall's (1973) anal ysis
shows that the division of the production function into two separate input and

output parts, g()) and h(Q)l, is a necessary condition for the output
transformation surfaces to be concave to the origin. Here, p > 1 is a necessary
and sufficient condition for the transformation surfaces to be concave. The
transformati on surfaces beconme nmore curved, hence, adjustnent costs increase,
as pincreases. Simlarly, B<1is a necessary and sufficient condition for the
i nput isoquants to be convex to the origin, and the isoquants becone nore
curved, hence, input substitutability decreases, as [ decreases.

Let ¢cq = pf + psym where p, is the real hiring price of l|abor and pyis
the real purchase price of materials. Let ¢; = pji and ¢, = p,r, where p; and p,
are the real purchase prices of investnent and research goods and services.
Because ¢ and m are variable (not subject to adjustnment costs) and k and 1 are
quasi -fixed (subject to adjustnment costs), we refer to cq as the variable cost
and to c¢; + ¢, as the fixed cost. Let cq(w denote the dual variable cost
function: given w = (w, ..., w)' = (q, i, r, k, T, p, Ppm' (superscript T
denotes transposition), cg(w) = minimmof pf + pym with respect to ¢ and m
subj ect to production function (2.4)-(2.5).

In the standard approach to multifactor productivity analysis (Bureau of
Labor Statistics, 1998, 1999), all inputs are treated symmetrically, as

variable flows. Accordingly, cq would include all input costs as cq = pk + pT +

pl + psm where py and p, are rental prices of capital and technol ogy stocks,
obtained using appropriate versions of Jorgenson's (1963) fornula for
converting investnment purchase prices into capital rental prices. Jorgenson's
formula is based on nore restrictive assunptions, notably that all inputs are
variable. In this paper, we instead work with the purchase prices of investnent
and research because this allows greater flexibility for handling adjustnent
costs in the firms dynamic optimzation problem It is the explicit solution
of this problem that generates the identifying conditions that allow us to
estimate the structural paraneters of the nodel in the face of unobserved
capital and technol ogy.



The constant term in 1 does not affect optinal decisions in the

approximate |inear-quadratic dynamic optimzation problem Linear terns in T
contribute only an additional constant termto the optinmal decision rule, which

is renoved by nmean adjustnent of the data. Therefore, ignoring constant and
linear terms, cq(w) O (v2)w'IMPcy(w) i, where [°cq(w) denotes the Hessian
matrix of second partial derivatives of c, evaluated at w = w,. %cq(w) is
stated in the appendix, for w = (1, 1, 1, 1, 1, a, 03 ', a value which results

in the sinplest expression for O%g4(w). Therefore,

(2.6) T = -(v2)ng® + qe(di + oo t) — (U2) W PCq(Wo) B — Piric — Prefe.

The Hessian matrix, O%cq(w), is symetric (henceforth, for sinplicity, we

often wite O%cq(w) as O%g) . Ideally, (v2)w'MPce(w) i should inherit the
following properties from the exact cq(w function, for all values of w (i)
i near honobgeneity in (q,i,r,k); (ii) convexity in (q,i,r,k); (iii) strict
convexity in (q,i,r), (q,i,k), (q,r,k), and (i,r,k); (iv) linear honogeneity in
(p,pm; and (v) strict concavity in p, and p, In fact, w'Mc,(w) 0 satisfies
hormogeneity restrictions (i) and (iv) for w = w and curvature restrictions
(ii), (iii), and (v) for all w

The difference between (1/2)w'MPcy(w) M and the translog cost function
(Christensen, Jorgenson, and Lau, 1971, 1973) is that O%cq(w) is not stated in
|l ogs of variables and that its elenments are tightly restricted in terns of the
paraneters of the nodel, whereas the translog cost function is stated in |ogs
of variables and its elenents are unrestricted except for the honogeneity,
convexity, and concavity restrictions. The present nodel could be specified in
logs of variables, but the results would be sinmlar because the data are
standardi zed prior to estimation. As noted above and discussed nore bel ow,
estimating paraneters wthout any capital and technology data and, then,
estimating the unobserved capital and technology requires having sufficient
identifying parameter restrictions on the cost function. Al though we do not
know and would have difficulty determning the full set of identifying cost-
function paraneterizations, we do know that the general translog cost function
is not inthis set.

W assune p;, p,, p, and p, are exogenous to the industry and are

generated by the AR(2) processes



(2.7) Pit = @i 1Pit-1 + @i 2Pit-2 + Gpits
Pri = @r,1Pr,t-1 * Gor,2Prt-2 + Gorit
Pt = @®,1P,t-1 + ®,2P, -2 t Gpts
Pt = ®miPmt-1 + GmaPme-2 + Lpme,

where oty Cprits Cp,t» and Com: are disturbances. Processes (2.7) need not be
stationary. A constant-coefficient autoregressive process is stationary or
asynptotically stable if and only if its characteristic roots are |ess than one
in absolute value. For exanple, the p;; process is stationary if and only if the
roots, A, and A,, which solve the characteristic equation, A2 - @i 1A - @i =0,
are less than one in absolute value. The only restriction which we need on
processes (2.7) in order to solve the firmis dynamic optim zation problemis
that | A| < 1/ J&, where | A| is the largest absolute characteristic root of any

equation in processes (2.7).
We assune that capital accunul ates according to the continuous-tinme |aw

of motion
(2.8) ok (s)/0s = -fK(s) + i(s) + Z,g(s),

where f, > 0 is a depreciation parameter and Z;(S) is a continuous-tine

di sturbance. Integrating equation (2.8) over the sanpling period s O [t-1,1),
on the assunption that i(s) is constant in [t-1,t), we obtain the discrete-tine

capital |aw of notion,

(2.9) Ki = @aki-r + Qo ¢ + it

where @u = exp(-ty), Go = [(1-exp(-f)1/fy, and Lo = [l expl-fy(1-8)] & (t-

1+s)ds is the inplied discrete-tine disturbance. It is customary to specify
(2.9) directly, such that @, = 1. However, this specification understates the

depreciation of investnments undertaken early in a sanmpling period conpared to

those undertaken later in the period. The problem could be avoided by treating

@1 and @, as separate paraneters, but this specification is less natural and
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introduces an additional parameter. Thus, assuming that g, ~ NIDUO, ¢’), we

paraneterize (2.9) in @; O (0,1) and o > 0, such that @o = (@au-1)/1n( @) -

Simlarly, we obtain the discrete-time technol ogy | aw of notion

(2.10) Tt = Quli-r + @ofte + Cu.

paraneterized in ¢, O (0,1) and o> > 0, such that @¢o = (@2 — 1)/In(@y) and Iy ~

T
NI D(0O, ¢).

Equations (2.9)-(2.10) inply geonetrical depreciation, in which nost of
capital and technol ogy's depreciation occurs in early periods of their use. A
rational -distributed-lag (RDL) specification (Jorgenson, 1966a) could describe
nore general depreciation patterns, in particular, in which nost depreciation
occurs in late periods of use. A RDL could also include gestation or tine-to-
build |l ags as additional sources of capital and technology fixity. However, the
need for parsinmonious paraneterization precludes RDL capital and technol ogy
equations, at least for the present data. Mdst RDLs could also be derived from
underlying continuous-tinme specifications (Zadrozny, 1988).

The nodel's structural conponents have now been specified. It remains to
explain how to solve the firmis dynamic optimzation problem and how to
assenble specified laws of notion and solved optinal decision rules into a
system of I|inear sinultaneous equations that are the equilibrium equations of
t he nodel .

To sinplify the dynamic optinmization problem we elinmnate q; by
maximzing ™ with respect to q;,. Because q; is not a control variable in the
laws of nmotion of ki or 1, conditional on i,y and r, being at their optinal

val ues, the optimal value of g, is given by maximzing i with respect to g.

The first-order condition, omrg/dq; = 0, yields the output supply rule

(2.11) Or = -(C1 + N) *(Cual ¢ + Cialy + Cuky + CisTy + Ci6 Py + C17Pm - i) + Lo,

where (€11, ..., C17) is the first row of chq and {y is an added di sturbance.

In addition to adding {p: to output-demand curve (2.2) and (y to output
supply rule (2.11), we also add disturbances to |labor and naterials decision
rules (2.12)-(2.13) so that each of the 13 variables in the nodel has its own
di sturbance. Although the disturbances are added for purely technical reasons,

to ensure that the variables in the nodel have a nonsingular joint probability
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distribution, as usual, they represent our specification errors or the firms
deci sion errors, or both.

Simlar elimnation of ¢ and m from the dynamic optim zation problemis
justified because ¢ and m are not control variables in the laws of notion of
ki or .. Optinal values of 4 and m, conditional on q;, i; and r; being at their
optinmal values, are recovered using Shepard's lema (a special case of the
envel ope theorem Diewert 1971, p. 495),

(2.12) fy = 0Cq/ 0Py = Ce10¢ + Ceai ¢ + Cealt + CesKy + CesTy + CgePsit + CorPm + (4,
(2.13) M = 0Cqi/ 0Pm = C710: + Crai¢ + Czaly + CzaK¢ + C7sTc + Cz6Pt + C77Pm + G,
where (Cgy, ..., Cg7) and (Cyy, ..., Cy7) are the sixth and seventh rows of chq,

and {, and {y are added di sturbances.

Optimality of |abor and materials decision rules (2.12) and (2.13) also
depends on cq = (12)w'[M*cq(w) M being a good approximtion of production
function (2.4)-(2.5). It is easy to derive decision rules for ¢ and m fromthe
exact cost function inplied by (2.4)-(2.5). However, such rules are nonlinear
in variables, which conplicates paraneter estinmation and snoothing. Wether
exact or approxinate rules are used for decisions on ¢ and m the approxi mate
i near-quadratic dynam c optinization problemremnmains unchanged.

To solve the remainder of the firms dynamic optimzation problem we
restate it as a linear optimal regulator problem W define the 2x1 control
vector u; = (i, ry)T and the 14x1 state vector x; = (K¢, T, Pit» Prt» Pt Pm, di,
Ki1, T.1, Pit-1n Prot-1n Pot-1n Pmt-1, dic1) . W assenble the laws of notion of
out put demand, input prices, capital, and technology, (2.3), (2.7), (2.9), and

(2.10), as the state equation

(2.14) Xy = Fxeop + Quy,

where F; = diag[@a, @1, @i, Gy %10 Gm, @i, F2 = diag[0, 0, @i 2 @, 2
G20 Gm2 G2, G = diag[@o, Po], Imis the mmidentity matrix, and Omn is the

nkn zero matrix. W suppress disturbances in equation (2.14) because the
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regul ator problemis certainty equivalent. W use the output-supply rule (2.11)

to elimnate g fromm and wite 1 as the quadratic form
(2.15) T = UgRu + 2u"SX.1 + X1 QK

The matrices R, S, and Q are stated in the appendix in terns of n and the

el enents of [Pc,.

The regul ator probl em nmaxi m zes expected present value, (2.1), stated in
terms of the quadratic form (2.15), with respect to the feedback matrix K in
the linear decision rule u, = Kx;.;, subject to the state equation (2.14). Under
concavity, stabilizability, and detectability conditions (Kwakernaak and Sivan,
1972), we conpute the optinmal K matrix by solving an algebraic matrix Riccati
equation using a Schur deconposition method (Laub, 1979). Finally, we wite the

i nvest ment -research decision rule as

(2.16) U = Kxeon + (Goo Go) T

where (&, &) " is an added 2x1 disturbance vector.
3. Estination Strategy.

3.1. State Representation of the Mdel.

To estimte the nobdel's paraneters by maxi mum likelihood, using the
Kalman filter, and, then, to estinate unobserved capital and technol ogy, using

the Kalnman snoother, we express the reduced form of the nodel in a state
representation. To this end, we collect the variables of the nodel in the 13x1
vector y; = (Pqg, O, 4, M, i¢, re, Koo T, Pits Pres Pias P d)" and their
di sturbances in the 13x1 vector & = ({pgtr Cqtv Gt Cmy Gtv G Ckey Cuo Gpisto
Corty ooty Cpmts Cat)'. W assunme that the disturbances are nutually independent,

normal ly distributed, stationary processes, such that the first 6 disturbances
are AR(1) processes and the last 7 disturbances are serially independent. That

is, we assune ¢ = (li3 — OL) g, where g ONIDO, %), Lis the lag operator,
© = diag(6 6, 6, 6 6, 6, 0, 0, 0O, 0, 0, 0, 0), such that the 6s 0O
(-1,1), and % = diag( o0, O,, O, O O, O, O, O, Oy, Oy, O, O, 0g).

q’ pi pr? pt? pm?
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The set of equations which formthe basis of the paraneter and capital -
technol ogy estimation are (2.2), (2.3), (2.7), (2.9)-(2.13), and (2.16), or
nore concisely, (2.2), (2.11)-(2.14), and (2.16). These 13 scalar-Ievel
equations constitute the conplete set of |inear sinultaneous equations which,
for given values of paraneters, past variables, and current and past
di sturbances, determ ne unique values of the 13 variables of the nodel. W

assenbl e the equati ons concisely as

(3.1) Ay: = Ayior + Ay + (113 — OL) g,

such that the elenents of A, A, and A, are stated in the appendix. W
premul tiply equation (3.1) by AyY(l3 — ©L), such that Ay is nonsingular for
adm ssi bl e val ues of paraneters. Because the autocorrelation coefficients in ©

are nonzero only in equations with single lags of variables, the resulting

VAR(2) reduced-form system

(3.2) Yi = Biyi-1 + Byio + &,

has only two lags of y,, where B; = Ay (A + OA), B, = Ay (A - OA), & = Aylg
ONIDO,3%), and % O Ay'S.Ay". Because the input-price equations map unchanged
into equation (3.2), they are both structural and reduced-form equations.

A conplete state representation conprises a state equation, which
expresses the dynamics of the nodel, and an observation equation, which
accounts for how variables in the nodel are observed. Corresponding to state
equation (2.14), we wite the reduced-formequation (3.2) as the state equation

(3.3) z, = Fzy, + GE,
(B, B, O Ol O
F =0 O c=0 0
Elfﬂ 013X13E @lSXISE
where z, = (y:", VY:i.1)' is the 26x1 state vector. Associated with the state

equation is the observation equation

(34) )7[ = HZt,
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where Yy, is the vector of variables observed in period t. H is called the
observation matri x.

Because H is conpletely flexible in assuming any values in any
dinensions, including the null nmatrix if no observations are available,
observation equation (3.4) can account for any pattern of mssing data. For
most sanpling periods in the present application, H = [J, 0], where J = I3
with rows of unobserved variables deleted and 0 is the equival ently di nensi oned
zero matri x. Thus, when variables 4, 7, 8, and 13 are unobserved, J = I3 with
rows 4, 7, 8, and 13 deleted and 0 = 0gq3. Al so, H accounts for observations
on different observed variables starting and ending in different periods. W
call the Kalman filter applied to such a state representation the m ssing-data
Kal man filter.

The mssing-data Kalman filter conputes the normal distribution (or

Gaussi an) likelihood function of the observations as follows. Let y, = Vy, -
E[y,| Y,_,] denote the innovation vector, where Y,= (V,, ..., ¥,')" denotes the
vector of observations through period t, and let Q = EV,¥, 1 denote the

i nnovation covariance matrix. In general, the reduced-form di sturbance vectors,
&, and the innovation vectors, Vy,, coincide only when all variables are
observed throughout the sanple. Then, except for terns independent of

parameters, -2 tines the | og-likelihood function of the sanple Y, is given by
(3.5) L9, V) = Y., [InlQd + .70y,

where 9 = (95, 9, 95, 9)7, S = (& o, U Vi, Yo O, O, )T, 91 = (@i,
(ppr,ly (pp/,ll (ppm 1y (ppi,Zi (HJT,ZI (HJ/;,ZI (Hjm2| O‘Z]il O-‘z)rn O-‘z)g‘l O;Z)m)Ti 32 = (ein eql eu em

6, 8)", and 9 = (n, B, P @1 P, @1, @ Oy, O, O, O, O, Oy

As explained further in subsection 3.2, the unidentified 8 paraneters in
9 are nornalized and the remaining 31 paraneters in 9;, 39, and 38; are
estimated in three steps: 8; in an ordinary-least-squares (OLS) step, 9, in a
prelimnary maxi mum|ikelihood (M) step, and 83 in a final M. step. The Kal nan
filtering recursions for conputing (3.5), starting values for the recursions,

and other details about inplementing the conputations accurately and
efficiently are discussed in Anderson and More (1979), Zadrozny (1988, 1990),
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and references therein. In the M. steps, L(9 Y,) was nininmzed using the

trust-region method (More' et al., 1980). A though the likelihood could be
conputed in other ways, the mssing-data Kal man-filter nmethod proved to be very
effective for handling the various missing-data problens. In particular, given
the conputer program (Zadrozny, 1999), we needed only to indicate m ssing
values in the data matrix with a missing-data indicator and did not need to
transform the reduced-form or state equations, (3.2) or (3.3), as we would

usi ng ot her nethods.
3.2. Paraneter ldentification and Reconstructibility Conditions.

The hallmark of the present nmethod is a large nunber of overidentifying
restrictions on the reduced-form paraneters, B;, B, and X, in ternms of the
structural paraneters, 3§, although the structural paraneters are unidentified
unl ess additional nornalizing restrictions are inposed. Estimation of capital
and technology requires that a reconstructibility condition hold. Thus, to
estimate the nodel and use its estimate to estimate capital and technol ogy, the
nmodel nust satisfy the parameter identification and reconstructibility
conditions. W comment no further on the conplicated relationship between these
conditions, except to note that in our experience paraneter identification
i mplies reconstructibility.

The paraneter identification condition is standard in econonetrics: the

unnormal i zed paraneters in 9 to be estimated are identified when the Hessian

matrix of L(9,Y,) wth respect to them evaluated at the normalized and

estimated val ues of parameters, is positive definite, i.e., D°( :9 Y,) > 0. The
chall enge is to have enough identifying restrictions on reduced-form paraneters
in terms of the structural parameters to conpensate for the unobservability of
sone variables. In this case, with 8, normalized, the nodel inposes enough
restrictions to identify 8,, 9, and 8;. The conplexity of the mapping from
structural to reduced-form paraneters precludes analytically deriving the
condi tions under which 8,, 8, and 9; are identified. Fortunately, doing this is

unnecessary, because after terminating at an estimate, the M. estimation

program nunerically checks if [D°L( :9 Y,) > O.

W estimated the 31 parameters in 38;, 9, and 383 in three steps because

initial attenmpts to estimate them sinultaneously resulted in nunerical
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breakdown. Although the estimation program converged successfully, it was
unable to conpute standard errors of the estimted paraneters because

DZL(:S,\_(N) was poorly conditioned for inversion. Therefore, we followed the

three-step strategy which is consistent but (in theory) inefficient conpared to

a sinmultaneous (or full information) estimation strategy. In all three steps,
B9 is nornalized as described below. In step 1, we estinmated the 12 input-price

process coefficients and disturbance variances in 9; using OLS. In step 2,

condi tional on :91, we estimated the 19 paraneters in 9, and d¥; using M.. In

step 2, DZL(:B, Y,) was virtually non-positive definite, resulting in very large

standard errors of the autocorrelation coefficients in 38,. Therefore, in step
3, conditional on :‘)1 and :‘)2, we reestimated 9; using M. Thus, the final

estimates of 9 are :91 fromstep 1, :92 fromstep 2, and :93 fromstep 3.

We inmposed normalizing restrictions on 8, to ensure that 38, 3§, and 3;

are identified. W enphasize that this is normalization, not calibration in the

sense of setting paraneters so that the nodel matches selected nonents in the
data. Being unidentified, the normalized parameters cannot be calibrated in
this sense. W wverified nunerically that the nornalized paraneters are
uni dentified by attenpting to estimate al | structural par aneters
si mul taneously. The estimation algorithm nmade no noves from given initial

paraneter values, indicating a flat Iikelihood function.

W set the discount factor to & = .935, which corresponds to the interest
rate &' - 1 = .0695. W set the weighting paraneters in the production function
to the "neutral" values a; = o, = 03 = y4 = ¥V, = Yz = 1/3. W considered

alternative weighting-paraneter nornalizations. These resulted in different
estimates of 93 but in the sane estinmates of reduced-form paraneters, hence, in
the sane estinmates of capital and technology. W expected that one disturbance
variance would have to be restricted for each unobserved variable. Three
variables are genuinely unobserved, k, 1, and d. To maintain nunerical

stability of the Kalman filter and snoother, all disturbance variances nust be

2

positive. Therefore, we set o, = o = o> 010 Athough setting o, 0O is

natural, because ijq is redundant relative to of in output-demand curve (2.2),

setting o© = o5 0O 10 is arbitrary. W could have set these disturbance

m
variances to other values, indeed, could have set any three disturbance
variances. It makes no difference, because each choice results in the sane
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estimated reduced form We checked this result by estinmating the nodel under
alternative variance normalizations. As described in section 4.1, after sone
initial estimations, we decided to treat materials quantity, m as unobserved.
It would seem then, that another disturbance variance woul d have to be noved
from 93 to 8, and normalized. But this turned out not to be the case.
Conditional on 8, and 9&;, under the initial definitions of the 8 s, 3§, and 93
were still identified. Therefore, we conducted the final estinmations using the

original normalizations.

To explain reconstructibility, |et 2t|s denote the linear |east-squares

estimate of z; in terns of YS | et

(3.6) R =[H, FFH, ..., (F7)THI

where F is the state-transition matrix in (3.3) and H is the observation

matrix in (3.4). The state vector, z, = (y., Vyi1)', is said to be
reconstructible if there is a t, such that R has full rank equal to the

di rension of z,, for t =t,. Reconstructibility means that, for t > t,,

(3.7) Zye = (RtTRt)_lRtTVt’

where R'R is nonsingular, so that unique filtered estimates of z, (i.e., for
tl]s = t|t), for t =1, ..., N can be conputed. If (3.7) is feasible, an
associ ated fornula conputes the error covariance matrix E(Zt-im)fﬂzt-?m)T in

terms of R and the disturbance covariances. The snpothed estimates of z

(i.e., for t|s = t|N, for t =1, ..., N, may be expressed sinilarly. The
Kal man smoother is an accurate and efficient recursive algorithm for
conputing Z,, and E(z-Z,,)0z:-2,,)" for t =1, ..., N (Anderson and More,
1979).

In the application, the dinmension of z;, is 26, so that if H is tine
invariant and z, is reconstructible, t, < 26. This follows from the Cayley-

Ham lton theorem which says that every square natrix satisfies its own
characteristic equation. In such case, for t = 26, the rows of F' are
linearly dependent on the rows of F*®, F*, ..., F. Therefore, if H is tine

invariant, z, is reconstructible if Ry, called the reconstructibility matrix,



18

has full rank 26. It is difficult to deternmine an upper bound for t, if H is

time varying. For a conplete discussion of reconstructibility and related
concepts, see Kwakernaak and Sivan (1972) or Anderson and Mywore (1979). The

estimation algorithmnunerically checks the reconstructibility condition.

4., Estimation Results.

4. 1. Sources and Properties of the Data.

In estimation, we used annual U.S. total nmanufacturing data on prices and
gquantities of output and inputs, ranging from 1947-97. Investnment and GDP-
defl ator data were obtained fromthe Bureau of Econom ¢ Analysis, research data
fromthe National Science Foundation (1998), and all other data fromthe Bureau
of Labor Statistics. Al data were obtained in nonseasonal form Thus, we
obt ai ned observations on 10 of the 13 variables in the nodel: pg and g from
1958-96, p, and ¢ from 1948-97, p;; and iy from 1947-96, p,; and r, from 1953- 95,
prt from 1958-96, and m from 1958- 89.

Except for the quantity of labor, which is neasured as the nunber of
production workers, all other prices and quantities were obtained as a nom nal
price index or a real quantity index coupled with nomnal expenditures. W
conputed the unavailable quantity or price indexes by dividing expenditures by
the available price or quantity index, so that in each case the price index x
gquantity index = nominal expenditures. Al obtained or conmputed nominal price
i ndexes were, then, converted into real form by dividing them by the GDP
def | at or.

The resulting real prices and quantities of U 'S. total manufacturing
output and inputs are depicted in figures la-j. For graphing convenience, the
data were scaled to lie between 0 and 10. The graphs suggest the follow ng
econom c interpretation, which is consistent with sinulations of the nodel in
figures 2a-b. Increasing demand for output driven partly by a declining real
price of output induced manufacturers to increase production capacity.
Increasing quantities of investnment and research built increasing stocks of
capital and technol ogy, hence, increased production capacity. As the price of
| abor increased, manufacturers saved on |abor inputs, resulting in flat or

declining I abor use and increasing | abor productivity.

[Put figures la-j approxi mately here]
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Initially, we considered total hours worked (total production workers
mul tiplied by average hours worked per worker) as an alternate |abor input
nmeasure. The graph of total hours worked (not shown) is very simlar to that of
total production workers in figure 1f. The nmain difference is that total hours
worked is a sonewhat noisier series. W chose total production workers as the
labor input because it resulted in a slightly better fitting, but
insignificantly different, estimted nodel. Choosing total production workers
as the labor input caused the Rs of output price and quantity, investnent, and
research to increase by .01 to .02 and that of labor to increase by .16.
Throughout, an R refers to the reduced-formequation of a variable.

Initially, we estimted the nbdel using the data described above, but
this resulted in a nearly zero R for labor. The problem appeared to be
m sspecification of materials in the production function. The nodel's
simulations and the production function’s form indicate symmetrical roles for
| abor and nmaterials, while the data in figures la and 1c show the tine path of
materials matching closely that of output, not that of l|abor. The solution
options were: (i) drop materials price and quantity from the analysis; (ii)
assume materials quantity is in fixed proportions to the output good; or (iii)
keep materials price and quantity in the nodel, as they are, continue to use
materials price data in the paraneter estinmation and snoothing, but treat
materials quantity as unobserved. Options (i) and (ii) would be inplenented
implicitly by measuring the output good as val ue added instead of shipnments and
dropping materials as a production input. W chose option (iii), which was also
the easiest to inplenment, because it required only that the nmaterials quantity
colum in the data nmatrix be filled in with the mssing-value indicator.
Therefore, in the final round of estimation, materials quantity was treated as
unobserved, along with actually unobserved capital, technology, and output-

demand state.
4.2. Statistical Properties of the Estinated Mdel.

Table 1 reports first-step OLS estimates of the input-price process
parameters in 3¥;. By conventional standards, the estimated equations fit the
data well, having R"s greater than .90. Residuals show no significant
aut ocorrel ations, having p values of Ljung-Box Q statistics greater than .25.

The estimated p;, p;,, and p, processes have characteristic roots near one, with

maxi mum absol ute characteristic roots, | A|, between .785 and 1.02. A process
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is stationary if and only if its |A|] < 1. The conplete estimted reduced
form (3.2), has five absolute characteristic roots between .98 and 1.02.
Al though a cointegration analysis nmght seem appropriate, we did not attenpt
this for two reasons. The input-price processes serve only the subsidiary
purpose of providing forecasts for the dynamic optinization problem and their
AR(2) specifications are adequate for this task. It is not clear how a
standard cointegration analysis, designed for systens in which all variables
are observed and coefficients are wunrestricted except for unit-root
restrictions, applies in this case, in which paranmeters are restricted by the
solution of the dynanmic optimzation problem and 4 of 13 variables are

unobserved. Wt allowed wunit roots insofar as residual aut ocorrel ati on

coefficients, 6, nmay be very close to one. Table 2 reports second-step M

estimates of © b[, and bm = .999.

pq ’
[Put table 1 approximtely here]

Table 2 also reports third-step M. estinmates of the renmining paraneters
in 8;. Their absolute t statistics are |less than about .50 and are not reported
because the small sanple size makes them unreliable and uninformative (Sins,
1980, p. 19, fn. 19). The inplied estimted reduced-form equations show
unsurprisingly good fits by conventional standards, given that the data are
used in original levels form Mderate (O .50) and high (> .90) R*s of |abor
and the nonlabor variables reflect Ilabor's noisiness and the nonlabor

vari abl es’ unit-root-1Iike snoot hness. The hi gh esti mat ed resi dua
autocorrelation coefficients (é's > .84) mght suggest that the residua
autocorrel ation corrections and not the econonmc part of the nodel account for
nost of the observed endogenous variables' sanple variations, but this is not

the case. M. estimation with all ©s set to zero produced R; = .918, Fﬁ =

.879, R = .436, R = .772, and R = .944, so that the economic part of the

nodel accounts for these fractions of the endogenous variables' sanmple
variations. Mst inportantly, as we now discuss in detail, the nopdel's
overidentifying restrictions are not rejected by a likelihood ratio test.

[Put table 2 approxi mately here]
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For large N, abstracting from terns independent of paraneters, the

maxi m zed 1og-likelihood function can be expressed as L(:S,\_(N) = NIIn| §2N|,
wher e sz = (1N) ZtN:lythT. The likelihood-ratio statistic for testing the
nodel's restrictions is LR = N(In| szRl - In| fZNUI), wher e szR and szU are f)N
based on restricted and unrestricted innovations, i.e., from nmaxim zing the

likelihood function with the nodel's restrictions, respectively, inmposed and
rel axed. The mssing-data Kalman filter automatically produces restricted
i nnovations as part of the M. estimation. W obtained unrestricted innovations
as follows. W perforned the test using the subsanple 1960-1990, because only
during this period were observations available for the 9 observed vari ables.
For this period, the observation matrix, H, is tine invariant and given by H =
[J, Ogxiz], where J = 1,3 with rows 4, 7, 8, and 13 deleted. Then, conbining the
state and observation equations, (3.3)-(3.4), we obtain the infinite
aut oregressive representation for y,, hence, the finite p-lag approximation of

this representation,
(4.1) Yo = @1y 0+ By, + Y

where the residual i is an approxination of the innovation y,. W want to

test the economic restrictions of the nodel and not the nutual independence of
i nput -price processes (2.7). Therefore, except for the zero restrictions which
make the input-price processes nmutually independent, we considered the ® s to
be free parameters. For p = 2, we estimated the individual equations of (4.1)
by applying OLS to the period 1960-1990. Thus, we reestimated the input-price
processes using the shorter sanple. The resulting residuals were serially

uncorrel ated and were used to conpute Q.

LR is distributed asynptotically as X* k), in the limt as N - o, where
K denotes the nunber of overidentifying restrictions. The statistic rejects the
nul | hypothesis that the overidentifying restrictions are valid when it exceeds
the critical value, ¢4 for the significance level a. The period 1960-1990
inmplies the small values N = 31 and Nk = .15, for k = 118. For such
situations, Sins (1980, p. 17, fn. 18) suggested replacing Nwith N- v in LR
where, in this case, v is the nunber of estimated paranmeters divided by the

nurmber of observed endogenous variables. Thus, N - v = 31 - (143/9) = 15.1 and
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K = 118, inply LR = 142, with a p value of .067, so that the overidentifying

restrictions are not rejected at a conventional 5% significance |evel.

4.3. Economic Properties of the Estimated Mdel.

Because the estimates of capital and technology depend critically on
the economic nodel, to be confident in the estinmates we should be confident
in the economic properties of the nodel. Therefore, we present and briefly
di scuss sone structural variance deconpositions (Sims, 1986) and inpulse
responses of the estimated nodel.

We begi n by explaining how the variance deconpositions are conputed. Let
M = l;3 with colums 1, 3, and 4 deleted. Then, conbining the state and

observation equations, (3.3)-(3.4), we obtain the structural infinite noving-

average representation of y,, i.e., in terms of the structural disturbance
vector, ¢,
(4.2) Vi = W(L)e = (ziwzoq"iu)et = ziwzoq"ist-i,

(B, B, 0Ol

O
wher e Y = M
H

a
oo
13 013><1SE @ISXIS

==

and J is defined as in (4.1). M has been introduced to delete the three

structural disturbances, g, €:;, and &;, whose variances are normalized to

near zero. Let E[Y,, | Y] denote the k-step-ahead forecast of y,,.; let ¥, ,

Yiek - E[ V.| Y] denote the forecast error of E V., |Y]; and, let W

EV. V.« denote the covariance matrix of ¥ .. Then, Vi is given by
(4.3) Vi = Y WE W

W deconpose the k-step-ahead forecast-error variances of the 8
endogenous variables, and their sum in terns of the 9 unnornalized estinated

structural disturbance variances. That is, we deconpose v ;;, for i =1, ...,

8, and Zislek,ny where vy i; is the (i,i) diagonal element of V, in terms of
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of, for j =2, 5 6, ..., 13. Let s¢;; and S,; denote the fractions of vi;; and

§f=1vku due to o'; let %'? be the square-root of 3, obtained by replacing

the diagonal elenents of 2. with their positive square roots; let e denote the
13x1 vector with one in position i and zeroes el sewhere; and, let € denote the

13x1 vector with ones in the first 8 positions and zeroes el sewhere. Then, for

i =1, ..., 8andj =2, 5 6, ..., 13, the percentage vari ance deconpositions

of v i and ZLVK,H are given by
(4.4) ki = ey, W el Whe /e[ T W We ,

(4. 5) S = (Y, Wil eest W)e/ e (T WwIW)e.

[Put table 3 approximtely here]

Table 3 shows the structural deconpositions of k = 10 year ahead
forecast-error variances. Rows 2-9 show deconpositions of variances of
endogenous variables; row 10 shows the deconposition of the sum of variances
of endogenous variables. For exanmple, elenents 1, 2, 6, and 10 in row 2
indicate that, according to the estinated nodel, 4.5, 2.8, 5.2, and 83.5

percent of the variance of pg is, respectively, due to o, o, o, and o

oi s
Because the nodel is estinmated using standardi zed data, the deconpositions are
unit free. However, different normalizations of disturbance variances in 3
will result in different deconpositions. Al disturbances, except disturbances
of research, technology, price of research, and price of Iabor, explain
significant (> 6% fractions of sone individual variances or the sumred
variances. Interestingly, the small inpacts of research and technol ogy
di sturbances run contrary to the real business cycle literature which
attributes significant nacroecononmic fluctuations to technology shocks

Overall, the deconpositions suggest that the capital, output-denand, and
i nvestment-price disturbances are the |eading sources of variations of the 8

endogenous vari abl es.

[Put figures 2a-b approxi mately here]
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The sinmulations in figures 2a-b display the dynam c adjustnment-cost
behavior in the nodel in response to wunit inmpulses in output-demand and
technol ogy disturbances. The simulations in figure 2a match the genera
interpretation of figures la-j. The sinulations depict responses to unit one-
period shock (inpulse) to the output-denmand state in period 1, starting from an

initial long-run equilibriumrepresented by the origin. The estimate N = .605
inmplies a noderately sloped output-demand curve. The estinates B =-9.14 and p
= 267 inmply CES = -.099 and CET = .004, hence, low input substitutability and

very high adjustment costs on capital and technology. H gh adjustnent costs
inmply a steep nmarginal -cost-of-production curve. Therefore, after the output-
demand shock occurs, the price of output rises sharply but output increases
only slightly. Initially, the extra output is produced using additional freely-
adjusted labor and materials inputs and pre-shock stocks of capital and
t echnol ogy. Because the shocked denmand state declines noderately slowy, firns
have an incentive to increase their production capacities. Thus, they increase
their investment and research rates and substitute capital and technol ogy for
| abor and materials. Figure 2b depicts responses to a unit one-period shock to
technology in period 1, again starting froman initial long-run equilibrium at
the origin. In figure 2b, output-demand conditions remai n unchanged so there is
little change in price or quantity of output. The shock nmainly causes
technology to be substituted for labor and materials wuntil the w ndfall

addition to technol ogy has depreciated fully.

4. 4. Model -Based versus Standard Estinmates of Capital and Technol ogy.

Figures 3a-b to 6a-b display the nodel -based and standard estinates of
production capital and technol ogy of aggregated U S. manufacturing industries
from 1958-97. The solid graphs depict the nopdel -based estimates and their 2-
standard-error confidence bounds. The dashed graphs of capital depict the sum
of Bureau of Labor Statistics (BLS) estinates of equipnent and structures
st ocks, based on nonstochastic perpetual inventory equations (PlEs). The dashed

graphs of technol ogy depict BLS estimates of nultifactor productivity conputed
as Solow residuals. In addition, BLS estimates equi pnent and structures service
flows and Bureau of Econonmic Analysis (BEA) produces alternate estimates of
equi prent and structures stocks. These estimates are very simlar and are not
di spl ayed. Thus, we display the BLS estinmates of capital and technology as

representative of standard estimates of these variabl es.
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Because M. estimation of the nodel is tractable only if all data are
scaled sinmilarly, the data were standardized prior to estimation, by
subtracting sanpl e neans and divi di ng by sanpl e standard devi ati ons. Therefore,
being based on standardized data, the nodel-based estinates are in
approxi mately standardi zed units. The BLS estinmates are in arbitrarily scaled
real units. To conpare the two sets of estinmtes, one set nust be converted to
the units of the other. Therefore, prior to graphing, we exactly standardized
each set of estimates. Also, in each figure, we translated all graphs up by the
sane anount so that all values are graphed as positive nunbers. Because the
units of the graphs are arbitrary, novenents along a graph cannot be
interpreted as percentage changes. However, differences between graphs in the
sanme figure are in conparable standardized units. The graphs start in 1958
because output, a critical determinant of the estimates, is first available in
1958.

[Put figures 3a-b approxi mately here]

Figures 3a-b depict graphs of nodel-based estinates based on paraneter
estimates in tables 1 and 2. The capital and technology estinates
respecti vely, have average standard errors of 1.03 and .089, which inplies that
capital's 2-standard-error confidence intervals are over 10 tinmes larger than
technol ogy's. "Short-run" variations with average periodicities of less than
about 8 years are suns of unpredictable noises and business cycles. "Long-run"
variations with greater average periodicities reflect trends. The nodel - based
capital estimates exhibit frequent, significant, short-run variations. The
nodel - based technol ogy estimates exhibit less frequent and |ess significant
short-run variations. Standard smoothing formulas can deconpose short-run
variations into suns of noises and cycles. However, because the fornulas ignore
sanpling variability of paraneter estimates, nobdel m sspecification, and other
uncertainties, the deconpositions are thenselves uncertain. To the extent that
short-run variations reflect cycles, not noises, we can often explain themin
terms of identifiable events, such as the Vietnam War (1965-73) and oil-price
i ncreases (1973, 1979), and in terns of cyclical fluctuations of the overall
econony. The nodel -based estinmates exhibit cycles passed by the estinmation
nethod from the observed variables. Because they are based on nonstochastic
PIEs, the BLS capital estimates exhibit mniscule short-run variations.

[Put figures 4a-b approxi mately here]
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Fi gures 4a-b depict alternate nodel -based estimtes based on capital and
technol ogy disturbances near zero (o, = o° = .0001) and other structura

paraneters at their table 1 and 2 values (for technical reasons, all structura
di sturbance variances nust be at least slightly positive). Going fromfigure 3a
to 4a, average standard errors of nodel -based capital estimates decline 5-fold,
from1.03 to .205. Setting capital disturbance variances to near zero does not
elimnate capital standard errors because they depend on all structura
di sturbance variances. Going from figure 3a to 4a, short-run variations of
capital estimates also decline 5-fold, causing the estimates to beconme nore
trend-like and to conform better to the BLS estimates. Going fromfigure 3b to
4b, average standard errors of technol ogy estinmates decline slightly, from.089
to .060. Correspondingly, the technol ogy estinates change little.

Bei ng estimates based on PIEs, the npdel -based and BLS capital estimates

shoul d be considered avail able capital stocks. However, apparently |arge short-

run variations in the nodel-based estimtes in figure 3a might seem to
contradict this notion. Aren't available aggregate capital stocks |large
relative to investment flows and capital disturbances and don't they depreciate
slowy, so that their graphs should be very smooth, like the BLS capital
estimates in figure 3a? We could informally interpret short-run variations in

t he nodel -based capital estimates as variations in utilized capital stocks or

as variations in effective capital stocks, i.e., adjusted for misallocations.

Standard estimation methods treat all capital investnents as being equally
successful, regardless of nisallocations, market realizations, and market
val uations. Thus, an optinmally located factory would add the same anount to
capital as a mslocated factory built using the same resources. However, in
order to formally interpret short-run capital variations as wutilized or
effective capital, we would have to extend the nbdel to include sone notion of
capacity utilization or market valuation of capital

Being Solow residuals, BLS technology estimates in figure 3b exhibit
| arger short-run variations than BLS capital estinates, especially during oil-
price rises in the 1970s. The technol ogy estinmates are usually considered to be
the residuals of the production function in the analysis. Here, because both
capital and technology are unobserved, either of their estimates could be
consi dered as the residuals. However, because the nodel -based capital estimates
exhibit the larger short-run variations, they are nore naturally selected as
the residuals. This is consistent with capital's role as the residual incone
earning factor. Presumably, technology should reflect snoothly varying
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knowl edge. Therefore, because Solow residuals are noisy, they are often
snoothed prior to being considered as technology estimtes (French, 2000).
Bei ng constructed as snoothed estimates, the nodel -based technol ogy estimates
shoul d not be snoothed further and, in fact, as seen in figures 3b to 6b, are
snmoot her than the BLS Sol owresi dual estinates.

There has been a debate about whether capital growh or technology growh
expl ai ns above average output growh in the 1990s (Gordon, 2000; diner and
Si chel, 2000; Stiroh, 2001). Figures 1h and 1j indicate above average growth of
investment and roughly trend growth, then, decline of research in the 1990s.
Figures 3a-b show simlar growmh patterns for nodel-based capital and
technol ogy estimates in the 1990s. Therefore, the present estinates favor above
average capital growh as the explanation of recent above average manufacturing
out put growt h.

The table 1 and 2 paraneter estinmates seem reasonable, except possibly

for Eg(l = .589 and Ep[l = .161, which inmply high, annual, capital and

technol ogy, depreciation rates of 1- Eqd = .411 and 1- ?Pu = .839. For exanple,
Jorgenson and Stephenson (1967) reported a quarterly depreciation rate, for

equi prent and structures in U S. manufacturing industries from 1947-60, which

i mplies Egd = .895. Figures 5a-b depict alternate nodel -based estinmates, based

on EpKl = Acp(1 = .895 and other paranmeters at their table 1 and 2 values. The

| ower capital and technology depreciation rates result in snoother nodel-
based estimates, with technology estimates confornable with figures 3b and
4b, but incredible capital estinmates, indicating nearly continuous decline.

Fi gures 6a-b depict another set of nodel-based estimtes, based on EpKl = Acp(1 =

.895, o = o° = .0001, and other paraneters at their table 1 and 2 val ues.

Going from figures 5a-b to 6a-b, as expected, the estimates becone snoother.
Unexpectedly, the <capital estimtes return to their figure 3a and 4b
patterns. The lesson of figure 5a is that, in this context, one should be
cautious about altering paraneter estinates to suit prior views. Figure 6b's
nodel - based technol ogy estimates are alnost pure trends. The sharp drops at
sample ends are probably caused by excess sensitivity to snoother

initialization in this case.

[Put table 4 approximately here]
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To gain further insights into the reasonabl eness of Eg(l = .589 and Acp(1 =

.161, we estimated the capital and technol ogy equations using nonlinear |east-
squares (NLLS). As in the M estimation, the equations are paraneterized in
terms of their underlying continuous-tine paranmeters. W estimated the
equations wusing the initial nodel-based and BLS, capital and technol ogy,
estimates as real data. The results are reported in table 4. A though NLLS
estimates of @7 and @y differ from M. estinates, they are very simlar for the
nodel -based and BLS data. As expected, the fit of the estimated equations

depends on the noisiness of the dependent variable. Thus, the capital equation
fits better when using BLS data (R = .891) rather than nodel -based data (R =

.730), and the reverse is true for the technology equation. In essence, table 4
confirnse what we see in figures 3a-b and 4a-b, that the trends of the nodel -

based and BLS estimates are broadly conformable. A though the M. estimates, Eg(l

= .589 and Acp(1 = .161, might seem low economcally, they are acceptable

econonetrically, because, along with other parameter estimates, they inply an
acceptably fitting nodel, with unrejected overidentifying restrictions, which
generates snoothed estimates of capital and technol ogy, broadly conformable
with standard estinates.

5. Concl usi on.

The paper has devel oped a new nethod for estinating unobserved econom c
vari ables based on an estimated dynamc econonmic nodel and applies it to
estimating production capital and technology (total-factor productivity) of
aggregated U.S. manufacturing industries from 1958-97. The nmethod illustrates
how nodern estimation, control, and filtering nethods can be applied to a
par si noni ous dynani ¢ econom ¢ nodel to produce estinates and standard errors
of unobserved variables. Standard nethods for estimating capital and
t echnol ogy, devel oped forty years ago, are appealing in their theoretical and
conputational sinplicity, but are unnecessarily restrictive in sone respects,
for exanple, ignore adjustnent costs. The present nethod admits adjustment
costs of capital and technol ogy, but is nore conplex analytically,
econonetrically, and conputationally. W regard the nethod as experinental and
do not advocate replacing standard methods. W urge testing the present nethod
further, using different nodels and data sets. The paper shows that the nethod

is feasible. In general, the method is feasible when the econonic nopdel
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i nposes enough identifying restrictions to conpensate for the unobservability
of some vari abl es.

The four major findings of the application are: (1) The nodel-based
capital estinates are 10 tines nore uncertain than the nodel -based technol ogy
estimates. (2) The trends of the nodel -based capital and technol ogy estinates
broadly conform to the trends of standard estimates. (3) The nodel-based
capital and technol ogy estimates inply that above average capital growth in the
1990s -- not above average technology growth -- explains above average growth
in manufacturing output in the 1990s. (4) In this context, changes in paraneter
estimates to suit prior views, can cause |large changes in the nodel-based
capital and technol ogy estinates and, therefore, should be nade cautiously.

As noted previously, sorting out the conpeting interpretations of the
nodel - based capital estimtes as available, utilized, or effective capital
stocks requires fornmally introducing sone notion of capacity utilization or
mar ket valuation of capital. The variance deconpositions in table 3 assign
principal explanatory roles to capital and investnent-price disturbances,
whi ch suggests modelling investnment and research decisions in nore detail.
For exanple, the discount rate could be tine-varying, as & = 1/(1 + n;), such
that n, woul d be an observed exogenous interest rate whose generating process
is also estimted. The capital and technol ogy equations could be specified as
rational distributed lags, which include tine-to-built gestation |ags and

non- geonetri cal depreciation rates of capital and technol ogy.

6. Appendi x: Statenment of Cost, Profit, and Reduced- Form Paraneters.

Because [%cq4(wp) is symetric, it suffices to state its upper triangular
part. Let c;; denote element (i,j) of [%qw). Then, for w = (1, 1, 1, 1, 1,

a,, as) ', we have:

cu = Vi(1-v)(p-1) + viPou(1-PB)/(1-an) Ciz = Yo/ (1- )

Ciz = -Vave[ p-1 + 0y(1-B)/(1-0ay)] €z = Yo(1-¥2) (p-1) + v Pou(1-PB)/(1-ay)
Ciz = -Vavs[p-1 + 0y(1-B)/(1-0ay)] Cos = -Yo¥s[p-1 + 0y(1-B)/(1-0ay)]

Cis = -v10:(1-B)/ (1-ay) Cos = -Y201(1-B)/ (1- )

Cis = -Va(1-a.f)/ (1- ) Cos = -Ya(1-asf)/ (1- )

Cis = Y/ (1-ay) Cz = VYo (1-03)
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Caz = Vol (1-0ay) Cas = -0/ (1-01y)

Css = Ya(1-v3) (p-1) + ys"au(1-B)/ (1-ay) Caz = -0/ (1-04)

Cas = -ysa1(1-B)/ (1-ay) Css = (2-ag-ouP)/ (1-ay)
Cas = -ya(1- i)/ (1-ay) Cse = -1/ (1-ay)

Cas = Vil (1-ay) Cs7 = -1/ (1-ay)

Ca7 = val (1-ay) Cos = -0/ [az(1-ay) (1-B)]
Cas = 0y(1-B)[1 + ax(2-ar)/(1-ay)] Crr = -0/ [a3(1-ay) (1-B)].
Cas = -0y + 0(2-as-B)/ (1-ay)

Next, we state the elements of the 2x2, 2x14, and 14x14 coefficient
matrices R, S, and Q which define quadratic form (2.15). Because R and Q are
symmetric, we state only their upper-triangular parts. R;, §j;, and Q; denote
(i,j) elements of the matrices. To elimnate the common factor 1/2, we scale 1
up by the factor of 2, which is allowable because optinmal decisions are
invariant to the scale of 1. For sinplicity, we state only nonzero el enents of
R S and Q so that all unstated elements are zero. Thus, setting co =

(n+c1) Y, we have

Rii = CoC1® — C2 Si7 = -CoC12 Q2 = CoC14C15 — Cus
Ri2 = €oC12C13 — C23 S;1 = CoC13C14 - Ca4 Qs = CoC16C16 — Cus
R = CoC13® — Ca3 Sz2 = CoC13C15 - Cs3s Qs = CoC14C17 — Cuy
Si11 = CoC12C14 - Cp4 Sy = -1 Q7 = -CoCys

Si2 = CoC12C15 - Cozs Sys = CoC13C16 — C36 Q2 = CoC15° — Css
Sz =-1 Sy = CoC13C17 — Cay Qs = CoC15C16 — Cse
Sis = CoC12C16 - C26 S;7 = -CoCus Q6 = CoC15C17 - Cs7
Si6 = CoC12C17 - Co7 Qi = CoC14® - Caa Q7 = -CoCis.

Finally, we state the structural coefficient matrices A, for k = 0, 1,
2. Let A and K ;, respectively, denote elements (i,j) of A and K, the

opti mal investnent-research feedback matrix. As before, only nonzero elenents
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el ements of Ay, are all one,

they are not

stated. Proceeding roww se across the matrices,

PAo12 = N Ao 32 = -Cue Ay 46 = -Ca7
Ag 13 = -1 Ao,35 = -Cze Ao, 47 = -Cay
Ao, 2,5 = CoC12 Ao,z 6 = -Csp Ay 5,7 = -Cs7
Ao, 2,6 = CoC13 Po3,7 = - Cue Ao, 5,11 = -Ce7
Ao,2,7 = CoC1a Ao,3,8 = -Csp Ao 5,12 = -Cy7
Ao, 2,8 = CoC1s Ao,3,11 = -Ces Ao7s = -Q@o
Ao 2,11 = CoCis Ag 3,12 = -Ce7 Aoss = - o
Ao, 2,12 = CoC17 Ao, 4,2 = -Cuz

Ao, 2,13 = -Co Ao 4,5 = - Co7

[ A5 7, v Agsias] = [Kyg v Kyl

[ A6 7, v Auss] = [Ky, Ko7

[An77 -y Avazasl =[G @ @i @1 ®1e Goma @l

[Aes7, - -y Posa] = [Kis, ooy Kiad

[Ae6,70 -y Pogaa] = [Kos ..y Koud]

[A277, -y Agazasl = [0, 0, @2, @r2o Gma2 @2l -
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Table 1

Step 1 OLS Estimates of Input-Price Process Paraneters in 9

Var . Par anet er Esti nmates Fit Statistics
O @ | A o R? Q

P; 1.45 -.441 1.02 .178 . 971 5. 64

(11.1) | (3.30) (.933)

P, . 652 . 282 . 949 . 126 . 979 4.67

(4.01) | (1.81) (.968)

Py 1.88 -.883 1.01 . 019 . 999 14.8

(24.8) | (11.3) (.254)

Pm 1.49 -.617 . 785 . 334 . 903 9.13

(9.79) | (4.06) (.692)
Comments: Columms 2-7, respectively, show estimates of @y and @, Wwth
their absolute t statistics in parentheses, inmplied maxinum absolute
characteristic roots (solutions of A - E\q]l)\ - zg:a = 0), estimated standard

devi ati ons of disturbances, unadjusted R’s (defined as 1 - sanple variance of
the innovation of a variable + sanple variance of the variable), and Ljung-
Box Q statistics for testing absence of residual autocorrelations at |ags
from 1 to 10, wth their marginal significance levels or p values in

par ent heses.
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Table 2

Step 2 and 3 ML Estimates of Structural Paraneters in &, and 9,

Producti on Functi on Paraneters

B =-9.14 (CES = -.099), p = 267 (CET = .004)

Qut put - Demand Curve Paraneters

h =.605 @, =1.39, @, = -.518

Capital and Technol ogy Equati on Coefficients

@, = .589, @, = .774, @, = .161, @, =

= .459
Resi dual Autocorrel ation Coefficients
8, =.999, 6, = .914, 6 = .999, B, = .999, 6 = .840, 6 = .920
St ruct ural

Di st urbance Standard Devi ati ons

o, = .417, & = .514, o, = .362, O, = .994, O, = .055, G, = .465

Reduced- Form Equation Fit Statistics

R, =.945, R =.948, R = .498 R =.926, R = .957

Qq = 10.8, Q =5.96, Q = 5.97, Q = 18.6, Q

= 21.4
(.378) (.819) (.818) (.158)

(.019)

Comment: The sanple span is 1947-1997 (51 years). R and Q statistics
defined as in table 1.
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Tabl e 3

Structural Variance Deconposition of the Estimated Mdel

o, | o | o | o | o | oy |0y | O | O | O
Stopej | 4.5 |28 | .7 | .2 | .0 |52|.1].0]3.0]83.5
Si.q;0 19-4 12,2 3.1 | .8 | .2 |27.5| .7 | .0 |15.9|20.2
S0, | .9 | 39| .0 927 .2 | .0 | .0 .0 |16 .1
Swomj | .9 [ 39 ] .0 (927 .8 | .0 | .0 | .0 |16] .1
Swi, | .0 |44.5| .1 |14.3| .1 |17.5| .4 | .0 |11.5|11.6
S| .0 | .0 | 54| 1.1 .2 (389.3|1.0]| .1 |258]27.1
Swokj | .0 [ 40] .0]95.3].0| .3 |.0].0]| .2 .2
Swoe; | -0 | -0 [1.9]1.1[1.6|39.9/1.1| .1 |26.5]27.8
Sw; | 1.3 52| .7 (69.6| .4 |7.4| .2 ] .0|54]|0938

Conment: Rows 2-9 show the percentage deconpositions of the 10-step-ahead
forecast-error variances of the 8 endogenous variables in terns of the
variances of the 10 unnormalized estimated structural disturbances. Row 10
shows the percentage deconposition of the sum of the variances of the eight

endogenous vari abl es. Each row s numbers sumto one.
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Tabl e 4
Nonl i near Least-Squares Estimates of Capital and Technol ogy Equations
Capi tal Equation
~ ~ 2
- 00 R
Mbdel - Based Dat a @, = .336 @, = .608 R = .730
(22.2) (9.14)
BLS Dat a @, = .363 @, = .629 R, = .981
(78.1) (29.3)
Technol ogy Equati on
Mbdel - Based Dat a @, = .376 @, = .638 R = .992
(118.) (42.2)
BLS Dat a @, = .323 @, = .599 R = .945
(50.8) (21.7)
Comment: Colums 2-3 show estimates of the ¢s, wth their absolute t

statistics in parentheses.

conti nuous-time paraneters,
were conputed based on

the f's to the ¢ s.

fr and f.
i near appr oxi

mat i ons of

The ¢ s were estinmated in terns of their
The standard errors in the t
the nonli near

under | yi ng
statistics

mappi ngs from
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Figures la to 1]

U.S. Total Manufacturing, Prices and Quantities of Qutput and |nputs,
la: Price of Output 1b: Quantity of Output
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Figure 2a: Responses to Inpulse in Qutput-Denand Di sturbance
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Fi gure 2b: Responses to Inpul se in Technol ogy Di sturbance
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Fi gures 3a and 3b: Model - Based versus BLS Estinmates of Capital and Technol ogy

Figure 3a: Model-Based vs. BLS Estimates of Capital
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Figure 3b: Model-Based vs. BLS Estimates of Technology
phik = .589, phit = .161, sek = .994, set = .055
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Comment : phik, phit, sek, and set denote the values of @i, i, Ok and o, used
to produce the graphs. Al other paraneters were either nornalized or set to
values in tables 1 and 2. The sane conment applies to figures 4a-b to 6a-b
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Fi gures 4a and 4b: Model - Based versus BLS Estinmates of Capital and Technol ogy

Figure 4a: Model-Based vs. BLS Estimates of Capital
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Figure 4b: Model-Based vs. BLS Estimates of Technology
phik = .589, phit = .161, sek = .0001, set = .0001
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Fi gures 5a and 5b: Model - Based versus BLS Estinmates of Capital and Technol ogy

Figure 5a: Model-Based vs. BLS Estimates of Capital
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Figure 5b: Model-Based vs. BLS Estimates of Technology
phik = phit = .895, sek = .994, set =.055
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Fi gures 6a and 6b: Model - Based versus BLS Estinmates of Capital and Technol ogy

Figure 6a: Model-Based vs. BLS Estimates of Capital
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Figure 6b: Model-Based vs. BLS Estimates of Technology
phik = phit = .895, sek =.0001, set =.0001
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