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Abstract

This paper is concerned with mismeasured binary explanatory variables in a linear
regression.  Modification of a technique in Hausman et al. (1998) allows simple
computation of bounds under relatively weak assumptions.  When one has instruments,
we show how to obtain consistent parameter estimates using GMM.  We show how to
incorporate the estimated measurement error bounds into the GMM estimates, and we
develop a specification test based on the compatibility of the GMM estimates with the
measurement error bounds.  When the mismeasured variable is endogenous, the IV
estimate and the measurement error bounds can be used to bound the mismeasured
variable’s coefficient.



I.  Introduction

This paper is concerned with mismeasured binary explanatory variables in a linear

regression.  We obtain results that allow us to improve on existing estimators under

different assumptions about the extent of prior information.  We examine three different

cases:  1) the mismeasured variable is assumed exogenous, and no instruments are

available; 2) the mismeasured variable is assumed exogenous, and one or more

instruments are available; and 3) the mismeasured variable is not assumed exogenous,

and instruments are available.  In the first two cases, we derive bounds or point estimates

under weaker assumptions on prior information than in the previous literature, and in the

third case—which has not to our knowledge been analyzed—we also derive bounds.

In case 1, the traditional approach to the measurement error problem is to use

auxiliary information on the measurement error process.  More generally, one may not

have good point estimates of the measurement error parameters, but may nevertheless be

able to bound them—using a validation study, for example.  Bollinger (1996) shows how

these bounds can in turn be used to bound the regression coefficient.

Recently Hausman, Abrevaya, and Scott-Morton (1998) (hereafter HAS) have

developed a technique that allows the analyst to bound the measurement error process by

estimating the parameters from the data, without information from validation studies.  We

modify their technique to allow simple computation of bounds without functional form

assumptions.  Combining the estimated measurement error bounds with the OLS

coefficient yields bounds on the true effect of the mismeasured explanatory variable.

When instruments are available, as in case 2, instrumental variable (IV)

estimation is another common method of dealing with measurement error.  However,
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recent research has shown that IV estimation is upwardly biased when the mismeasured

variable is binary (Loewenstein and Spletzer 1997; Berger, Black and Scott 2000; Kane,

Rouse and Staiger 1999) because measurement error in this case must be negatively

correlated with the true value.  Berger, Black, and Scott (2000) (BBS hereafter) and

Kane, Rouse, and Staiger (1999) (KRS hereafter) show that when one has two erroneous

measures, one can obtain a consistent estimate using a generalized method of moments

(GMM) technique.

Two distinct measures of the same variable are not commonly available.  We thus

extend the analysis in BBS and KRS to the case where the second measure is replaced by

one or more instruments.  We provide a closed-form solution for the GMM parameter

estimates.  We also show how to incorporate the estimated measurement error bounds

into the GMM estimates, and we develop a specification test of the measurement error

model based on the compatibility of the GMM estimates with the measurement error

bounds.

Lastly, we show that the GMM technique is not easily extended to the case where

the mismeasured variable is  endogenous.  However, the IV estimate and estimates of the

measurement error bounds can be used to bound the effect of the mismeasured variable,

analogous to the OLS case without endogeneity.

The paper is organized as follows.  Section II outlines the model, summarizes the

HAS technique, and introduces our extension of HAS.  Section III then turns to the case

where one or more instruments exist for the mismeasured variable. Section IV considers

the case where there are available instruments, but the mismeasured binary variable is

endogenous.  Section V presents an empirical example looking at the returns to on-the-
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job training and section VI concludes.

II. Bounding the Effect of a Mismeasured Binary Explanatory Variable When No
     Instrument is Available

Our model is:

(1)     iiii eTXcY +++= *βγ

for observation i in a random sample of n observations, where Yi, Ti* and ei are scalars, c

is a constant, and Xi is a 1 x k row vector.  We assume without loss of generality that β >

0.  Dropping the subscript for convenience, the variable T* is a binary variable that takes

on the values of zero and one; T* and the elements of X are not linearly dependent.  The

error term e is mean zero and uncorrelated with T* and X.  The variable T* is measured

with error.  Instead of T*, we observe the binary variable T = T* + U, where U denotes

measurement error (which can take on the values of 1, -1, or 0).

Define the measurement error probabilities )0*|1Pr(0 ==≡ TTα = Pr(U = 1| T* =

0) and )1*|0Pr(1 ==≡ TTα = Pr(U = -1| T* = 1).  These probabilities are assumed to be

independent of X and e.  We should note that this may be a strong assumption in many

applications (see Black, Sanders, and Taylor 2000); in a regression of earnings on

education and (binary) training status, for example, more educated respondents may

better understand the survey questions on training.  Modifying this assumption would

require modification of the standard results on the effect of measurement error on

regression coefficients (Aigner 1973, BBS, KRS).

Let )1Pr( =≡ Tp  and )1*Pr(* =≡ Tp .  It is straightforward to show that

(2) cov(T,T*) = p*(1-p*)(1-α0-α1).

Following Bollinger (1996) and others, we impose the restriction that cov(T,T*) > 0 (if

this is not the case, then measurement error is so severe that (1-T) is a better measure of
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T* than is T), which implies α0 + α1 < 1.

Note that

(3)     )
)|(

)|,(
1(ˆlim

XTVar

XUTCov
p ols −= ββ .

Since Cov(T,U|X) > 0, ββ <olsp ˆlim .  After some algebra, one can show that

 (4)     ),,,(ˆlim 10 ααχββ Rpp ols=  ,

where 
)1()1)((

)1)(1)(1(
),,,(

10

10
10 pRppp

Rpp
Rp

−−−α−α−
α−α−−−

≡ααχ  and where

)1(

)’,()(),( 1

pp

TXCovXVarTXCov
R

−
≡

−

 is the theoretical R-squared from a regression of T on

X.  It is straightforward to show that χ is an increasing function of both α0 and α1.  Thus,

if we have available upper bounds max
0α  and max

1α on the measurement error parameters α0

and α1, we can bound β:

           (5)     ),,,(ˆlimˆlim max
1

max
0 Rppp olsols ααχβββ << .

A Percentile Method for Bounding Measurement Error

�����������	�
����������������� 0����� 1.   The independence of X and the

measurement error process implies that

(6) Pr(T=1|X) = (1 –  α1) Pr(T*=1|X) + α0 (1 – Pr(T*=1|X))

                                       = α0 + (1 – α0 – α1) Pr(T*=1|X).

If one knows the functional form of Pr(T* = 1|X), one can estimate α0 and α1 from (6) by

maximum likelihood, as in Hausman, Abrevaya, and Scott-Morton (1998) (HAS
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hereafter).  But as we now show, simple n -convergent bounds for α0 and α1  are

available without knowledge of the true functional form.1

Equation (6) has the important implication that 10 1)|1Pr( αα −≤=≤ XT   for all X.

Thus, for any subset S of the range of X, an estimate of Pr(T=1|X ∈  S) can be used to

bound α0 and α1.  Imagine a procedure where one takes a subset S comprising q percent

of the sample in order to use the sample average T over S as a bound.  If one has prior

knowledge of the ranking of sample observations according to Pr(T=1|X), one would

obviously obtain the tightest possible bound for α0 (α1) by estimating )|( SXTE ∈  over

that subset of sample observations having the lowest (highest) expected value of T - that

is, the set S should consist of observations with percentile rank of Pr(T=1|X) less than q

(greater than 1-q).  Without prior knowledge of the ranking of observations by

Pr(T=1|X), one must estimate the ranking from the sample.

If the functional form chosen to estimate the ranking of Pr(T=1|X) is incorrect,

the estimated bounds will not be tight for a given q because some observations will be

misclassified in the limit as having percentile rank above q when their true rank is below

q, and vice versa (and correspondingly for rank 1-q).    Since 10 1)|1Pr( α−≤=≤α XT

for all X, an incorrect functional form will affect only the tightness of the bounds, not

their validity.     In most cases, the percentile ranks of Pr(T=1|X) are unlikely to be

drastically affected by functional form.

                                                
1 HAS present another procedure for estimating misclassification probabilities (and
Pr(T*=1|X)) that does not rely on prior knowledge of the functional form of Pr(T*=1|X),
but this procedure is computationally quite complex and converges at a rate slower than

n .
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Because we require asymptotic results where the functional form of Pr(T=1|X)

may be misspecified, it is convenient to work with quasi-maximum-likelihood (QML)

estimation (see White 1982) in estimating the ranking of Pr(T=1|X).  Specifically,

consider estimation of the model E(T|X) = G(X ; δ), where G is a cdf but not necessarily

the true one and δ  is a vector of parameters.  Let δ̂  denote the quasi-maximum-

likelihood estimator: ≡≡ )(maxargˆ δδ L

∑∑
==

δ+δ−
1:0:

));(ln));(1ln()(/1max(arg
ii Ti

i
Ti

i xGxGn , so that the predicted value of T is

simply )ˆ;(ˆ δ= XGT .  We assume sufficient regularity such that the quasi-maximum

likelihood estimator δ̂  exists and converges to a limit δ* and such that *)ˆ( δδ −n

converges to a normal distribution.2

We now introduce some necessary notation.  Let δJ  denote the cumulative

distribution function of G(X; δ ) and let *
qκ ≡ 1

*
−
δJ  (q)  denote the q-quantile for *δJ .

Letting [ ]’’ qκδθ ≡ , one can define the function, ));(|()(0
qq XGTEA κδθ ≤≡ .  In

addition, let ))(ˆ|min(ˆ ˆ qcJcq ≥≡ δκ denote the sample q-quantile for T̂ , where δ̂Ĵ  is the

empirical cdf of T̂ .  Let )(0
qI θ  denote the set of all sample observations such that

qXG κ≤δ);(  and similarly, define )( 1
1

qI −θ  as the set of all sample observations such

that qXG −≥ 1);( κδ .

                                                
2 See White (1982) for details.  The results in the text and the appendix go through, with

appropriate substitutions, for any estimator δ̂ such that *)ˆ( δδ −n  has the same limiting

distribution as )
);,(

( n
XTu

nK ∑ δ
, where u is a mean zero function of the data

fulfilling the conditions for the central limit theorem and K is a constant vector.  Least
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We now present our bounds estimates.  Let 
))ˆ((#

)ˆ(ˆ
0

)ˆ(0
0

q

Ii
i

q
I

T

A q

θ
θ

θ
∑

∈
≡  be average

observed T in )ˆ(0
qI θ , where [ ]’

ˆ'ˆˆ
qκδθ ≡  and let 

))ˆ((#

)1(

)ˆ(ˆ

1
1

)ˆ(

1
1 1

1

q

Ii
i

q
I

T

A q

−

∈
−

∑
−

−

≡
θ

θ
θ

.  The

statistics )ˆ(ˆ 0
qA θ  and )ˆ(ˆ

1
1

qA −θ  are obvious upper bound estimates for α0 and α1 and can

be used to bound β .  The following bounding results are straightforward:

Proposition 1:

(a)     α0 ≤  plim )()ˆ(ˆ *00
qq AA θθ =

(b)      α1 ≤  plim )()ˆ(ˆ *
1

1
1

1
qq AA −− = θθ

(c)    ),),(),((ˆlim),),ˆ(ˆ),ˆ(ˆ(ˆlimˆlim *
1

1*0
1

10 RpAApRpAApp qqolsqqolsols −− =<< θθχβθθχβββ ,

where [ ]’** *’ qq κδθ ≡ .

We now discuss the asymptotic distributions of )ˆ(ˆ 0
qA θ  and )ˆ(ˆ

1
1

qA −θ  and how to

use the estimates in constructing asymptotic confidence intervals for α0, α1, and β.  We

discuss )ˆ(ˆ 0
qA θ ; the properties of )ˆ(ˆ

1
1

qA −θ  are symmetrical.

Decompose ))()ˆ(ˆ( *00
qq AA θθ −  into +− ))ˆ()ˆ(ˆ( 00

qq AA θθ ))()ˆ(( *00
qq AA θθ − .  The

asymptotic variance of the second term depends on the gradient vector of A0 at *
qθ , and is

not straightforward to estimate.  However, note that )ˆ(0
qA θ  (the population mean T for

the set defined by qT κ̂ˆ ≤ ) is a valid bound for α0.  We can therefore treat )ˆ(0
qA θ  as an

                                                                                                                                                
squares regression is one example of such an estimator.
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object of estimation in its own right, and deal only with the first term in the

decomposition.  We show in the appendix, under weak additional regularity conditions,

that the fact that qθ̂  is estimated has no effect on the limiting distribution of

))ˆ()ˆ(ˆ( 00
qq AAn θθ − , which takes the simple form )/))ˆ(1)(ˆ(,0( 00 qAA qq θθ − .  In effect,

we can treat qθ̂  as fixed.

Constructing a confidence interval for )ˆ(0
qA θ  is immediate.  It is also

straightforward to construct a conservative confidence interval for the parameter of

interest, α0.  We summarize our results in the following proposition.

Proposition 2:

rznsAAznsAa rqqrq
n

−=+≤≤− −−∞→
1))ˆ,()ˆ(ˆ)ˆ()ˆ,()ˆ(ˆPr(lim)7( 2/1

00
2/1

0 θθθθθ

rznsAb rq
n

−≥+≤≤ −∞→
1))ˆ,()ˆ(ˆ0Pr(lim)7( 1

0
0 θθα .

where zr denotes the rth percentile of the standard normal cdf and

nq

AA
ns

qq ))ˆ(ˆ1)(ˆ(ˆ
)ˆ,(

00 θθ
θ

−
= .

Let ),,,(ˆlim max
1

max
0 Rpp olsUbound ααχββ ≡  denote the theoretical upward bound on

β, as determined by the measurement error bounds max
0α  and max

1α .  Using the delta

method, one can derive a confidence interval for Uboundβ  similar to (7a) from the joint

distribution of olsβ̂ , p, R, )ˆ(ˆand),ˆ(ˆ
1

10
qq AA −θθ .  The joint distribution can be estimated

using a stacked regression.  For this purpose, it is convenient to let 2
|XTσ  denote the

average variance of T conditional on X and to replace R in (4) with 2
|XTσ  using the
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relation 
)1(

1
2

pp
R T

−
−=

σ
.  Regressing the squared residual, 2

Te , from a regression of T on X

on a constant yields the coefficient 2
|XTσ .  In addition, let I0 and I1 be indicators of

membership in the sets )ˆ(0
qI θ  and )ˆ( 1

1
qI −θ , respectively, and let )21()1( 10 qIIV −−−≡ .

It can be verified that regressing T on V, I0 – qV, and I1 – qV yields the coefficients p,

)(0
qA θ , and )( 1

1
qA −θ .  This gives us the stacked regression:
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To construct a w-percent confidence interval for β analogous to (7b), note that

( Uboundols ββ ˆ,ˆ ) are distributed bivariate normal.  Let ),,( rdcΦ denote the probability that

X1 ≤ c and X2 ≤ d, where X1 and X2 are standard normal random variables with

correlation r.  Let cq and dq satisfy wdc ww =−Φ ),,( ρ , where ρ is the correlation between

olsUbound ββ ˆ and  ˆ .  We then have

     (8)   )ˆˆlim,ˆlimˆPr(lim UboundwUboundUboundolsolswols
n

dppcw σβββσβ +≤≤−=
∞→

                  )ˆˆPr(lim UboundwUboundolswols
n

dc σββσβ +≤≤−≤
∞→

,

where σ  denotes the standard error of the subscripted estimator.  A minimum length w-

percent confidence interval can be constructed by choosing cw and dw to solve the

following minimization problem:
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.),,( subject to)(min
,

wdccd wwolswUboundw
dc ww

=−Φ+ ρσσ

The preceding analysis treats q as fixed. ))ˆ(ˆ( 0
qAVar θ decreases with q since the

subsample used to compute )ˆ(ˆ 0
qA θ  increases with q.  However, Pr(T*=1), and

consequently, )ˆ(ˆ 0
qA θ will in general be increasing in q.  The choice of q thus involves a

trade-off between the tightness and the variance of the bounds.  We leave the optimal

choice of  q as a topic for research.

Our upper bound on β does not take into account the constraint that the variance

of e is bounded below by zero.  Whether this constraint binds can be checked by

examining the “reverse regression” coefficient generated by regressing T on Y and X.  Let

B denote the coefficient on Y and Brev /1ˆ ≡β  the slope implied by the reverse regression.

Bollinger (1996) shows that the constraint binds only if Uboundqqrev AA βθθβ ˆ))ˆ()ˆ(1(ˆ 10 −−< .

We refer the reader to the bounds in Bollinger (1996) for this case (which is unlikely to

occur for low and moderate values of R2 in the main regression).

Stronger prior information will of course yield tighter bounds.  We noted above

that knowledge of the functional form of Pr(T* = 1|X) can be used to estimate α0 and α1

from (6) by maximum likelihood, as in HAS. 3   We compare the percentile method with

HAS at several points below.  Without knowledge of Pr(T* = 1|X), but with knowledge

                                                
3 More precisely, one can estimate upper bounds for α0 and α1.  As HAS

themselves note, their model is indistinguishable from one where T* = 1 for a fraction of
the population α0, and T* = 0 for a fraction α1, independent of X.  More generally, one
can envision a mixture of these two extreme cases, where the proportions α0 and α1 are
composed partly of those whose response is independent of X and partly of those who
misreport, so true measurement error is bounded below by zero and above by the
estimated values of α0 and α1.
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of a functional form h(X; δ) such that Pr(T=1|X) = G(h(X; δ)) for an unknown cdf G--

that is, a single-index condition--one can consistently estimate δ up to a multiplicative

constant as in Ichimura (1986) and Han (1987), and thus estimate bounds that are tight

for a given q.  Finally, if there is a set S such that it is known a priori  that Pr(T*=1| X ∈

S) = 0 (for example, knowledge that the training program whose impact is of interest is

not offered at a given location), then Pr(T=1| X ∈  S) = α0, and correspondingly for α1.

III.  A GMM Estimator for Estimating the Effect of a Mismeasured Binary

Explanatory Variable When Instruments are Available

Where instruments are available, instrumental variable estimation is a commonly

prescribed fix to measurement error in a regressor.  We begin this section by showing that

IV estimation by itself is inconsistent for the coefficient of the mismeasured variable but

consistent for other variables (assumed to be correctly measured).  We next derive a

consistent closed-form GMM estimator and then show how to incorporate the estimated

measurement error bounds developed in the previous section into the GMM estimates.

We also develop a specification test for the measurement error model.

IV Estimation

When cov(T*,U) = 0, any variable Z which is correlated with T* and independent

of e and the measurement error process can be used as an instrument.  However, if T* is

binary, T* and U will be negatively correlated for any (non-degenerate) distribution of T*

and U.  Because the classical assumption that T* and U are uncorrelated cannot hold

when T* is binary, Z will not be a valid instrument.  To be more precise, let Z be a vector

of variables such that Cov(Z,T*) ≠ 0, Cov(Z, e)=0, and Cov(Z,U|T*)=0.  The last equality
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captures the idea that Z is independent of the measurement error process conditional on

T*, but since Cov(T*,U) ≠ 0, this does not imply that the unconditional covariance

Cov(Z,U)=0.

As others have demonstrated, the fact that Cov(Z,U)≠0 means that the use of Z as

instruments will result in an inconsistent estimate of β.4  Interestingly, as we now show,

the IV estimate of γ  is consistent.  In anticipation of the discussion to follow, it is

convenient to frame the analysis in terms of GMM estimation.

As is well known, the IV estimator 












iv

iv

γ
β
ˆ

ˆ
 is equivalent to the GMM estimator









γ
β
ˆ

ˆ
1  whose probability limit is given by

(9) [ ] [ ])~,
~

()~,
~

(’)~,
~

()~,
~

(minarg
ˆlim

ˆlim
12111211~,

~
1

1

γβγβγβγβ=







γ
β

γβ
mmAmm

p

p
 ,

where

            (10a)     )~~
,()~,

~
( 111 γ−β−=γβ XTYZCovm

(10b)    )~~
,()~,

~
( 112 γ−β−=γβ XTYXCovm ,

 and A is a weighting matrix (in the case of TSLS, 1)( −= XZVarA ).5  (The subscript on

the estimate for β  will be convenient in the discussion below where we obtain other

estimates using additional moment conditions.)  We now prove

                                                
4 We follow previous papers (Loewenstein and Spletzer 1997, Berger, Black and Scott
1997, Kane, Rouse and Staiger 1999) in referring to estimators using the elements of Z as
instruments as IV estimators, in spite of the fact that technically the Z variables are not
instruments.
5 Naturally, in carrying out the GMM estimation, the population moments are replaced by
the sample moments.
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Proposition 3: ββ 11
ˆlim kp =  and γγ =ivp ˆlim , where )1(

1
10

1 αα −−=k .

Proof:

It follows immediately from equation (1) that

(11a)     γβ ),(*),(),( XZCovTZCovYZCov +=

(11b)     γβ )(*),(),( XVarTXCovYXCov += .

Letting rAW  denote the coefficient of correlation between two random variables A

and W, and rAW⋅V the partial correlation between A and W conditional on V, the coefficient

of correlation between X and U conditional on T* can be expressed as (Gujarati 1978, p.

112)

     
)1)(1( 2

*
2

*

**
*

UTXT

UTXTXU
TXU

rr

rrr
r

−−

−
=⋅

.

Using the fact that rXU⋅T* = 0, one finds that Var(T*)Cov(X,U) =

Cov(T*,U)Cov(X,T*).  This result together with (2) and the fact that Cov(T*,U) =

− p*(1- p*)(α0+α1) gives us

(12)     ).,()(),( 110 TXCovkUXCov αα +−=

From (12) and its analogue for Z, we have Cov(Z,T*)/Cov(Z,T) = Cov(X,T*)/Cov(X,T) =

k1.  Substituting into (11) yields

(13a) γβ ),(),(),( 1 XZCovTZCovkYZCov +=

(13b) γβ )(),(),( 1 XVarTXCovkYXCov += .

 Substituting (13) into (10), we see that

)~)((),()
~

()~,
~

()’12(

)~)(,(),()
~

()~,
~

()’12(

1112

1111

γγββγβ

γγββγβ

−−−=

−+−=

XVarTXCovkmb

XZCovTZCovkma
,
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which implies that ββ 11
ˆlim kp =  and γγ =2ˆlimp .          Q.E.D. 

Although IV yields an inconsistent estimate of β, the proof of proposition 3

suggests a way that one might be able to obtain a consistent estimate.  The GMM

estimator using the moment conditions (11) yields an estimate of 1β̂  that is a simple

function of β and the measurement error parameters α0 and α1.  If one can use additional

moments that allow determination of α0 and α1, then one can solve for β.

GMM Estimation

Consider for the moment the case without covariates.  KRS and BBS analyze a

model with two mismeasured indicators T1 and T2 of T*.  They note that seven moments

are observable: ),|( 21 jTiTYE == , ),Pr( 21 jTiT == , i,j={0,1} (one of the cell

probabilities is redundant).  This allows the identification of the seven parameters c, β,

p*, α0k , α1k , k={1,2}.  Note that knowledge of ),|( 21 jTiTYE ==  and

),Pr( 21 jTiT == is equivalent to knowledge of the following sets of moments:  E(Y),

Cov(Tk,Y), Cov(T1T2,Y), E(Tk), and Cov(T1,T2).  In our analysis, an instrument takes the

place of one of the alternate measures, so that the moments are E(Y ), Cov(T,Y ),

Cov(Z,Y), Cov(ZT,Y ), E(T), E(Z ), and Cov(Z,T ).  Thus, our model is identified and can

be estimated using GMM.

Turning our attention back to the full model (1), note that we have already used

the covariances between Z and Y in the moment conditions (13a) and the covariances

between X and Y  in the moment conditions (13b).  To use Cov(T,Y ) and Cov(ZT,Y ), we

note from (1) that
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γβ
γβ

),(),(),()13(

),()(),()13(

3

2

XWCovTWCovkYWCovd

XTCovTVarkYTCovc

+=
+=

where TZZW ⋅−≡ )( , )(
*),(

2 TVar
TTCovk ≡  , and ),(

*),(
3 TWCov

TWCovk ≡ .6  Algebra

establishes that:

(14) 
)1)(1(

)1)((

10

10
2 αα

αα
−−−
−−−

=
pp

pp
k ;

       
)1)(1(

)1(

10

01
3 αα

αα
−−−
+−−

=
p

p
k .

To estimate ββ 22 k≡  and ββ 33 k≡ , we expand the IV moment conditions (10) to

include:

 (10c)     )~~
,()~,

~
( 223 γβγβ XTYTCovm −−=

 (10d)     )~~
,()~,

~
( 334 γβγβ XTYWCovm −−= .

Since the factors k2 and k3 are both functions of p as well as α0 and α1, we need an

estimate of p to close the model, so we add a final moment condition:

(10e)     pTEm ~)(5 −= .

  Substituting (13c) and (13d) into (10) yields

.~)()~()’12(

)~)(,(),()
~

()~,
~

()’12(

)~)(,()()
~

()~,
~

()’12(

)~)((),()
~

()~,
~

()’12(

)~)(,(),()
~

()~,
~

()’12(

5

3334

2223

1112

1111

pTEpme

XWCovTWCovkmd

XTCovTVarkmc

XVarTXCovkmb

XZCovTZCovkma

−=
−+−=

−+−=

−−−=

−+−=

γγββγβ

γγββγβ

γγββγβ

γγββγβ

 This leads to

                                                
6 Note the definition of W.  The formula for k3 below is correct only if Z is normalized to
zero before multiplying by T.
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Proposition 4:  Let 1β̂ , 2β̂ , 3β̂ , and p̂  be GMM estimates using moments (12).

Then

(15a)     2
1321 )ˆˆˆ)ˆ1((ˆˆ)ˆ1(ˆ4ˆ βββββ pppp −−+−=

(15b)     
1

31
0 ˆ2

ˆˆ)ˆ1(ˆˆ
ˆ

β
βββα −−+

=
pp

and

(15c)     
1

31
1 ˆ2

ˆˆ)ˆ1(ˆ)ˆ2(
ˆ

β
βββα −−−−

=
pp

are consistent estimators for β, α0 and α1.
7

Proof:

From (12a’) - (12e’), it is clear that any GMM estimator using moment conditions

(10a) – (10e) will have:

.ˆlim)16(

ˆlim)16(

ˆlim)16(

ˆlimˆlim)16(

ˆlimˆlim)16(

33

22

11

pppe

kpd

kpc

ppb

kppa

iv

iv

=
β=β

β=β

γ=γ=γ
β=β=β

Substituting (14) and Proposition 3 into (16) and solving for β, α0 and α1 yields the

consistency result.  Q.E.D.

An optimal GMM estimator can be derived as follows.  Let

                                                
7 Note that )sgn())ˆlim(sgn())ˆlim(sgn())ˆlim(sgn( 321 ββββ === ppp  since k1, k2, and

k3������		�������������������		������ ������������������
2

13211 )ˆˆˆ)ˆ1((ˆˆ)ˆ1(ˆ4)ˆsgn(ˆ ββββββ pppp −−+−= .
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, and ][’ˆ 0ΓΠ−Ω≡ H ,

where 0Π  is some initial consistent estimate of Π and where z, x, y, and t devote the

deviations of Z, X, Y, and T from their sample means.  Write the sample moments (10) in

stacked form:

(17)           ][’)/1( ΓΠ−Ω≡ Hnm .

The optimal GMM estimator minimizes mVm 1− , where V is the asymptotic

variance matrix of m  (Hansen 1982).  Letting [ ]’]’[ 43210 εεεε≡ΓΠ−Ω , note that

i  is not generally homoscedastic.  For example,

,~~~~ 1
1

*
1

1
iiiiiiii exttxty +−−=−−= γββγβε  so that )|*()|( 21 TtTTVartVar +== βε

)(eVar+  will not in general be constant across t.   The optimal GMM estimator given the

moment conditions (10) and taking into account heteroscedasticity is

ΩΓΓΓ= −−− ’’)’’(ˆ 111 HHSHHSπ , where ∑= )’ˆˆ'( iiii HHS εε ; see Wooldridge (1996).

Note that the asymptotic distribution for  
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β
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β

β
β

β  can be

obtained from (15a).  If desired, ĉ  may be calculated as γ−β− ˆ*ˆˆ XpY .

Finally, we might point out that there is one substantive difference between the

situation in which there is more than one imperfect measure of a binary explanatory

variable and that where one or more instruments take the place of one of the alternative
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measures.  In the former case, Cov(X,T1)Cov(T2,T*) = Cov(X,T2)Cov(T1,T*) since

Cov(X,Ti) = Cov(X,T*)Cov(Ti,T*) for i = 1,2.  KRS use this restriction to obtain

additional identifying information.  Since Cov(X,Z) is unrestricted, there is no analogous

restriction when instruments take the place of one of the measures.8

Incorporating Restrictions on the Measurement Error Parameters Into the GMM

Estimation

Estimates of α0  and α1 based on (15b-c) are not guaranteed to be between 0 and

1.  Additionally, they are not guaranteed to be less than bounds derived from the HAS or

percentile methods in Section II.  Bounds on the measurement error parameters can be

incorporated into the GMM estimation procedure.9  We first discuss imposing bounds

using the percentile method, than briefly discuss using the HAS bounds.

Let )ˆ(ˆlim q
i

i ApA θ≡ , iii AD α−≡ , and iq
i

i AD αθ ˆ)ˆ(ˆˆ −≡    The restriction that the

measurement error parameters be between zero and the bounds Ai can be expressed as L ≥

0, where  [ ]1010 ααDDL ≡ .  Note that these restrictions imply that that 1≤iα .

Let Π denote the vector of parameters [π A0 A1]’. One can directly incorporate the

percentile bounds into the estimation procedure by extending the moment conditions (10)

to include a regression of T on a constant over the subset of the data with qX κδ ˆˆ ≤  to

estimate A0, and a regression of 1 − T on a constant over the subset of the data with

                                                
8 If one makes the stronger assumption that e is not just uncorrelated with, but is
independent of X and T*, additional moment conditions analogous to (13d) can be
imposed using Cov(xT ,Y).  More broadly, if any interactions between elements j of X and
T* can be excluded from (1), Cov(xjT, Y) can be used as in (13d).
9 BBS do not take into account the bounds on α0 and α1 in their GMM procedure.  KRS
account for it by parameterizing α0 and α1 to be between zero and one, resulting in a non-
linear GMM procedure.
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qX −≥ 1ˆˆ κδ  to estimate A1, similar to the stacked regressions above.  Denote this extended

moment set ma.

The classical approach to point estimation is to estimate Π by minimizing the

weighted sum of squares ma’Va
-1ma subject to [ ] 0ˆˆˆˆˆ

1010 ≥≡ ααDDL .  Note that the

constraints are non-linear since the iα̂  estimates are non-linear functions of the

regression parameters.  Incorporating inequality constraints into classical inference

presents challenges.  The asymptotic distribution depends on whether the true parameter

is on the boundary of the feasible set.  If the true parameter is in the interior of the

feasible set, then the asymptotic distribution is equal to that of the equivalent

unconstrained estimator, but this may be a poor guide to finite-sample behavior.  The

bootstrap, a common method of improving finite-sample performance of variance

estimates, is inconsistent in inequality-constrained problems (Andrews 2000).

We believe that Geweke’s (1986) Bayesian method presents the simplest

satisfactory approach to this problem.  Geweke shows that if the prior for the parameter

vector is diffuse over the feasible set, the posterior distribution is the portion of the

estimated sampling distribution of the unrestricted parameter estimate in the feasible

region.  The posterior mean can be evaluated by taking random draws from the sampling

distribution and averaging over draws in the feasible region.  Applied to our problem, one

first uses GMM to obtain an unconstrained estimate Π̂ .  One then takes draws from the

distribution ))ˆ(,ˆ( ΠΠ VN  and averages over those draws where L̂  ≥ 0.

A Specification Test for the Measurement Error Model.

The foregoing assumes that the data were generated by (1) (i.e., that e is

uncorrelated with T* and X), that the measurement error is uncorrelated with X and Z
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conditional on T*, and that the instruments Z are valid.  If these assumptions are violated,

it is not necessarily the case that 0ˆlim ≥Lp .  Thus we can use a test of the null hypothesis

that L ≥ 0 as a specification test of the measurement error model.

Let δ denote the 4 x 1 vector )’ˆˆ( LLR − , where RL̂ denotes the inequality-restricted

estimator of L.  Letting δA denote the subvector of δ  corresponding to all the binding

constraints and letting )ˆ(LVA  denote the corresponding elements of the variance matrix

of L̂ , construct the test statistic

(18) AAA LV δδτ 1)ˆ(' −= .

We now show that asymptotically the 1−q percentile of the chi-square distribution with 2

degrees of freedom is a valid critical value for a test with significance level q.

Proposition 5:

)()0|Pr(lim 2
2 cLc

n
χτ ≥≥≤

∞→
 and )()0|Pr(lim 2

2 cLc
n

χτ ==≤
∞→

Proof:

The )ˆ(ˆ
q

iA θ  parameters must be non-negative since they are sample means of non-

negative variables.  Thus, no more than two out of the four elements of L̂  can violate the

inequality constraints and  δA will never have more than two elements.

All four constraints are satisfied with equality when α0 = A0 = α1  = A1 = 0.

Asymptotically, ))ˆ(ˆ( q
iAVar θ  = Ai (1 − Ai) = 0 at this point, so that the distribution of iD̂

converges to the distribution of iα̂−  and the restrictions collapse to

[ ] 0ˆˆˆˆ 1010 ≥−− αααα , or equivalently, 0ˆˆ 10 ==αα .  Whatever  combinations of
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constraints are violated in the sample, the statistic τ thus equals

[ ] [ ] ’ˆˆ)ˆ(ˆˆ 10
1

10 ααααα −Var , which is asymptotically distributed )2(2χ .10

Now consider the case where two constraints are satisfied with equality, one

corresponding to α0 and one to α1.  If αi = 0, let λ i =αi  and µi =Di.  Conversely, if Di = 0,

let λi =Di and µi =αi.  As the sample becomes large, the probability that the inequality

constraints involving λ i are violated approaches zero.  We therefore need only consider

cases where the constraints involving αi are violated in the sample.  If no constraints are

violated in the sample, τ = 0.  If one constraint i is violated,  )ˆ(/ˆ2
ii Var λλ=τ , which is

distributed χ2(1).  If both constraints are violated, [ ]RR
1100

ˆˆˆˆ λ−λλ−λ=τ

[ ]′−−− RRVar 1100
1 ˆˆˆˆ)ˆ( λλλλλ , which is precisely Wolak’s (1987) test statistic W.  Wolak

(1987) shows that W is equal to the distance between the inequality-restricted and

unrestricted estimates, evaluated in the norm of the covariance matrix of the unrestricted

estimates.  This distance must be less than or equal to the distance ∆ between the

unrestricted estimates and the estimates obtained imposing the equality restrictions

.010 =λ=λ   ∆ is distributed ).2(2χ   Thus τ is a mixture of random variables all of

which are less than or equal to ).2(2χ

Applying a similar argument for cases with other combinations of constraints

holding with equality, we can conclude that the point where all four constraints are

                                                
10 Note that the more traditional chi-square statistic δδ 1)ˆ(' −LVar , as in Wolak (1991),

does not exist at this point, as )ˆ(LVar is singular.
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satisfied with equality is the least favorable point for the purpose of computing a

distribution of the test statistic under the null hypothesis.11, 12      Q.E.D.

Applying the HAS bounds

The application of HAS bounds to the Geweke technique is immediate.  However,

the distribution of the test statistic τ under the null is not easily derived under the HAS

method.  Negative estimates of A0 and A1 are possible, so all four constraints may be

violated at the same time.  As explained in Wolak (1991), the distribution of τ at the point

where all constraints bind is a weighted mixture of chi-squares from zero to four degrees

of freedom, with the weights depending on  )ˆ(λVar .  Since )ˆ(λVar  will vary across

points in the null due to the non-linearity of the constraints, one can no longer show that

this point is the least favorable point in the null.

IV. Bounding the Effect of a Mismeasured Endogenous Binary Explanatory

Variable

Now suppose the residual e in (1) is uncorrelated with X and Z, but correlated

with T*.  Projecting T on T* and Z, we have:  ,*)1( 100 η+α−α−+α= TT where η is

orthogonal to T* and Z.  Thus, )*,()1(),( 10 eTCoveTCov αα −−=  and =),( eWCov

                                                
11 Our constraints involve 0α̂  and 1α̂ , which are nonlinear functions of ,ˆ,ˆ,ˆ

321 βββ and p̂ .
While it is always true for linear constraints that the least favorable point in the null
occurs where all constraints are satisfied with equality, we needed to demonstrate this
here because it is not always true when the constraints are non-linear; see Wolak (1991).
12� ���������� �����	��������	������������� RL̂  subject to non-linear constraints, is in
many cases easy to calculate.  Cases with zero or one constraint binding were dealt with
in the text.  If two constraints are violated, and if each constraint is still violated after
imposing the other constraint as an equality and calculating the constrained optimum,

then RL̂  = 0.  One can also show that the constraint that 00 ≥α  is equivalent to the linear

constraint β2 ≤  β3.
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)*,()1( 10 ezTCovα−α− , which means that the population moment conditions (13c) and

(13d) become:

).*,()1(),(),(),()’13(

)*,()1(),()(),()’13(

103

102

ezTCovXWCovTWCovkYWCovd

eTCovXTCovTVarkYTCovc

α−α−+γ+β=
α−α−+γ+β=

By assumption, Cov(T*,e) is not equal to zero.  What about Cov(zT*,e)?

Projecting T* onto z, X, and e, we have: ωδδδδ ++++= ezXT 3210* , where ω is

orthogonal to X, Z, and e.  So

     (19)     ),()()()(*),()*,( 2
3

2
21 ωδδδ zeCovzeEezEzXeETzeCovezTCov +++==

Independence of X and Z with e, not just orthogonality, is required to guarantee that the

first three terms on the right hand side of (19) are zero.  Cov(ze, ) will not in general be

zero except under the strong assumption that E(T*| X, Z, e) is linear in X, Z, and e--that is,

that the linear probability model applies to T*.

We can conclude that endogeneity of T* adds two more sets of unknown

parameters to the moment conditions (13) -- Cov(T*,e) and Cov(zT*,e).  Consequently,

the GMM method described above is now underidentified.  However, note that

Proposition 3 still holds, so that ivp β̂lim  still equals )1( 10 ααβ −−  (and )ˆlim γγ =ivp .

Under the maintained assumption that 110 <+αα , ivβ̂  is asymptotically still an upper

bound, and zero is a lower bound.  This lower bound can be tightened by employing the

HAS or the percentile method to obtain upper bounds max
0α  and max

1α  for the

measurement error parameters α0 and α1.
13  Specifically, one has:

iv10iv p1p ββααβ ˆlim)(ˆlim maxmax <<−− .

                                                
13 Naturally, the instruments Z can be used in estimating Pr(T=1|X, Z) (for the percentile
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 Confidence intervals for the lower bound can be generated as in Section II.

V.  Empirical Example

We now illustrate the use of our measurement error techniques with an analysis of

the effect of training incidence on wage growth.  Employee training is a particularly

interesting application of these techniques because there is evidence that it is measured

with a great deal of error.  Using a survey of matched employer-employee responses to

the same training questions, Barron, Berger, and Black (1997) find that the correlation

between worker reported training and employer reported training is only .32 for the

incidence of on-site formal training, and .38 for off-site formal training.

We use data from the National Longitudinal Survey of Youth 1979 Cohort

(NLSY79).  NLSY79 is a dataset of 12,686 individuals who were aged 14 to 21 in 1979.

These youth have been interviewed annually since 1979, and the response rate has been

90 percent or greater in each year.  We use data from the 1987 through 1994 surveys.

Our dependent variable is the change in real log wages between interviews.  We exclude

job changers, so all wage growth is within-job.  We also exclude the military subsample,

observations with real wages below $1 or above $100 in 1982-84 dollars, and

observations where the respondent is an active member of the armed forces, self-

employed, in a farm occupation, or enrolled in school.  Finally, we exclude observations

where variables have missing values (except for the cases noted below where we use

missing indicators).

                                                                                                                                                
method) or  Pr(T*=1|X, Z) (for HAS) to help tighten the measurement error bounds.
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Our training measure equals one if the respondent reports completing a training

program on the current job since the last interview (the training may have started before

the last interview) and zero otherwise.  Our control variables are age, tenure, experience,

the Armed Forces Qualifying Test measure of cognitive skills (AFQT),14 and dummies

for female, black, Hispanic, ever married, one-digit occupational categories, collective

bargaining, part-time status, and calendar year.  In addition, there are dummies for

missing AFQT, collective bargaining status, and part-time status, with the variables set

equal to zero if their missing indicators equal one.  Our final sample has 20,300

observations from 8,031 jobs and 6,345 individuals.  The observed incidence of training

is 12.9 percent.

We use two instruments.  The first is a measure of gross job destruction and

creation by 2 digit industry created from Michigan unemployment insurance data.15  The

second is years of completed schooling.  Our first instrument can be justified by the fact

that the employer’s return to a given training-induced increase in worker productivity is

higher for a longer-lived job match (see Royalty 1996).  Job creation and destruction

rates are plausibly related to the magnitude of exogenous demand shocks and hence

exogenously shift turnover rates. The second instrument is motivated by the consideration

that years of school is an indicator of trainability.  In this context, note that the inclusion

of AFQT and one-digit occupation dummies in the wage growth equation arguably

controls for the direct effect of schooling on productivity growth.  We also include runs

where the reallocation variable serves as the sole instrument (rows denoted “1

instrument” in the table).

                                                
14 Specifically, the residual from a regression of AFQT on dummies for year of birth.
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To illustrate the effects of our measurement error bounds on estimates of γ , we

also show OLS bounds and IV estimates for the coefficient on AFQT.  Our uncorrected

OLS results indicate a statistically significant link between wage growth and AFQT.

Given that we find (as is common in this literature) a strong effect of AFQT on the

probability of receiving training, it is of interest to what extent the observed AFQT effect

on wage growth may be due to measurement error in training.

Means and standard deviations for the variables of interest are shown in table 1.

Point estimates and bounds for the wage return to training, β, for the measurement

parameters, α0, α1, and for γafqt are shown in table 2.  All standard errors are from a panel

version of the White heteroscedasticity-consistent estimator (see Froot 1989 and Rogers

1993).  Table 3 shows minimum length confidence intervals as in (8).

The OLS results indicate that training during a period raises next period wages by

1.9 percent.  IV estimation raises the training coefficient dramatically, to between 13 and

14 percent.  This increase is consistent with the hypothesis of substantial measurement

error.

To generate percentile bounds, we first estimate a probit of training incidence on

the independent variables and instruments and then observe the incidence of training

below the 5th and above the 95th percentiles of the distribution of predicted training.  The

bound for α0 is relatively tight at 2.4 percent.  The bound for α1, 70 percent, is much

higher, indicating the potential for a great deal of measurement error.  The relative

magnitudes of these bounds are intuitively plausible, as it seems more likely that

respondents would forget or neglect to report training spells rather than to report training

                                                                                                                                                
15 We thank Chris Foote for supplying these data.  See Foote (1998) for more details.
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that did not occur.  We generate HAS bounds by estimating (6) taking F to be the normal

cdf.  The HAS bounds are slightly tighter than the percentile bounds.

Applying the bounds on α0 and α1 to the OLS results using (5) yields upper

bounds on β of about 4 percent for both the percentile and HAS methods, roughly double

the OLS estimate. 16  The confidence intervals from (8) are similar to, but slightly to the

left of what one would get by adding 1.96 σUbound to the upper bound estimate and

subtracting 1.96 σols from the OLS estimate.  Because σUbound > σols, taking a smaller

multiple of σUbound and a larger multiple of σols allows us to shorten the confidence

interval slightly.

GMM results based on (17) using both instruments give a point estimate of 4

percent, similar to the bounds.17  However, the GMM estimates of α0 and α1 are

infeasible, with α0  negative and α1 above the percentile (and hence HAS) bound.  We

apply the Geweke technique, generating 10,000 draws in the feasible region, to produce

feasible estimates of α0 and α1.  Relative to GMM, the Geweke method does not affect

the point estimate of β very much, but reduces the standard error from .008 to .007.18

The results are similar when only the reallocation variable is used as an instrument.

However, the improvement in precision from using the Geweke technique is more

                                                
16 The reverse-regression upper bound on β from Bollinger (1996), referred to in Section
II, is 22.2, corresponding to values of (α0, α1) of  (0.123, 0).  The much tighter bound
produced by our method stems from the fact that, as explained in Bollinger (1996, p.
396), information reducing misclassification from the larger to the smaller group – in this
case, α0 -  is particularly powerful in reducing the upper bound.
17 Adding an overidentifying instrument generates two overidentifying moments (15a)
and (15d).  The test statistic for the conventional GMM overidentification test  (Greene
2000, p. 482) is 1.64, far from the χ2(2) critical values.
18 Of course, the GMM estimator and the Geweke estimator are not strictly comparable
unless one considers GMM as a Bayesian estimator combining the data and a diffuse
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dramatic, as the GMM standard error for β with only one instrument is .012 while the

Geweke standard error is still .007 to three decimal places.

To test whether the measurement error model underlying the GMM and Geweke

estimates is compatible with the data, we calculate the test statistic τ in (18) (using the

percentile bounds).  With two instruments, τ is 2.68, which is not significant at

conventional levels using a χ2(2) distribution (the 5% critical value is 5.99).   Using one

instrument, τ is zero, as the GMM values are feasible.

The results for γafqt show a substantial effect of measurement error.  The OLS

coefficient is statistically significant at the 1 percent level whether highest grade

completed is included in the regression or not.  However, IV estimation reduces the

coefficient by at least two-thirds; the estimated coefficient is less than its standard error.

Recall that γ is consistently estimated by IV.  The OLS bounds using the estimated α

parameters are consistent with the low IV estimates, with the percentile bounds slightly

lower than the IV estimates and the HAS bounds quite close.

Finally, if we allow for endogeneity, the lower bounds for β from IV estimation

range from .036 to .041 across the different specifications, though with relatively large

standard errors.  These lower bounds are similar to the upper bounds from OLS and to the

point estimates from the GMM and Geweke methods.  The length of the confidence

intervals reflects the large standard errors, σLbound, on the lower bounds estimates; as

above, they are to the left of intervals generated by subtracting 1.96 σLbound to the bound

and adding 1.96 σiv to the IV estimate.

                                                                                                                                                
prior.
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Our prior expectation was that training incidence may be positively associated

with unobservable determinants of wage growth.  However, the bounds estimates indicate

that true training is either exogenous or negatively correlated with the wage growth

residual, as the lower bound estimates allowing for endogeneity coincide with the point

estimates when one takes training to be exogenous.  We conclude that our evidence is

consistent with measurement error cutting the OLS estimate of the return to training in

half, but we cannot rule out an additional downward bias to OLS due to endogeneity.

Much of the apparent effect of AFQT on wage growth appears to be due to measurement

error in training.

VI.  Conclusion

This paper has explored techniques for dealing with a mismeasured binary

explanatory variable in a linear regression.  If the binary variable is measured with error,

is uncorrelated with the error term in the regression, and there is no instrument available,

then its true coefficient, β, can be bounded by combining the least squares coefficient

with the HAS or percentile method for bounding measurement error presented in Section

II.  If an instrument is available, IV is inconsistent, but β can be consistently estimated by

the GMM estimator in Section III.  The estimated measurement bounds can be

incorporated into the GMM estimates, and the specification can be tested by comparing

the GMM estimates with the measurement error bounds.  Finally, if the mismeasured

binary explanatory variable is correlated with the error term in the regression, the GMM

estimator is inconsistent, but β can be bounded by applying the HAS or percentile

measurement error bounds to the IV estimate.



30

References

Aigner, Dennis J.  1973.  "Regression with a Binary Independent Variable Subject to
     Errors of Observation."  Journal of Econometrics 1, pp. 49-60.

Andrews, Donald W. K.  2000.  “Inconsistency of the Bootstrap When a Parameter Is On
the Boundary of the Parameter Space.”  Econometrica 68:2, pp. 399-405.

Barron, John M., Mark C. Berger, and Dan A. Black.  1997.  "How Well do We Measure
     Training?" Journal of Labor Economics 15:3 (part 1), pp. 507-528.

Berger, Mark, Dan Black, and Frank Scott.  2000. "Bounding Parameter Estimates with
Non-Classical Measurement Error.” Journal of the American Statistical Association
95:451, pp. 739-48.

Black, Dan, Seth Sanders, and Lowell Taylor.  2000. “Measurement of Higher Education
in the Census and CPS”.  Paper presented at Southern Economic Association
Meetings, Arlington VA.

Bollinger, Christopher R.  1996.  “Bounding Mean Regressions When a Binary Regressor
is Mismeasured.”  Journal Of Econometrics 73:2, pp. 387-399.

Foote, Christopher. 1998.  "Trend Employment Growth and the Bunching of Job Creation
and Destruction." Quarterly Journal of Economics 113:3, pp. 809-34.

Froot, Kenneth A.  1989. “Consistent Covariance Matrix Estimation with Cross-Sectional
Dependence and Heteroskedasticity in Financial Data.”  Journal of Financial and
Quantitative Analysis 24:3, pp. 333-55.

Geweke, John.  1986.  “Exact Inference in the Inequality Constrained Normal Linear
Regression Model.”  Journal of Applied Econometrics 1:2, pp. 127-141.

Greene, William H.  2000.  Econometric Analysis, 4th edition.  Upper Saddle River, New
Jersey:  Prentice Hall.

Gujarati, Damodar.  1978.  Basic Econometrics.  New York:  McGraw-Hill.

Han, A. K.  1987.  "Non-parametric analysis of a generalized regression model."  Journal
of Econometrics 35, pp. 303-16.

Hansen, L.  1982.  “Large Sample Properties of Generalized Method of Moments
Estimators.”  Econometrica 50, pp. 1029-54.



31

Hausman, J. A., Abrevaya, Jason, and F. M. Scott-Morton. 1998.  "Misclassification of
    the Dependent Variable in a Discrete-Response Setting." Journal Of Econometrics 87,
    pp. 239-69.

Ichimura, H.  1993.  "Semiparametric Least Squares (SLS) and Weighted SLS Estimation
of Single Index Models."  Journal of Econometrics 58, pp. 71-120.

Kane, Thomas J., Cecilia Elena Rouse and Douglas Staiger.  1999.  “Estimating Returns
to Schooling when Schooling is Misreported.”  Working Paper 7235, National
Bureau of Economic Research.

Koenker, Roger, and Gilbert Bassett Jr.  1982.  “Robust Tests for Heteroscedasticity
Based on Regression Quantiles.” Econometrica 50:1, pp. 43-61.

Loewenstein, Mark A. and James. R. Spletzer. 1997.  “Belated Training: The
     Relationship Between Training, Tenure, and Wages.” Unpublished paper, Bureau of
     Labor Statistics.

Rogers, W. H.  1993.  “Regression Standard Errors in Clustered Samples.”  Stata
Technical Bulletin 13, pp. 19-23.

Royalty, Anne Beeson.  1996.  “The Effects of Job Turnover on the Training of Men and
Women.”  Industrial and Labor Relations Review 49:3, pp. 506-21.

White, Halbert.  1982.  “Maximum Likelihood Estimation of Misspecified Models.”
Econometrica 50:1, pp. 1-25.

Wolak, Frank A.  1987.  “An Exact Test for Multiple Inequality and Equality Constraints
in the Linear Regression Model.”  Journal of the American Statistical Association
82:399, pp. 782-93.

Wolak, Frank A.  1991.  “The Local Nature of Hypothesis Tests Involving Inequality
Constraints in Nonlinear Models.”  Econometrica 59:4, pp. 981-95.

Wooldridge, Jeffrey M.  1996. “Estimating Systems of Equations with Different
Instruments for Different Equations.”  Journal of Econometrics 74, pp. 387-40



32

Table 1

Descriptive Statistics, Selected Variables

Variable Mean      Std.
Deviation

Min. Max.

Change in Ln Wage   0.025 0.225 -1.492 1.487
Training Incidence   0.129 0.335 0 1
AFQT   0.7   20.3 -65.5 45.9
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Table 2

Estimates and Bounds for Selected Coefficients and Measurement Error Parameters

Parameter β α0 α1 γafqt (x 10-4)
Specification

Point Estimates
OLS, 2 instruments .019

(.005)
3.24

(0.81)
OLS, 1 instrument .019

(.005)
2.37

(0.87)
IV, 2 instruments .140

(.045)
0.72

(1.22)
IV, 1 instrument .133

(.064)
0.79

(1.27)
GMM(2) .040

(.008)
-.047
(.046)

.757
(.029)

Geweke(2) percentile1 .038
(.007)

.008
(.006)

.634
(.082)

Geweke(2) HAS .038
(.007)

.006
(.004)

.636
(.072)

GMM(1) .039
(.012)

.020
(.053)

.688
(.091)

Geweke(1) percentile1 .037
(.007)

.014
(.008)

.599
(.124)

Geweke(1) HAS .036
(.006)

.009
(.006)

.587
(.124)

Upper Bounds2

Percentile1 .024
(.005)

.702
(.017)

HAS .015
(.003)

.695
(.008)

OLS percentile bound1 (2) .043
(.011)

0.39
(1.67)

OLS percentile bound1 (1) .043
(.011)

0.44
(1.36)

OLS HAS bound (2) .038
(.009)

0.88
(1.10)

OLS HAS bound (1) .038
(.010)

0.79
(1.16)

Lower Bounds
Endogenous T*, IV(2)
percentile bound1

.038
(.012)

Endogenous T*, IV(2) HAS
bound

.041
(.013)

Endogenous T*, IV(1)
percentile bound1

.036
(.017)

Endogenous T*, IV(1) HAS
bound

.039
(.018)

1 Standard error conditional on θ̂  (see Section II).
2 Lower bound for γafqt corresponding to upper bound for β.
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Table 3

Minimum Length 95% Confidence Intervals for Training Coefficient, Selected
Specifications

Specification Interval

OLS (2), Percentile Bounds [.009, .063]

OLS (1), Percentile Bounds [.008, .063]

Endogenous T*, IV (2),
Percentile Bounds

[.014, .219]

Endogenous T*, IV (1),
Percentile Bounds

[.002, .244]

OLS (2), HAS Bounds [.009, .055]

OLS (1), HAS Bounds [.008, .056]

Endogenous T*, IV (2),
 HAS Bounds

[.009, .217]

Endogenous T*, IV (1),
HAS Bounds

[-.004, .240]
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Appendix

In the text, we showed that )()ˆ(ˆ *00
q

p
q AA θθ → .  In this appendix, we show that

convergence occurs at rate nq .  As the analysis below makes clear, the argument is

complicated by a small sample effect arising from the fact that qθ̂  depends on the

realized values of Ti over the entire sample.  After demonstrating that

))()ˆ(ˆ( *00
qq AAnq θθ −  converges to a normal distribution, we go on to establish the useful

result that ))ˆ(1)(ˆ(,0())ˆ()ˆ(ˆ( 0000
qq

d
qq AANAAnq θθθθ −→− .

In the following, let h(X) denote the density of X and let pT(X) denote the

conditional probability Pr(T=1|X).  Letting )(cJδ ≡ Pr(G(X; δ)≤ c) denote the cumulative

distribution function of  G(X;δ), we assume that for all δ in some neighborhood of δ*,

(i) )(cJδ  is continuous and differentiable in δ and (ii) )()(’ cjcJ δδ ≡  is continuous and

positive everywhere that 0 < Jδ(c) < 1. Let )(δκ q ≡ 1−
δJ  (q) denote the q-quantile for

)(cJδ  and let )),)(ˆ|min()(ˆ qcJcq ≥≡ δδκ  where δĴ  is the empirical cdf for G(X; δ)  for a

given δ.

As a preliminary, we establish the asymptotic normality of qκ̂  and thus θ̂ :
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Proof:  We can decompose *)ˆ( qqn κκ −  as:

     (A1)      *)ˆ( qqn κκ − = *).*)(ˆ(*))(ˆ)ˆ(ˆ( qqqq nn κδκδκδκ −+−

Koenker and Bassett (1982) show that under our continuity assumptions,
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To determine the distribution of the first term of (A1), we now show that

*))(ˆ)ˆ(ˆ( δκδκ qqn −  has the same limiting distribution as *))()ˆ(( δκδκ qqn − .  From

(A2) and its analogue for δ̂ , we have:
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Since *))(())ˆ(( *ˆ δκδκ δδ q
p

q jj →  , it follows from(A3) that
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 converges in distribution to

))(,0( ibVarN .  Note that )ˆ()ˆ()( 21 δδ ppbE i −=  and
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follows that 0*))(*)(ˆ())ˆ()ˆ(ˆ( →−−− p
qqqq nn δκδκδκδκ , which implies that

*))(ˆ)ˆ(ˆ( δκδκ qqn −  has the same limiting distribution as *))()ˆ(( δκδκ qqn − .
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A standard delta-method argument establishes that *))ˆ(( qqn κδκ −  has the same

limiting distribution as *)ˆ(
*)(
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q , which in turn, as shown by White (1982),

has the same limiting distribution as )
'

*)(
())

'

*)(
((

*)(
1

2

n
L

n
L

E
q ∑ ∂

∂
∂∂

∂−
∂

∂ −

δ
δ

δδ
δ

δ
δκ

, where L

is the log-likelihood.  A multivariate central limit theorem applies to
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variance. 
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Lemma 2 below is key to the argument demonstrating the convergence of

))()ˆ(ˆ( *00
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where qqA θθ ∂∂≡∆ /)( *0  denotes the gradient vector of 0A  at *
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, one must take into account the small

sample effect arising from the fact that qθ̂  depends on the realized values of Ti  over the

entire sample.  Thus, let ))ˆ(|1Pr()ˆ( 11 qqT SXTp θθ ∈=≡ , and let
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     As n becomes large, )ˆ,( θnX  converges in probability to zero.  To see this, note
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))((#

1*0 q
q

Pn
I

n θ
θ

 and

)ˆ(
))((#

2*0 q
q

Pn
I

n θ
θ

 converge asymptotically to stable (normal) distributions.  Since

)ˆ(1 qa θ  and )ˆ(2 qa θ  both converge in probability to 0,

0))ˆ()ˆ()ˆ()ˆ((
))ˆ((#))((#

22110

)ˆ(

*0

0

→−
∑

∈ p
qqqq

q

Ii
i

q

PaPan
I

T

I

n q θθθθ
θθ

θ
.
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Finally, consider the fourth term on the right hand side of (A10). Since

)()( *
2

*
1 qq PP θθ =  = 0 and )ˆ( *

qqn θθ −  is asymptotically normal,

))./)(()/)(())/)(()/)((,0())ˆ()ˆ(( *
2

*
1ˆ

*
2

*
121 θθθθθθθθθθ θ ∂∂−∂∂∂∂−∂∂→− qqqq

d
qq PPVPPNPPn

q

  Since )(
))ˆ((#

*0

0

)ˆ(0

q
p

q

Ii
i

A
I

T
q θ
θ

θ
→

∑
∈

 and q
n

I pq →
))((# *0 θ

, it follows that

0)))ˆ()ˆ())((
))ˆ((#

(
))((#

21
*0

0

)ˆ(

*0

0

→−−
∑

∈ p
qqqq

q

Ii
i

q

PPA
I

T

n
I

n q θθθ
θθ
θ

.

We can conclude that

   (A11)      ))()ˆ(((
))((#

)))(ˆ)ˆ(ˆ( *00
*0

*00
qq

q

d
qq AAnq

I

n
AAn θθ

θ
θθ −→− , which

implies that

)’,0())(ˆ)ˆ(ˆ( ˆ
*00 ∆∆→−

q
VNAAn d

qq θθθ                   Q.E.D.

Note that in order to estimate the variance of )(ˆ)ˆ(ˆ *00
qq AA θθ −  from the formula in

the lemma, one would need to estimate the derivative vectors ∆, ,
*)(

δ
δκ

∂
∂ q  and the

density *)(* qj κδ .

Using the above lemma, it is easy to demonstrate that ))()ˆ(ˆ( *00
qq AAnq θθ −

converges to a normal distribution with mean zero.

Theorem 1:  ))()ˆ(ˆ( *00
qq AAnq θθ −  converges asymptotically to a normal

distribution with zero mean.

Proof:

Decompose ))()ˆ(ˆ( *00
qq AAnq θθ −  as follows:
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    (A12)     ))(ˆ)ˆ(ˆ())()(ˆ())()ˆ(ˆ( *00*0*0*00
qqqqqq AAnqAAnqAAnq θθθθθθ −+−=− .

Note that ))()(ˆ( *0*0
qq AAnq θθ − ))(( *0)( *0

q

Ii
i

LD

A
nq

T

nq q θθ
−=

∑
∈

.  From the preceding

lemmas, we know that ))(ˆ)ˆ(ˆ( *00
qq AAnq θθ −  has the same asymptotic distribution as a

linear combination of )
’

( n
L

nq ∑ ∂
∂
δ

 and 
n

XG
nq

q∑ − *))(*);(( δκδψ
, both of which

are mean zero.  By the multivariate central limit theorem, the components of (A12) are

multivariate normal.  Thus, the sum ))(ˆ)ˆ(ˆ())()(ˆ( *00*0*0
qqq AAnqAAnq θθθθ −+−  is

asymptotically normal with mean zero.     Q.E.D.

Corollary 1: ))(1)((,0())ˆ()ˆ(ˆ( *0*000
qq

d
qq AANAAnq θθθθ −→− .

Proof:

Instead of (A12), one can decompose ))ˆ()ˆ(ˆ( 00
qq AAnq θθ −  as

     (A13)     ))()ˆ(())ˆ()ˆ(ˆ())()ˆ(ˆ( *0000*00
qqqqqq AAnqAAnqAAnq θθθθθθ −+−=−

Substituting (A9) and (A12) into (A13) and rearranging terms yields

     (A14)     )ˆ,())()(ˆ())ˆ()ˆ(ˆ( *0*000
qqqqq nXqAAnqAAnq θθθθθ +−=−

We have already shown than 0)ˆ,( → pnX θ  and

)))(1)((,0())()(ˆ( *0*0*0*0
qq

d
qq AANAAnq θθθθ −→− .     Q.E.D.

Corollary 1 and the fact that )()ˆ( *00
q

p
q AA θθ →  immediately give us

Corollary 2: ))ˆ(1)(ˆ(,0())ˆ()ˆ(ˆ( 0000
qq

d
qq AANAAnq θθθθ −→− .


