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1. Introduction1 
 

The International Price Program (IPP) of the 
Bureau of Labor Statistics (BLS) measures aggregate 
price changes for samples of U.S. exporters and 
importers of agricultural goods, industrial supplies 
and materials, capital equipment and machinery, 
consumer merchandise, and transportation services.  
These measures are used by the U.S. Department of 
Commerce to adjust the monthly international trade 
figures and the quarterly National Income and 
Product Accounts for inflation or deflation (BLS 
1997).  These adjustments, also known as deflators, 
take the form of price indexes of the Laspeyres type, 
which means that as prices change over time, 
quantities are left at their original level determined at 
a base period.  Estimating the variances of price 
indexes is desirable as a measure of accuracy and 
stability, but is difficult due to the nonlinearity of the 
function and in the IPP’s case due to a complex 
sample design.  Therefore several variance estimation 
techniques need to be examined and evaluated.  The 
length of time from the “previous” period to the 
“current” period is important because some 
customers of IPP data are interested in short-term 
changes, such as monthly or quarterly percent 
changes, and some customers are interested in long-
term changes, potentially of several years.  The 
length of time chosen for IPP variance estimation is 
twelve months, which is useful to both short-term and 
long-term customers. 

 
Section 2 describes the generation of a pseudo 

population from actual IPP data, and presents the 
models and their parameters from an economic 
approach, which places dependence of the estimation 
weights on the price levels.  Section 3 shows the 
formulation of the target variance, to which the 
output of each variance estimation technique is 
compared.  Section 4 summarizes the four techniques 
of variance estimation examined by the IPP.  Section 
5 gives the criteria used to compare the techniques 
and shows the results based on these criteria.  Section 

                                                 
1 Opinions expressed in this paper are those of the 
author and do not constitute policy of the Bureau of 
Labor Statistics. 

6 gives a recommendation for the International Price 
Program and other notable conclusions. 
 
2. Pseudo Population 
 

Four industries were chosen for the IPP variance 
estimation study: import and export platinum group 
metals, import and export textile machinery.  For 
each industry 1000 pseudo establishments were 
generated and then detailed product areas, based on 
the Harmonized Classification System, were 
randomly assigned with replacement to the 
companies, using the frequency distribution of actual 
sampling frames made available by the Bureau of the 
Census for exports and by the Customs Service for 
imports.  Each pairing of company and detailed 
product area was considered an instance of an item, 
so multiple random selections of the same pairing 
represented several items traded by the company 
within the same detailed product area. 
 

The next step was to generate pseudo-population 
Laspeyres indexes and variances using models of 
base prices, base weights, and monthly price changes.  
The base prices were generated from a Gaussian 
distribution using IPP prices with outliers removed.  
Under the assumption that importers and exporters 
satisfy maximization behavior, the base weights, 
which are dependent on the base prices, use the 
Fisher model which applies Shephard’s Lemma to 
calculate base quantities from the total share values 
and random coefficients of the unit cost function 
(Diewert and Nakamura 1993).  The total share 
values were generated from a Gamma distribution 
and the coefficients were generated from a Uniform 
distribution.  The monthly price changes were 
generated from a Double Gamma or Double Gaussian 
model (depending on the industry) with a spike at 
0%. 
 

The Laspeyres formula for a 12-month index is as 
follows: 
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where It is the 12-month stratum2 index ending at 
time t, N is the number of companies in the stratum, 
Mi is the number of items traded by company i, 

                                                 
2 A stratum is a broad category consisting of many 
items imported or exported by many U.S. companies. 
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xij is the base period weight (price times quantity, 
summed over one year) for company i and item j, and 
rijt is the long-term relative (current price divided by 
average price over the base period) for company i and 
item j at time t. 
 

The sample design used to select companies and 
items with which to estimate It is as follows: 
1. Select n companies with probability proportional 

to size (Σxij), without replacement, sequentially 
with fixed order by descending size and one 
random start. 

2. For each selected company, select mi items using 
simple random sampling without replacement. 

 
Let Np be the number of companies available for 

selection in the stratum that are not selected with 
certainty, and let np be the number of companies 
actually selected from these Np non-certainties.  Note 
that Np must be greater than one3, np must be greater 
than zero, and np < Np . 
 

Let 
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then E(αij) = mi / Mi . 
 

                                                 
3 The exception is when all N companies are selected 
with certainty, in which case Np = np = 0. 

The usual IPP estimator for It is as follows: 
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Except for the familiar ratio bias (Särndal, Swensson, 
and Wretman 1992), ( ) ijtijt wwE =ˆ  and 

( ) tt IIE =ˆ  . 
 

To aggregate stratum indexes we need to add the 
subscript h to the index variable (Iht).  Then using H 
as the subscript of the parent stratum, 
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strata mapped to the parent stratum H, $h is the base 
period weight for stratum h, and rht is the long-term 
relative for stratum h at time t. 
 
3. Target Variance 
 

For systematic sampling, the contribution of 
certainty companies to the first-stage variance 
component is zero, so the Yates-Grundy variance 
formula is as shown below (Wolter 1985): 
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where πii’ is the joint probability that companies i and 
i’ are both selected, 

and 
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However, the ratio bias leads to a positive 
variance result even when all of the twelve-month 
price ratios (sijt) are the same.  We therefore make an 
adjustment to reduce the ratio bias by replacing the 
rij,t-12 in the weights wijt with their straight average 
and by replacing the weighted σwit

2 with the 
unweighted version of the variance of short-term 
relatives.  The target variance is therefore as follows: 
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This target variance yields a zero result when all of 
the twelve-month price ratios are the same. 
 
4. Variance Estimation Techniques 
 

For each of the variance estimation techniques, 
the estimator for the aggregate stratum variance 
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and htr̂  is the long-term relative estimate for stratum 
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When there are companies selected with certainty 

within a stratum h, these companies are considered 
separate variance estimation strata for some 
techniques.  However, for the purpose of aggregate 

variance estimation, the variance due to the 
certainties should first be combined with the variance 
due to the non-certainties within each stratum h 
before aggregation of the variance estimates to parent 
stratum H. 
 
4.1 Adjusted Ratio Biased Variance Estimator 
 

The sample design used for this research matches 
the IPP products sample design at the first stage, but 
simplifies the second stage in order to use an adjusted 
Yates-Grundy target variance formula, shown in 
section 3.  However, a condition of the Yates-Grundy 
variance estimator (Cochran 1977) is that 'iiπ , the 
probability that companies i and i’ are both in the 
sample, be not zero.  This is also a condition for the 
Horvitz-Thompson variance estimator (Cochran 
1977).  These formulas give very biased estimates for 
the IPP sample design because the vast majority of 
the joint probabilities are zero. 
 

Thus an alternative closed-form variance 
estimator was derived.  This estimator assumes with-
replacement sampling, which tends to have a higher 
variance than without-replacement sampling at the 
first stage.  To handle this assumption we use the 
finite population correction factor for systematic pps 
sampling explained in Wolter 1985. 
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4.2 Taylor Linearized Variance Estimator 
 

The Taylor Linearized Variance Estimator 
(Hansen, Hurwitz, & Madow 1953) replaces the 
complexity of estimation of a ratio by a difference of 
linear estimators.  In order to compensate for the 
natural under-estimation due to neglecting higher 
order terms of the Taylor approximation, the choice 
of sample design is probability proportionate to size 
with replacement even though the actual sample 
selection was without replacement (Bureau of the 
Census 1993). 
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4.3 Stratified Jackknife Variance Estimator 
 

Here we first obtain subsample index estimates by 
deleting observations from the sample.  Then an 
estimate of the variance for the full sample is found 
from the variability of these subsample estimates 
about the full sample estimate (Wolter 1985). 

First we divide the stratum up into substrata 
l and rewrite the estimator of Laspeyres revenue (Yt) 

as ∑∑∑
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where L is the total 

number of substrata; 
l

n  is the number of sample 

companies in substratum l ; im
l

is the number of 

sample items in company i in substratum l ; and 

ijv
l

is the sampling weight for substratum l , 

company i, item j (actually the same as ijv except 

that a subscript l  has been inserted for the 
substratum). 

Let λ be the substratum being jackknifed and α  
the company in substratum λ being jackknifed.  The 
jackknifed long term relative is given by 
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(Fay 1995).  This relative is computed as usual, 
except with element α  eliminated from substratum λ 
and with a weight factor to compensate for the 
missing unit.  The jackknifed 12-month index is 

given by  λαλαλα ,12
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and the stratified jackknife variance estimator is 
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(Wolter 1985). 
 

4.4 Stratified Systematically Grouped Variance 
Estimator 
 

For this technique groups are formed so that each 
group has essentially the same sampling design as the 
parent sample.  We chose ten groups (see Fay 1995 
for tips on choosing the number of groups), 
systematically rather than randomly because the 
sample design is sequential with a fixed order.  We 
continue to define 

l
n  as the number of sample 

companies in substratum l  and now also define gn
l

 
to be the number of sample companies in substratum 
l  and systematic group g. 
 

We write the replicate estimate of the Laspeyres 
revenue for each systematic group g within each 
substratum l : 

∑
=














=

gn

i
iti

g
gt rv

n
n

Y
l

ll

l

l

l

1

ˆ  , 

and the replicate estimate for the full stratum: 
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5. Results 
 

For each of the four chosen industries, Chi-
Square and Kolmogorov-Smirnov goodness of fit 
tests were used on actual IPP prices to determine 
whether the Student’s T, the Gaussian, or the Gamma 
distribution was best for generation of monthly price 
changes.  For platinum group metals the Gamma 
distribution was selected for both imports and 
exports.  For textile machinery the Gamma 
distribution was selected for imports and the 
Gaussian for exports. 

 
S-PLUS programs were written to simulate 35 

populations for each of the four industries.  Then 
SAS programs were written to calculate population 



 

variances, to select 50 samples from each population, 
and for each technique to calculate variance 
estimates.  The comparison of the estimates to the 
population values used standard deviations instead of 
variances in order to bring the scale closer to one.  
Using the 50 samples for a given population, the 
mean squared error (MSE) of standard deviation 
estimates was calculated.  The following tables show 
the results, comparing the different variance 
estimation methods across the four industries.  Table 
1 gives the MSE along with the comparative variance 
and bias squared percentages, while Table 2 gives the 
coefficients of variation (CV). 
 
Table 1:  Mean Squared Errors of the Standard 
Deviation Estimates 
 
 Adj Ratio Biased 
Industry MSE %Var %B2d 
Import platinum 
group metals  

0.000026 81.09% 18.91% 

Export platinum 
group metals 

0.000016 72.79% 27.21% 

Import textile 
machinery 

0.000014 29.96% 70.04% 

Export textile 
machinery 

0.000094 3.51% 96.49% 

 
 Taylor Linearized 
Industry MSE %Var %B2d 
Import platinum 
group metals  

0.000048 70.75% 29.25% 

Export platinum 
group metals 

0.000024 72.09% 27.91% 

Import textile 
machinery 

0.000005 74.05% 25.95% 

Export textile 
machinery 

0.000006 78.02% 21.98% 

 
 Stratified Jackknife 
Industry MSE %Var %B2d 
Import platinum 
group metals  

0.000040 75.53% 24.47% 

Export platinum 
group metals 

0.000021 76.15% 23.85% 

Import textile 
machinery 

0.000008 48.36% 51.64% 

Export textile 
machinery 

0.000009 47.24% 52.76% 

 
 Stratified Systematically 

Grouped 
Industry MSE %Var %B2d 
Import platinum 
group metals  

0.000129 36.59% 63.41% 

Export platinum 
group metals 

0.000113 25.25% 74.75% 

Import textile 
machinery 

0.000091 0.22% 99.78% 

Export textile 
machinery 

0.000069 0.25% 99.75% 

 
Table 2:  Coefficients of Variation for the 
Standard Deviation Estimates 
 
 Adj Ratio 

Biased 
Taylor 

Linearized 
Import platinum 
group metals 

14.68% 18.81% 

Export platinum 
group metals 

13.04% 15.59% 

Import textile 
machinery 

26.63% 17.27% 

Export textile 
machinery 

53.67% 22.02% 

 
 Stratified 

Jackknife 
Stratified 

Systematically
Grouped 

Import platinum 
group metals 

17.88% 43.09% 

Export platinum 
group metals 

15.06% 49.37% 

Import textile 
machinery 

27.06% 333.45% 

Export textile 
machinery 

33.51% 371.77% 

 
In addition, coverage rates and average successful 

interval lengths (ASIL) were calculated using 200 
samples.  These statistics do not compare point 
estimates to population values, as the MSE and CV 
do, but show how often the 95% confidence interval 
contains the sample mean and how long the 
successful intervals are on the average.  Given the 
same Coverage Rate, tighter confidence intervals are 
better. 
 



 

Table 3:  Coverage Rates for the Standard 
Deviation Estimates 
 
 Adj Ratio 

Biased 
Taylor 

Linearized 
Import platinum 
group metals  

100.0% 100.0% 

Export platinum 
group metals 

100.0% 100.0% 

Import textile 
machinery 

79.5% 100.0% 

Export textile 
machinery 

41.5% 99.5% 

 
 Stratified 

Jackknife 
Stratified 

Systematically
Grouped 

Import platinum 
group metals  

100.0% 100.0% 

Export platinum 
group metals 

100.0% 99.5% 

Import textile 
machinery 

99.5% 96.0% 

Export textile 
machinery 

100.0% 97.0% 

 
Table 4  Average Successful Interval Lengths for 
the Standard Deviation Estimates 
 
 Adj Ratio 

Biased 
Taylor 

Linearized 
Import platinum 
group metals  

.016524 .019429 

Export platinum 
group metals 

.013189 .013785 

Import textile 
machinery 

.006691 .007070 

Export textile 
machinery 

.006835 .007939 

 
 Stratified 

Jackknife 
Stratified 

Systematically
Grouped 

Import platinum 
group metals  

.019008 .025043 

Export platinum 
group metals 

.013102 .019931 

Import textile 
machinery 

.007448 .002853 

Export textile 
machinery 

.007635 .002413 

 

6. Conclusions 
 

The Stratified Systematically Grouped method 
gives reasonable ASIL, but shows the worst MSE and 
CV.  The Adjusted Ratio Biased method gives poor 
coverage rates for the textile machinery industries.  
The Taylor Linearized and Stratified Jackknife 
methods give reasonable results that are similar to 
each other.  The CV for the textile machinery 
industries were moderately better for Taylor 
Linearization than for Stratified Jackknife.  Also due 
to its relative computational simplicity, the 
recommended technique for calculation of 12-month 
index variance estimates for the IPP is the Taylor 
Linearization method. 

 
The next step for this research within IPP is the 

baseline calculation of variance estimates for all 
import and export industries.  Also, estimates of the 
ratio bias on actual IPP indexes can be calculated, or 
at least bounded (Särndal, Swensson, and Wretman 
1992), by the following: 

[ ] [ ] [ ] 2

1212
2 ˆ/ˆˆˆˆ

−−⋅≤ ttt YYVIVBias  . 
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