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Abstract

This paper estimates the wage returns to training, paying careful attention to the
choice of functional form. Both the National Longitudinal Survey of Youth (NLSY) and
Employer Opportunity Pilot Project (EOPP) datasets indicate that the return to an extra
hour of formal training diminishes sharply with the amount of training received. A cube
root specification fits the data best, but the log specification also doeswell. The linear
and quadratic specifications substantially understate the effect of training.

If wages are not adjusted continuously, estimating the total effect of training
requires that one include lagged and lead training as well as current training in the
regression equation. Consequently, the NLSY isideally suited to estimate the total return
to training. Wefind very large returns to formal training. These returns are sharply
reduced when one adjusts for heterogeneity in wage growth. Returns are reduced further
when one takes into account the effect of promotions and the fact that direct costs are a
substantial portion of the total cost of training. The mixed continuous-discrete nature of
the training variable means that measurement error can cause estimates of the effects of
short spells of training to be biased upward, but we demonstrate that the maximum
upward bias in estimated returns at the geometric mean isrelatively small.

After correcting for confounding factors, we are left with areturn to training that
is several times the returnsto schooling. Heterogeneity in returns explains how returns to
formal training can be so high while most workers do not get formal training. Inthe
EOPP data, the return to training is significantly higher in more complex jobs. With
unobserved heterogeneity in returns, our estimates can be regarded as the return to
training for the trained, but cannot be extrapolated to the untrained.



I. Introduction

In recent years, a substantial literature analyzing the extent and consequences of
on-the-job training has emerged, taking advantage of new datasets with direct measures
of training. Studies find support for the human capital model’s prediction that a worker’s
wage is positively related to past investmentsin histraining. Indeed, Brown (1989)
reports that "within-firm wage growth is mainly determined by contemporaneous
productivity growth”. Similarly, Barron, Black, and Loewenstein (1989) note that
“training is one of only afew variables affecting wage and productivity growth.”

However, in many respects the literature on training lags behind the more
developed literature on the returns to schooling. While studies of the rate of return to
schooling are numerous, we are aware of few studies that attempt to estimate rates of
return to training.> At amore basic empirical level, while the best simple functional form
to characterize the earnings-schooling relationship has been settled since Heckman and
Polachek (1974), researchers have paid little attention to the choice of the appropriate
functional form for the earnings-training relationship. Differencesin functional forms
across studies makes comparisons difficult. This difficulty is compounded by the fact
that researchers using different functional forms have tended to use different datasets:

while users of the Employer Opportunity Pilot Project (EOPP) data and the closely

1 A non-exhaustive list of references here includes Altonji and Spletzer (1991), Barron, Berger, and Black
(1999), Barron, Black and L oewenstein (1989), Bartel (1995), Brown (1989), Lengermann (1999), Lillard
and Tan (1986), Loewenstein and Spletzer (1996, 1998, 1999a), Lynch (1992), Mincer (1988), Pischke
(2001) and Veum (1995).

2 Mincer’s (1989) review article in Education Researcher calculates rates of return in the range of 32-48
percent before depreciation. Bartel (1995), using a company dataset, estimates the rate of return to training
at 58 percent before depreciation; her calculation includes direct costs of training. Allowing for
depreciation substantially reduces these numbers—Mincer’ s range after correction is from 4 to 26 percent,
using Lillard and Tan's (1986) estimated 15-20% depreciation rate; Bartel’sis 42 percent with 10 percent



related Small Business Administration (SBA) data have generally used log specifications
(for example, see Barron, Black, and Loewenstein 1989 and Barron, Berger, and Black
1997b), researchers using the National Longitudinal Study of Youth (NLSY) have used
linear specifications (for example, Lynch 1992, Parent 1999) or specifications that
estimate the return to a spell of training without making use of information on the
duration of the spell (Loewenstein and Spletzer 1996, Lengermann 1999).

This paper has three goals. First, we seek to perform a service similar to
Heckman and Polachek (1974) by investigating the choice of the appropriate functional
form for formal training in awage equation. Second, we derive estimates of the rate of
return to formal training. We use both our preferred functional form and, where possible,
a semi-nonparametric estimator to derive rate-of-return estimates. Third, because
estimated returns from our fixed-effect regressions are quite high--over 150 percent for
typical values of training-- and incidence low (less than 25% of job spellsin our NLSY
sample have any formal training) we consider possible explanations for the seeming
contradiction between high rates of return and low incidence of training.

Most of our analysisrelieson NLSY data. Of the various datasets with training
information, the NLSY provides the best information on formal training at all levels of
tenure. In our discussion of how to estimate rates of return to training, we demonstrate
that under reasonable assumptions, wage regressions must include lagged and lead
training as well as current training in order to produce arate of return estimate. The
NLSY, which islongitudinal, is thus ideally suited to estimate the return to training. We

supplement our NLSY analysis with estimates based on EOPP data. EOPP isan

depreciation and 26 percent with 20 percent deprecation. Interestingly, Lengermann (1999) finds no
evidence that the return to training depreciates with time.



employer survey and provides the best information on formal and informal training at the
start of thejob. The EOPP data enable us to check that our key NLSY results are not
distorted by our inability to control for informal training or by the specific survey
methods used in the NLSY .

Our results from both the NLSY and EOPP indicate that the return to an extra
hour of training diminishes sharply with the amount of training received. We find that a
cube root specification fits the data best, but the log specification also does well. These
specifications, along with our semi-nonparametric estimator, indicate that there are very
substantial returnsto theinitial interval of formal training. In contrast, in both datasets
the linear specification substantially understates the effect of training, and in the NLSY
the quadratic also substantially understates the effect of training.

In section 111, we develop a simple theoretical framework that allows us to
estimate the rate of return to training. Our estimate of the rate of return isvery high.
Rates of return at median positive training of 60 hours are in the 150-175 percent range
for the better-fitting parsimonious specifications and over 180 percent for the Fourier
series. These numbers are much higher than, for example, estimates of returns to
schooling, and present a puzzlein view of the fact that only a minority of respondentsin
either the NLSY or EOPP have any formal training.

In section 1V, we discuss five potential explanations as to why estimated returns
to training are so high: heterogeneity in wage growth, measurement error, promotions,
direct costs of training, and heterogeneity in returns to training. Using the cube root
specification as our base, we show how correcting for these various factors causes one to

adjust the estimated return to training.



The estimated return to training is sharply reduced when one adjusts for
heterogeneity in wage growth, aresult similar to that obtained by Pischke (2001).
Returns are reduced further when one takes into account the effect of promotions and the
fact that direct costs are a substantial portion of the total cost of training. The mixed
continuous-discrete nature of the training variable means that measurement error can
cause estimates of the effects of short spells of training to be biased upward, but we
demonstrate that the maximum upward bias in estimated returns at the geometric mean is
relatively small.

After correcting for confounding factors, we are still left with areturn to training
that is several times the returns to schooling. Heterogeneity in returns explains how
returns to formal training can be so high while most workers do not get formal training.
Both the EOPP data and the NLSY provide evidence of such heterogeneity: in EOPP, the
return to training is significantly higher in more complex jobs, and in the NLSY
managers and professionals have higher returnsto training than do other occupations. If,
as seems reasonable, part of the heterogeneity in returns is due to unobservable factors,
our estimates can be regarded as the return to training for the trained, but cannot be
extrapolated to the untrained.

[l. Functional Form of the Training-Wages Relationship

In this section, we compare several different ssmple functional formsto determine
which best describes the relationship between training and log wages. In view of the
advances over the last several decadesin the theory and computational feasibility of non-
parametric and semi-parametric estimators, it might be questioned whether thisis a useful

task. Why not characterize the relationship between training and wages non-



parametrically? Wethink that it is useful to recommend a particular parsimonious
specification for applications where one might not have the luxury of estimating a more
flexible functional form. For example, one might have a specification where training is
interacted with other variables or contains lead and lag terms such that estimating a more
flexible function form is not practical. (We present an example of thisin Section 4.)
Alternatively, training may not be the focus of the analysis, but one may want to control
for the effect of training on wages when estimating other effects. For example, Altonji
and Pierret (2001) seek to correct for the effect of training when examining the effect of
cognitive skills on wage growth.

NLSY Data

The NLSY isadataset of 12,686 individuals who were aged 14 to 21 in 1979.
These youth were interviewed annually from 1979 to 1994, and every two years since
then. Response rates were over 90 percent for each year until 1996, and as of 2000 were
83 percent. We use data from the 1979 through 2000 surveys.®

The training section of the survey begins with the question, “ Since [the date of the
last interview], did you attend any training program or any on-the-job training designed
to help people find ajob, improve job skills, or learn anew job?” Individuals who
answer yesto this question are then asked a series of detailed questions about each of
their different training spells. 1n 1988 and thereafter, individuals are asked about the
duration of their various training spells in weeks and the average number of hours each

week that were spent in training. For each training spell in a given year, we have

® Individual s were not interviewed in 1995. From 1996 on, the survey is being conducted every other year.



calculated the number of hours spent in training as the product of the duration in weeks
and the average number of hours spent in training during a week.*

The training questions were changed somewhat in 1988. From 1979-1986,
detailed information was obtained only on training spells that lasted longer than one
month.> We have used the information contained in the later surveys to impute hours
spent in training for training spellsin the early surveys that last less than one month.
Besides conditioning on the fact that a spell lasts |ess than one month, our imputations
aso condition on an individual’s age.®

The focus of our analysisistraining whose explicit cost is at least partly paid for
by the employer.” Information on who paid for training is available only after 1987; prior
to 1987, we include only company training and spells less than one month (The post

1987 dataindicate that company training was generally paid for by the employer. Prior

* Individuals are not asked about the number of weeks spent in training if their training spell isin progress
at the time of the interview, but instead thisinformation is obtained in a subsequent interview after the
training spell is completed. Thus, besides being asked about training spells that began since the last
interview, individuals are also asked about spells that were still in progress at the time of the last interview.

® Training questions were not asked in 1987.

® In the later surveys, individuals were explicitly asked about both the weekly duration of training and the
year and month that atraining spell began and ended. In the early surveys, individuals were asked about
the year and month that a training spell began and ended, but were not explicitly asked about the number of
weeks that atraining spell lasted. Inspection of the post-1987 data reveals that 4 weeks is the best estimate
for the weekly duration of training when atraining spell endsin the subsequent month, 8 weeks is the best
estimate for the weekly duration of training when atraining spell endsin the second month after it began,
and so on. Individuals are not asked about the starting year and month of atraining spell that wasin
progress at the time of the last interview. For the pre-1987 data, we have obtained this information by
carrying it forward from the year in which atraining spell initially began. We have not had to do this for
the post-1987 data because in the later years individuals were explicitly asked about the weekly duration of
training spellsthat were in progress at the time of the last interview.

7Natura||y, this cost can be passed on to the worker in the form of alower wage. Eighty-fiver percent of
thetraining spellsin the NLS are at least partialy paid for by the employer. We focus on thistraining
because it would appear to correspond most closely to the on-the-job training concept referred to by Becker
and subsequent human capital theorists. We use this framework when discussing rates of return to training
in the next section.



to 1987, individual s with spells less than one month were not asked about the type of
training they received; the post 1987 data indicate that short spells are generally
employer-paid). Training not paid for by the employer (after 1987) and non-company
training (prior to 1987) are accumulated in a separate variable.

In investigating the effect of training on wages, it isimportant to distinguish
between training that took place on the current job and training that took place on other
jobs. By comparing the beginning and ending dates of atraining spell with the date that
the individual started working at his current job, we are able to classify atraining spell as
occurring on the current job or on a previous job.® When there is some ambiguity asto
whether training occurred on the current job or in a previous job, we classify the training
as occurring in the current job. Our results are not sensitive to this choice.

The key training variable used in the empirical work to follow is total
accumulated completed training on the current job. This variable is obtained by adding
the training aworker has completed in the current year to the training he has received in
all previous years on the current job.

Basic Results

Our basic specification is:

() INW, =X, B+ T(T)B, +a, +6, +a, + 5
for personi injobj at timet, where W isthe wage rate, X is avector of time-varying
control variables, T is hours of training on the current job, f([) varies by specification, q;

and 6;; are permanent person and job-match specific error terms, w is a year effect, and

8 In cases where the individual holds more than one job simultaneously, we assume that training occurs on
the individual’s main job.



&t ISamean zero error term, uncorrelated with Xij.. All specifications are run as fixed-
effect regressions within jobs. Asthe fixed effect will absorb both unchanging individual
characteristics and job characteristics, the X vector is mostly comprised of functions of
tenure and interactions of tenure with other variables. Specifically, the X vector consists
of tenure, tenure squared, tenure cubed, and interactions of the three tenure terms with
age at start of job, experience at start of job, AFQT,® years of education, ever married,
part-time, union, two dummies for initial occupation in the job, Black, Hispanic, female,
enrolled in school, and missing value indicators for AFQT, union, and part-time. Years
of education (which occasionally changes within ajob), non-employer-paid training,*
and dummies for ever married, part-time, enrolled in school, missing part-time, and year
dummies are also included. Asadditional controlsfor training, we include a count of
spells with missing training duration (most of these occur before 1988).

We exclude observations with missing values on variables other than AFQT,
union, and part-time. We also exclude observations with real wages below $1 or above
$100 in 1982-84 dollars, or with log wages where the absolute value of the difference
with the job mean is greater than 1.5 (which isalittle more than 7.5 standard deviations).
Finally, we exclude the military subsample, and jobs where for half or more observations
on that job the respondent is an active member of the armed forces, self-employed, in a
farm occupation, or enrolled in school at any time between interviews. The resulting

sample has 75,698 observations from 17,809 jobs.

® Specifically, the residual from aregression of AFQT on dummies for year of birth.

19 A preliminary functional form analysis showed that alinear specification was best for non-employer-paid
training.



Descriptive statistics are shown in Table 1. Table 2 gives more detail on the
distribution of training by showing selected percentiles of the positive distribution of both
the stock of training and of training during the previous year. Note that the distribution is

quite skewed to the right. Log-normality appears to be a good approximation of the
distribution. Using the Box-Cox transformation B(T; %)= (T -1)/A asatransformation

of the distribution of T to normality (where A=0 corresponds to alog-normal distribution
and A=1to anormal distribution; see Greene 2000, p. 444-46), the estimated value of A
for the positive training sample is .03 for the stock of training and -.01 for training in the
previous year.

Asan aid to determining the best simple functional form, we make a different use

of the Box-Cox transformation by first estimating amodel where f (T) = B(T;A).
Values of L of 1 and 0 correspondto f(T)=T and f(T) =In(T), respectively. The

estimation was done by non-linear least squares. The estimated value of & is .350
(bootstrap standard error .062), very close to the value of 1/3 corresponding to the cube
root.

The results for different functional forms for training are shown in Table 3. In
addition to the cube root, we include linear, log, and quadratic specifications, a
specification where the training variable is a dummy indicating whether any training has
been completed on the current job, and a specification with both this dummy and alinear
term. Inthe“log” specification, f(T) = In(T+1), where T is number of hours of training.
The table shows R?s (explained variance as a proportion of within-job variance) and the

total effect at the median number of hours of training (60), where the median is calculated

! Estimating regressions for men and women separately gives results quite similar to Table 3.
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across all observations with a positive stock of training on the current job. The
differencesin fit appear slight. However, the best-fitting specification—the cube root—
increases R over twice as much as the worst-fitting specification—the linear—relative
to the fit excluding training variables. The quadratic specification and the dummy
specification are little improvement on the linear, while the log specification is close to
the cube root. The dummy-plus-linear specification has a somewhat lower fit than the
log and the cube root. The resultsindicate that the effect of training on wagesis highly
non-linear, with the effect declining more rapidly than implied by a quadratic
specification. Thereisno evidence that the presence of an incidence effect explains the
non-linearity.*

To contrast the effects of training on wages implied by the different functiona
forms, the last column in Table 3 shows the predicted effect of training at the median of
the distribution of positive hours of training. The implied effect of the median hours of
training differs by more than afactor of 12 between the different specifications. Thelog
specification shows the largest effect, over 4 percent, with the cube root yielding a
dightly smaller effect. The linear and quadratic specifications apparently greatly
understate the impact of training on wages.

One might suspect that the better fit of the log and cube root specifications simply
reflects the fact that these functions' compression of the right tail of the training
distribution reduces the influence of outliers. To test for this, we omitted the top one
percent of the distribution of positive training. The total effect of the median amount of

positive training increases for the linear and quadratic specifications, but is still far below

12 Adding a dummy term to the cube root specification yields a dummy coefficient that is negative, small in
magnitude, and not significant.
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the other specifications. The cube root specification is still the best fitting; excepting
perhaps the quadratic, there is no marked improvement in the fit of the other
specifications relative to the cube root.

All of the above specifications are parsimonious, with the rate of decline
determined by the functional form. To compare the patterns of returns implied by these
specifications with those obtained from less restrictive specifications, we use a semi-
nonparametric estimator: the Fourier series expansion (Gallant 1981). A Kth order

Fourier seriesis alinear combination of cosine and sine terms, or

K
f*(T) =3 (ay;cos(jT) +a,; sin(jT)). A function’s Fourier expansion hasthe
=1

property that the differences between the value of afunction f and the value of its Fourier
expansion f* and between the derivatives of f and the derivatives of f* can be minimized
to an arbitrary degree over the range of the function by choosing K to be sufficiently
large. It thus provides a global approximation to the true function, rather than alocal
approximation (asin a Taylor series expansion).’®

In practice, linear and quadratic terms are usually added to the expansion.
Moreover, for non-periodic functions the variable T needs to be transformed to a variable

T* such that 0 < T* < 2, after which the expansion can be implemented as:
K
f*(T*)=9,T*+0,T*? +Z (ay; cos(jT*) +a,; Sin(jT*)).
=1

In our case, due to the essentially log-normal distribution of training, itis

computationally convenient to work with the log of training as the basis for the Fourier

13 Other semi-parametric estimation methods are harder to adapt to the fixed-effect setup. Li and Stengos
(1996) consider fixed-effect estimation of 4, but it is not possible to estimate f(T) directly using their
method.
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expansion. We thus adopt the transformation T*=0.001+c In(T+1), with ¢ chosen so that

the maximum value of T* is close to 2. We chose K to minimize the sum of squared

prediction errors CV = Z (y, = Xig B_iK )?, where Xk is the complete vector of

regressors for the Kth order expansion and ,@_iK is the corresponding coefficient vector

from aregression omitting observation i. Andrews (1991) shows this criterion is
asymptotically optimal in the sense that the probability of choosing the K that minimizes
the expected sum of squared errors converges to 1 as the sample size increases, evenin
the presence of heteroscedasticity.** We searched all orders of the expansion from K=1

to 14. The order K was 13 for both the complete and outlier-omitted sample.

2y > (F@M) = F* @)
S (f*(T*)-0)°

We calculate the statistic Q to obtain a convenient

summary measure of the closeness of fit between an arbitrary specification f(T) and the
estimated Fourier series f*(T*).2> Analogous to the traditional R?, which measures the
percentage reduction in the sum of the squared distance between the dependent variable
and the predicted value relative to amodel with only a constant, Q> measures the
percentage reduction in the squared distance between the Fourier series and f(T) relative
to a specification which omitstraining. As can be seen in the third column of Table 3,
the cube root specification is closest to the Fourier series, and the linear specification is
the furthest. Indeed, the cube root specification explains over 80 percent of the squared
distance between the Fourier series and a specification without training, while the linear

specification explains only 33-48 percent depending on the sample.

 However, asymptotic optimality is not proven if observations are not independent. We are unaware of
equivalent results for this case.
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Figure 1 plots the effect of training estimated in the sample without outliers for all
specifications except for the dummy specification. The effect is plotted against log
training since alinear scale would overly compress the range where the data are
concentrated. The range of the figure is further restricted to the 5™ through 95
percentile of the positive training distribution. The volatile nature of the Fourier series
apparent in the figure suggests that much of the variation in the Fourier function
unexplained by the better-fitting functional formsis spurious. Consistent with the Q°
statistics, the figure shows that the linear and quadratic specifications fit the basic pattern
of returnsin the Fourier series expansion worse than the other functional forms over most
of the range of the data, especially between the 25th and 75th percentiles. The dummy-
linear specification is a'so somewhat below the Fourier series for most of the range
between the 25th and 75th percentiles.

Why do the linear and quadratic functional forms track the Fourier series so
poorly, especially in the middle of the positive training distribution? In our fixed-effect
regressions, observations with large deviations of training from average training will have
adisproportionately large effect on the training coefficient. (Indeed, the justification for
discarding training outliers stems from the fact that erroneous observationsin the tails
will have particularly damaging effects.) Specifications such as the linear should tend to
predict better in the right tail of the distribution and worse in the middle of the training
distribution than specifications like the log that compress the training distribution. The
linear function’s tendency to fit the right tail will lead to an especially poor fit in the

middle of the training distribution when linearity is a misspecification.

> We are grateful to Dan Black for suggesting this type of statistic.
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EOPP

The NLSY provides strong evidence that returns to formal training decline greatly
with the quantity of such training. As acheck on these results, we now look at the
evidence provided by EOPP. Unlikethe NLSY, EOPP isnot alongitudinal survey, and it
only contains information on training at the start of the job, which causes difficulties for
the rate of return analysis below. But EOPP does provide good measures of both formal
and informal training. It also provides a measure of the number of weeks it takes a new
employee to become fully qualified if he or she has the necessary school provided
training but no experience in the job, which we refer to as "job complexity" as suggested
by Barron, Berger, and Black (1999)."° We will make use of this measure later on in our
anaysis.

EOPP sinformation on formal training comes from employers' reports about the
number of hours specially trained personnel spent giving formal training to the most
recently hired worker during his first three months of employment. We obtain a measure
of informal training by summing (1) the number of hours that line supervisors and
management personnel spent giving the most recently hired worker informal
individualized training and extra supervision, (2) the number of hours that co-workers
spent away from other tasks in providing the most recently hired worker with informal
individualized training, and (3) the number of hours that a new worker typically spends
watching others do the job rather than do it himself.

Employersin EOPP provide information about the average wage paid to aworker

who has been in the most recently filled position for two years, allowing one to estimate a

!¢ For more information about the survey and the training questions, see Barron, Black, and Loewenstein
(1989).
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pseudo fixed-effect equation. In the estimations that follow, the dependent variable is the
difference between the logarithm of the wage after two years and the logarithm of the
starting wage paid to the most recently hired worker. Besides the training variables, we
include the following explanatory variablesin al of our estimated equations: the most
recently hired worker’s age, gender, years of education, tenure, and dummy variables
indicating whether the worked had received any vocational training or belonged to a
union. In addition, we include the logarithm of the number of employees at the
establishment, dummies indicating whether the most recently filled position was part-
time or seasonal, two occupational dummies, and dummy variables for missing
education, tenure, and union.*” Finally, we also include as controls several variables that
are less commonly found in other datasets-the most recently hired worker’ s relevant
employment experience in jobs having some application to the position for which he was
hired, relevant experience squared, and the logarithm of the job complexity measure
described above.

We exclude observations with missing values for any variables other than tenure,
union, or years of education. We also exclude observations where wage growth is more
than seven deviations above or below the sample mean. Finally, we exclude farm and
government jobs. The resulting sample has 1,715 observations.

Sample means are reported in Table 4. Note that the bulk of training isinformal.
Ninety-five percent of workers receive informal training during the first three months of
employment, but similar to the NLSY only 13 percent of workers receive formal training.

And while mean informal training for those with any informal training is 132 hours,

Y Employers are (implicitly) asked about the starting wage paid to the most recently hired worker at the
time he was hired, but about the average wage currently paid to workers with two years experience in the
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mean formal training for those with any formal trainingisonly 72 hours. Ina
preliminary analysis we found that the log is the best fitting simple specification for
estimating the wage effect of informal training. Consequently, in our analysis of formal
training, we include the log of informal training as one of our control variables. Our
analysis of formal training is not sensitive to our treatment of informal training.

We again begin our analysis of the effect of formal training by estimating a Box-
Cox model. The estimated value of A is .376, which is quite close to the estimate from
the NLSY. (Not surprisingly, since there are only 219 observations with positive formal
training, the standard error for the EOPP estimate is quite high (.291)).

The results for the various functional forms for training are shown in Table 5.
The EOPP results are in general agreement with those from the NLSY. Once again, the
linear specification performsthe worst: like the NLSY data, the EOPP data indicate quite
clearly that there are diminishing returnsto training. The cube root specification
performs the best in the sample without outliers and second best in the complete sample.
Furthermore, when one uses the cube root specification, the estimated effect of training in
the EOPP sample is similar to the estimated effect in the NLSY .

The quadratic specification fits best in the complete sample and comes closest to
the estimated Fourier function, but in light of the fact that we only have 219 observations
with positive formal training, we would not place too much weight on the Fourier results.
Indeed, the simple cube root and quadratic specifications both have a higher R? than the
Fourier series. The volatility of the results of the quadratic specification between samples

makes us reluctant to recommend it as an alternative to the cube root. I1n addition to the

job. Since wages increase over time, tenureis positively correlated with wage growth.
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sensitivity to outliersin the NLSY/, the predicted effect of training at the EOPP median
positive training of 38 hours using a quadratic specification is three times higher in EOPP
than in the NLSY if one omits outliers (and nine times higher using the complete
sample). For the log and cube root specifications the effects estimated using EOPP are
only about 50 percent higher than those from the NLSY .28
[11. Rates of Return to Training

Our best-fitting specifications in the NLSY indicate that 60 hours of formal
training, the median positive amount of training, increases wages by 3-4 percent. The
estimated effects of training in EOPP are even larger, as high as 5 percent for the median
positive training of 38 hours. Relatively short training spells thus have substantial effects
on wages. For comparison, current estimates of the effect of a year of school on wages
are about 10 percent for the U.S. (see Jaeger 2003 for example). Here we examine how
one can obtain estimates of the rate of return to the training investment from the
coefficientsin awage regression. We take as our starting point a simple model in which
aworker’s wage always reflects his productivity. We then modify this model to take into
account frictions in the wage setting process.

Rate of Return Calculations Using Coefficients on Lagged, Current, and Lead Training

Consider aworker whose value of marginal product is given by g = g(T), where T
denotes training and where g’ > 0. We alow workers with no training to have positive

productivity -- that is, g(0) > 0. But we assume that while receiving training, a worker

18 As shown below, one year may not be sufficient to capture the full effect of training in the NLSY. When
one allows one lead and one lag, the estimated return to training in the NLSY is substantially closer to the
EOPP estimated return, which isitself estimated over atwo year period . Another possible explanation for
the higher estimated return in EOPP is that workers receiving greater amounts of training during the first
three months may also receive more training during the rest of the two year period. Consistent with this,
Loewenstein and Spletzer (1996) find that within the NLSY, training incidence is highly correlated within
jobs.
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produces nothing. For the time being, we neglect the direct cost of training. Assuming
for expositional convenience that the job match is infinitely-lived, the present value of the

stream of output of an employee who receives T years of training fromtimettot+ Tis

V(T) :J g(T)exp(-r(r —t))dr = g(T)eTp(—rT) , Wherer isthe discount rate. The
+t

internal rate of return IRR for atraining investment of T yearsis defined as the value of r

such that V(T) = V(0). Simple dlgebra establishes that IRR = '“(g(T))T' In(9(9))

It is easy to establish that the present value of output is maximized at avalueof T

<0, where MR(T) = din(g(T)) = g(T) . Given

where MR(T) =r and
dr 9(T)

dMR(T)
T

diminishing returns, infraamarginal returns will be greater than marginal returns and
T
IRR = (IMR(u)du)(l/T) > MR(T). Thus, given rapidly diminishing returns to training,

ahigh IRR clearly does not imply sub-optimal investment in training. In contrast,
assuming that our fixed-effect estimates of returns can be interpreted structurally, high
marginal returns would imply sub-optimal investment in training. We return to thisissue
below.

Note also that high observed average IRR’s do not imply the existence of
economic rents. If jobs with good training opportunities did offer economic rents,
workers would enter these jobs, driving down output prices and wages. In equilibrium,
the wage profile for a given job would depend upon the training it offers, but, other things
the same, the present value of the wage stream would be equalized across all jobs.

How will the effect of training on productivity be reflected in wage growth?

Suppose for the moment that the worker bears all the cost and realize all the gain to
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training -- because, say, training is general (see Becker 1975). Let w; denote the worker’s
wage at timet and let T; denote his accumulated training at timet. |f wageswere
adjusted continuously, then we would have w; = g(T;). That is, the wage at any moment
in time is determined solely by the contemporaneous stock of completed training; lagged
and lead values of training do not affect the wage.

In redlity, frictions in wage setting prevent wages from being adjusted
continuously. Consider an example where the worker is hired at time 0 and wages are
adjusted once every year. Suppose that atraining spell of length T starts and ends
betweent=1andt =2. That is, letting 7; be the date that training starts and 7, be the date
that trainingends, 1< 1; < 1> < 2. Then the worker’swageisg(0) during thefirst year
of employment (0 <t < 1) and g(T) during the third year (2 <t < 3). During the second
year (1<t <2),thewageisgivenby: w, = ;,9(0) + 77,9(T) , where 7;,= 11 —1isthe
fraction of the second year that the worker works before receiving training and 77, = 2
- 1, iSthe remaining time after the receipt of training. Wages during the period that
training takes place are thus a weighted average of pre- and post-training productivity,
with the weights adding up to less than one because there is no production during training

itself. Taking first differences one obtains In(w,) —In(w,) =

In(r,9(0) + 77,9(T)) —In(g(0)) and In(w;) —In(w,) =1In(g(T)) —In(7,9(0) + 7,9(T)) .
Note that the effect of training will be spread over two periods - the period of training
itself and the period after training has been completed. Note also that if 7, is sufficiently
small relative to the time spent in training, In(w,) - In(w;) will be negative.

Now consider aregression of wage observations on the stock of (completed)

training accumulated on the job. Observations are recorded by asurvey at timesty, t;, t3,



20

with k- 1 <ty <k. How should training enter the regression? To answer this question,
let us return to our example. Note that two cases are possible. If training is completed
before the survey date t,, then T = 0and T, = T, so that In(w,,) = In(77,9(0) + 7,9(T,))
and In(w,;) =In(g(T,)). Thatis, thetraining T enters the wage equation at timet; as
current training and at time tz aslagged training. On the other hand, if training is
completed after the survey datet,, then T,=T; =0and T3 =T, so that
In(w,,) = In(77,9(0) + 7,9(T;)) and In(w,;) =In(g(T,)). Inthiscase, thetraining T enters
the wage equation at time t, aslead training and at time t3 as current training.

If the sample isamixture of the two cases, then current, lagged, and lead training
all belong in the wage equation. In our example, if the proportion p of individuals
completetraining T before the interview date t,, the observed effect of lagged training is

p[In(g(T)) —In(7z,9(0) + 17,9(T))] , the observed effect of current training is

@-p)[In(g(T)) = In(r,9(0) + ,g9(T))] + plIn(r,9(0) + 77,9(T)) - In(g(0))], and the
observed effect of lead training is (1— p)[In(77,9(0) + 77,9(T)) —In(g(0))] . Thetotal
effect, In(g(T)) - In(g(0)), isthe sum of these three effects. Accordingly, to estimate the
IRR of training it is necessary to include one lead and one lag term.™®

The foregoing has assumed that the worker bears all the costs (in terms of
foregone production) and obtains all the returnsto training. If the training isto some
extent firm-specific, or if there are frictionsin the labor market that cause the firm to

sharein the cost of general training [Loewenstein and Spletzer 1998, Acemoglu and

9 1n our estimations, we set lagged training to zero the first period aworker isin ajob. Lead training for
the last period is set to the worker’sfinal training in the job. If aworker leaves ajob at time T after survey
date ty but before survey date ty.4, final training is obtained by adding training between ty and T to training
at timety.
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Pischke 2001], then the wage effect will underestimate the return to training in terms of
productivity.” The observed wage effect is thus alower bound (subject to caveats
explained later).

Rate of Return Results.

Table 6 shows results for the specifications considered in Table 3, with terms for
lagged and lead training added. (Wage observations for the year 2000 were omitted, as
lead training is not observed.) The functional form comparisons match those of Table 3,
with observed wage effects about 25-35 percent higher. The order for K in the Fourier
series expansion is 13 for the complete sample and 2 for the outlier-omitted sample;
evidently the additional terms are needed only to track the behavior of the function for
training outliers.

Setting a year equal to 2000 hours, we compute rates of return for T hours of

training as IRR(T) = , Where 3.1 islagged, 3o is current, and 3, islead

20002 B.1(T)
T

training. Rates of return at median positive training of 60 hours are in the 150-175
percent range for the better-fitting parsimonious specifications and over 180 percent for
the Fourier series. Because series estimates potentially pick up local features of the
wage-training function, the estimated return at a specific point may not be representative
of returns over larger intervals and islikely to have a high standard error. Accordingly,
for the Fourier series estimates, we calculate mean returns for the 25th through 75th
percentiles of the distribution of positive training (to correspond to median training) --

hereafter referred to as the mid-range return. (For the parametric estimators, the

% Other contracting situations are plausible. For example, the costs of training may be shared by workers
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estimated mid-range returns are similar to the estimates at the median.) The estimated
mid-range returns, shown in thefirst two rows of Table 7, are in the neighborhood of 180
percent, comparable to that for the log specification.

V. Further Discussion and Interpretation of the Key Findings

Under the best fitting specifications, the effect of formal training on wagesis
quite large. Rates of return for formal training estimated from the NLSY are in the 150-
180 percent range for the median positive hours of training. The effect of training on
wages in EOPP is of acomparable order of magnitude. These numbers are much higher
than, for example, estimates of returns to schooling. The numbers also present a puzzle
in view of the fact that only a minority of jobsin both the NLSY and EOPP have any
formal training--13% in EOPP in the first three months, and about 25 percent in the
NLSY as of the last observation on thejob. Taking the results literally, it would appear
that potentially profitable investmentsin training are not being made. In this section we
discuss five potential explanations as to why estimated returns to training are so high:
heterogeneity in wage growth, measurement error, promotions, direct costs of training,
and heterogeneity in returnsto training.

Heterogeneity in Wage Growth

Our fixed-effect regressions control for all factors whose effect on wages remains
unchanged during ajob match. However, unobserved factors that affect both wage
growth and training will bias fixed-effect estimates of the return to training. To test
whether individuals who receive more training tend to have higher wage growth even in
the absence of training, we add interactions of tenure, tenure squared, and tenure cubed

with the cube root of an individual’s final observed training in the current job to the

who do not receive training. We leave these considerations for another paper.
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NLSY wage equation.”> (A preliminary analysis showed that the cube root of final
training fit best.) If workerswith higher wage growth self-select into training, then the
estimated effect of final training on wage growth should be positive and the coefficients
on lead, current and lagged training should fall.

Thisisin fact what we observe. Thethird and fourth rows of Table 7 shows mid-
range rates of return for the Fourier series.®* The rate of return to training falls by 55
percentage points to about 125 percent, and the final training interactions are jointly
significant at the 1 percent level. The interaction coefficients imply that respondents who
end up with 60 hours of training average about .8 percent per year more rapid wage
growth initially and about .6 per year after 2.5 years.

When the (cube root of) final training interactions are added, the differencesin fit
among the various functional forms become smaller, as shown in Table 8. The Q?
statistic favors the log and cube root specifications. The rate of return for the Fourier
seriesis higher than that for the parametric specification both at the median itself and
between the 25™ and 75™ percentiles. Table 9 shows the coefficients for the leads and
lags in the cube root specification, with and without final training interactions. Note that
the lag and lead coefficients decline greatly in magnitude.

The identification of the final-training/tenure interaction coefficients merits closer

examination. These coefficients are identified because interactions of stocks of (current,

2! pischke (2001) controls for unobserved wage growth heterogeneity by including an interaction between
tenure and an individual fixed effect in a wage regression that already includes a (noninteracted) fixed-
effect term. Our approach is more flexible in that it allows for a more flexible tenure interaction — for
example, individuals who acquire more training may tend to have higher wage growth in the first few years
of tenure but not later. Pischke finds that adding the fixed-effect tenure interaction sharply reduces the
coefficient on atraining dummy, but not on training duration, suggesting that high growth individuals
select into short duration training spells.

22 Asfor the specification without final training interactions, K equals 13 for the complete sample and 2 for
the outlier-omitted sample.
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lead, and lagged) training with tenure are excluded from our regression, as are leads and
lags beyond one period. In particular, training led M-t periods, where M is the year an
individual leaves his current job, is precisely fina training, so that interactions of training
led M-t periods with tenure will be equal to final training times tenure.

Excluding long leads of the stock of training isin our judgment clearly
appropriate. Thisstill raises the question of whether interactions of the stock of training
with tenure should enter the wage equation. One might expect that job tenure and
training would to some extent be substitutes, so that training that occurs after long tenure
with the employer would have lower returns. We use the cube root specification to
examine this question, as Fourier series estimates are quite imprecise. Results are shown
in Table 10 for the outlier-omitted sample (results from the full sample are similar). For
comparison purposes, column 1 reports the results of the cube root specification with the
final training interactions (i.e., the specification reported in column 4 of Table 9).

Column 2 shows what happens when one adds interactions of tenure with current,
lead, and lagged training. The point estimates indicate that returns to training decline
with tenure, especially in the first few years, as one would expect if job training were a
substitute for on-the-job learning. However, the interactions are imprecisely estimated;
thejoint p value of theinteractionsis 0.57. In the bottom half of Table 10 we show the
derivative of the effect of training (at the median of 60 hours) with respect to tenure at
various pointsin the distribution of tenure. None of the derivatives examined are
statistically significant at conventional levels.

Attempting to simultaneously estimate |eads and lags for training, final

training/tenure interactions, and interactions of lead and lagged training with tenure may
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well be demanding more from our data than they can reasonably be expected to show.
The small size of the lead and lagged coefficientsin Table 9 is another indication that it
may be overly ambitious to attempt to estimate interactions of lead and lagged training
with tenure. Accordingly, Column 3 of Table 10 shows the results of interacting current
training with tenure, but not lead or lagged training. Here there is stronger, though not
overwhelming, evidence that the effect of training declines with tenure. The p value of
the interactions declines to 0.12, and the slope of the effect of training with respect to
tenure at the 25™ percentile of tenure is substantial and significant at the 5 percent level.
The results suggest adecline in the returns to training with increased tenure in the first
few years on the job.

While the estimated return for the median tenure is similar whether or not tenure
interactions are included, the inclusion of interactions with tenure increases the estimated
return for low values of tenure. Using the cube root specification, the return at the 25"
percentile of tenure and 60 hours of training is 123 percent. This comparesto a 95
percent return when the tenure interaction is omitted . Both of these estimates are
somewhat conservative given that the Fourier series returns are higher.

In summary, heterogeneity in wage growth is responsible for a significant part of
the apparent high returnsto training.>* Furthermore, it is difficult to estimate both final
training effects and tenure interactions with the stock of training, but there is evidence

that the returns to training decline with tenure. After correcting for wage growth

% Theinclusion of interactions of tenure with current training also increases the effect of the final-training
interactions: aside from the increase in wages immediately after being trained, respondents who end up
with 60 hours of training are estimated to have 1.6 percent higher wage growth at the beginning of the job
and 0.8 percent higher wage growth after 2.5 years.
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heterogeneity, estimated returnsto training for workers with the median positive value of
training are in the neighborhood of 125 percent; returns for workers with low tenure are

likely higher.

Measurement Error

Substantial measurement error in training has been reported by Barron, Berger,
and Black (1997a). Inthe standard analysis, measurement error results in estimates that
are biased downward. However, the case of formal training is more complicated because
of its mixed continuous-discrete nature: a majority of our sample report receiving no
formal training, and those who report positive formal training report varying amounts.

As explained below, this mixed continuous-discrete structure implies that estimates of the
effect of short spells of training may be biased upward.

To determine the likely effects of measurement error on our OL S results, let T*
denote true training and T denote observed training. In addition, let g(Ty) denote the
return to training for those whose true training is To. Abstracting from other covariates
for convenience, g(To) = E(In WT*=T,) — E(In WT*=0), where presumably g’> 0 and g”
< 0. Since we do not observe true training, the data do not reveal the function g, but
instead reveal f, where f(To) = E(In W[T=To) — E(In W|T=0) is the expected return to
training for an individual whose observed training is To. (We assume throughout that we
consistently estimate f.)

One can distinguish between two types of measurement error: misclassification of

training and error in the duration of spellsthat are classified correctly. Misclassification

2 A previous draft of this paper found no effect of the final training-tenure interactions on returns to
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in turn can be subdivided into forgotten training, where T = 0 but T* > 0, and false
training, where T*=0 but T > 0. Provided that both types of misclassification error are
independent of the residual € in equation (1), misclassification unambiguously reduces
the observed return to training, f(Tp). To seethis, note that if there is any forgotten
training, E(In W[T=0) > E(In W|T*=0). And if thereisany false training of length T,
then E(In WT= Tg) < E(In W[T= Ty, T* > 0). The greater is either type of
misclassification error, the smaller is the observed return to training, f(To).

To gain intuition on the effects of duration error, consider figure 2. For ease of
exposition, the figure assumes away misclassification. Line G in the figure represents the
true function g(T), which goes through the origin. Under standard conditions,
measurement error in the positive training sample will flatten the observed function, as
showninline Fin thefigure. If thereisno misclassification error, E(In W[T=0) = E(In
W|T*=0), so earnings of those with no training will be consistently estimated. However,
for any level of training 0 < Tp < M, E(In W|T= Top) > E(In W|T*= Ty), implying that the
returns to training in this range will be overestimated.

As positive training is approximately log-normal, the simplest assumption is that
duration error islog-normal. We show in the Appendix, that if the return to training isa
linear function of In(T*), then the effects of duration error will cancel out at the geometric
mean. If the return to training declines at a slower (faster) than logarithmic rate, then
duration error will cause the return to training to be biased upward (downward). Using
parameters from the NLSY and assuming a 2 period structure to the data, we show in the

Appendix that under reasonable assumptions, the maximum proportional biasin the

training. The differencein resultsis due to the addition of tenure cubed to the specification, and improved
measurement of final training.
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estimated return to geometric mean training from duration error isless than 20 percent.
Monte Carlo evidence establishes that any positive biasis likely to be smaller in longer
panels. Taking into account plausible magnitudes of classification error (also discussed
in the Appendix), downward bias from classification error should offset any upward bias
from duration error.

Promotions

While general heterogeneity in wage growth does not completely explain the
large estimated returnsto training, it is possible that employees are offered training after
increases in their job responsibilities. This might cause usto falsely attribute wage
increases to training that are in fact due to promotions. Both the NLSY and EOPP
contain data on promotions, so we can estimate the extent that correcting for promotions
reduces our estimates of the effect of training.

The 1988-90 NLSY surveys asked respondents whether their job responsibilities
had been increased since the last interview. Respondents also were asked whether they
had received a promotion and, if promoted, whether responsibilities had increased as a
result of the promotion. In 1996-2000, respondents were asked separate questions about
changesin job responsibilities and promotions. We focus on changesin job
responsibilities because a"promotion” after training may merely be a recognition of the
worker’s increased productivity. Using promotion variables produces similar results.

We total changesin responsibilities within each job separately over the years

1987-1990 and 1994-2000 and estimate a wage equation over both sub-periods (where



29

the job is unchanged, separate fixed-effects are estimated in each sub-period). *® We find
that adding the change in responsibilities variable to a Fourier series specification that
includes final training interactions reduces the mid-range rate of return by 48 percentage
points in the outlier-omitted sample. Asreported in Table 7, oneisthus left with arate of
return of 75 percent. Similarly, in the cube root specification, adding the change in
responsibilities variable reduces the sum of the training coefficients by .0030, implying a
reduction in the estimated rate of return of about 39 percentage points. Applying thisto
the resultsin Table 8 produces arate of return of 56 percent in the outlier-omitted
sample.

Itisvery likely that there is mutual causation between training and promotions.
For example, in the SEPT95 sample of employees (Frazis et a. 1997), of those who
received formal training from their current employer, 14 percent reported receiving a
promotion when training was satisfactorily completed and 40 percent reported that
training was necessary for future advancement (categories are not mutually exclusive).
Thus, not surprisingly, training helps workers get subsequent promotions. We clearly
have an identification problem; while giving an able worker more responsibilities may
increase productivity in the absence of training, a worker’s improved ability to carry out
more advanced job duties should properly be considered to be part of the return to the
training investment. The above specification attributes all promotion-induced wage
growth to promotions per se as opposed to the training that may have made the
promotions possible. The estimated 40-50 percentage point reduction in the estimated

effect of training is clearly too large.

% To create a uniform variable about changes in job responsibilities, in the 1988-90 period we count an
individual as experiencing a changein responsibilitiesif a) he answers affirmatively to the change in
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A more reasonable way of accounting for promotions when estimating the return
to training is to control for promotions when estimating the effect of the current stock of
training, but not when estimating the effect of lagged training-that is, we calculate the
returnto training as Bt + Biw+1 + Bs-1, Where S isthe training coefficient for period t in
the long regression including promotions and g is the coefficient for period t in the short
regression omitting promotions. This procedure in effect attributes promotion-induced
wage growth to the promotion if the promotion occurs roughly concurrently with or some
time before training, and to training if the promotion is realized some time after training.
This approach, which is still probably too conservative, yields areduction in the
estimated rate of return from promotions of 34 (30) percentage points using the Fourier
series estimates (cube root specification), resulting in arate of return of 89 (64) percent.

In contrast to the NLSY, the EOPP data provide no indication that the estimated
return to training is partly due to the effect of promotions. Employersin EOPP are asked
whether the last worker hired has received a promotion and, if so, how many months after
being hired. We have added an indicator variable that takes on avalue of 1 when a
worker has received a promotion within two years of being hired as an additional
explanatory variable. While the coefficient on the promotion dummy is positive and
significant, thereis virtually no effect on the formal training coefficient.

Direct Costs of Training

The 1995 Survey of Employer Provided Training (SEPT95) estimated that, in its
sampling frame of firmswith 50 or more employees, wages and salaries of trainers,

payments to outside trainers, tuition reimbursements, and contributions to training funds

responsibilities question or b) indicates that his responsibilities have changed as a result of a promotion.
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totaled $300 per employeein 1994. The survey also estimated that wages and salaries
paid to employees while in formal training totaled $224 over the period May-October
1995 (Frazis et al. 1997). Pro-rating the wage and salary cost of employeesto afull year,
the wages paid to workers receiving training appear to account for only about 60 percent
of the total costs of training; other direct costs account for the remaining 40 percent.
Applying thisto our previous results, we obtain an estimated rate of return of about 40 -
50 percent.

Heterogeneity in Returns to Training

One strongly suspects that our estimated returns are greater than could be realized
by workers without formal training were they to get such training. Since the skills
required for different jobs are heterogeneous, it makes sense that the returnsto training
differ acrossjobs. Both the NLSY and the EOPP data provide direct evidence of
heterogeneity in returns.

We interact the cube root of the current stock of training with job characteristics
inthe NLSY: the two occupational dummies and the part-timeindicator. (The
specification also includes final training interactions.) Results are shown in Table 11.
Both the managerial and professional dummy and the part-time dummy have strong
positive effects on the returns to training, with manageria and professional jobs having
an 80 percentage points greater rate of return to training of 60 hours than do blue collar
jobs (the difference is strongly significant). Managerial and professional employees are
more likely to receive formal training, which is consistent with their higher returns. The

positive effect of part-time is harder to interpret, since part-time status is negatively
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associated with training. One possibility isthat it reflects higher required effects of
training on productivity to make investing in a part-time employee worthwhile.?®

EOPP contains a variable that may more directly reflect training requirements for
ajob. Recall that one of the control variablesin our wage growth regression isthe
logarithm of the number of weeks it takes a new employee in the most recently filled
position to become fully trained and qualified if he or she has the necessary school
provided training but no experience in the job, which we refer to as "job complexity".
Consistent with thisinterpretation, "job complexity” is positively related to wage growth,
as can be seen in column 1 of Table 12, which reports the key coefficients on training and
job complexity in our preferred EOPP specification (i.e., the cube root specification in
Table5).

Column 2 shows the effect of interacting formal training and job complexity and
column 3 shows the effect of also including an informal training interaction. The
noninteracted training coefficients fall when the job complexity-training interactions are
included, and the job complexity — training interactions are both positive. But the
standard errors are very high. Apparently, attempting to estimate the separate effects on
wage growth of formal training, informal training, job complexity, and job complexity-
training interactions places too great demands on the EOPP data. We therefore look for a
more parsimonious specification.

We begin by considering a specification of the form:

E( AWi |X! Tformal, Tinformal) = |n(l-|J(Tformd1Tinformd)) + XiB ’

% |n spite of the huge effect of part-time training on wages (60 hours of part-time training raises the wage
by 6.7 percent), the rate of return to training part-time blue collar workers is slightly less than the return to
training full-time managers and professionals if one calculates the rate of return using 1000 hours for a
work year instead of 2000 hours.
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W(Ttormai, Tintormal) = A(D(Tromart1) P+ (1-b) (Tintormart1) )P,
The perfect substitute specification corresponds to p = -1, and the Cobb-Douglas
specification corresponds to the limit of  asp - 0. The perfect substitute specification
turns out to be best fitting, although the parameter p is very imprecisely estimated.
Having determined that the perfect-substitute specification is reasonabl e, we next
estimate a Box-Cox model of the form

E(AW, X, Tromal, Tinforma) =(LUA)(B(Troma+1) +(1-b)(Trorma + 1))*-1+ XiP

The estimated value of A is.02, indicating that the log is a good choice for
functional form when one aggregates formal and informal training. The results for the
log — perfect substitute specification are reported in column 4 of Table 12.%” Finally,
column 5 shows the results of interacting aggregate training with job complexity. The
coefficient on the interacted variable is positive and quite large. The return to aggregate
training increases by 50 percent going from the 25™ to the 75™ percentile of weeks until
fully qualified. Inthe presence of measurement error in both variables, thisislikely to be
a severe understatement of the effect of job complexity on returns to training.?®

The EOPP and NLSY results provide evidence that the return to training varies
greatly acrossjobs. If some of the heterogeneity in returns is unobservable, as seems
likely, then our results do not reflect the returnsto training that could be obtained by the

average member of the population. Thisisin spite of our control for heterogeneity in

%" Note that in obtaining aggregate training, the estimated weight on formal training is .935 and the weight
on informal training is only .055.

% Barron, Berger, and Black (1997a) find substantial discrepancies between employer and employee
reports of weeks until fully qualified. Griliches and Ringstadt (1970) demonstrate that measurement error
islikely to more severely bias downward the magnitude of the coefficient of a quadratic term than alinear
term where the true model is quadratic. For similar reasons, measurement error in both hours of training
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wage levels by means of the fixed effect. To seethis, consider the following simplified
wage model that abstracts from covariates other than training:

9 InWi=a+ Bo(Ti) + &,
where E(ey) = E(ar) =0, E(3) =5, and e, isindependent of a and .

Both a and S are potentially correlated with T. There is ample evidence that
training is higher for more productive workers,?® presumably because their cost of
training is lower and/or their return to training is higher. If the cost of training islower
for more able individuals in more productive jobs, that is, if cov(aT) >0, then OLS
estimates of the return to training will be biased upward.

Fixed-effect estimation eliminates any potential bias stemming from a positive
correlation between unmeasured ability a and training. However, fixed-effect estimates
of the return to training do not purge the effect of a correlation between Sand T. The
EOPP data provide evidence of just such a correlation. Using this data, Loewenstein and
Spletzer (1999b) demonstrate that hours of aggregate training are strongly positively
correlated with job complexity. And, as noted above, the return to training is higher for
individuals who are in more complex jobs.

To analyze the bias in fixed-effect estimation, consider a situation where we have
two periods of data, with training always equal to O when t=1 and varying across the
sample when t=2. The expected value of the return to training estimated by fixed effects

(which, inthis case, is equivalent to first differences) is given by:

and number of weeks until fully qualified severely downward biases the estimated magnitude of their
interaction.
# For example, see Barron, Berger, and Black (1999).
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(10) f(To) = E(In Wiz|Tiz=To) — E(In Wi1|Ti2=To)
= E(ai[Tiz= To) — E(ai[Tiz= To) + E(Bo(To)| Tiz= To)
= E(B| Tiz= To)e(To).

One can distinguish between the return to training for the average member of the
population and the return to training for the trained (see, for example, Heckman and Robb
1985 and Heckman 1997). Fixed-effect regressions do not estimate the return to training
for the average member of the population S ¢ (To), but, asis clear from (10), consistently

estimate the effect of a given amount of training for those with that amount of training.*
In particular, our high estimated returns to short spells of training are not overestimates of
the return to training for those with such spells. However, this does not mean that one
would expect individuals who do not receive formal training to have realized such returns
had they been trained. Indeed, any reasonable model would predict that E(G[T=To) >
E(5[T=0): individuals with training should tend to have a higher return than those with no
training.

Without the appropriate structural restrictions, it is not possible to estimate the
expected return to training of workers who do not receive training. Similar comments

apply to estimates of the marginal return to training, which will be estimated as

(1D) f(To) = E(B[T=To)p (To) + (To),

OE(B |T =T,)
T 7

% Note that the example given, with zero training in the first period followed by varying amountsin the
second period, is exactly the situation in EOPP. As with measurement error, the situation is more
complicated in the multiperiod NLSY dataset, where the estimated return g(Ty) will partly reflect average
returns and partly reflect marginal returns. When we omit observations with (within-job) accumul ated
training greater than zero but less than final observed training--thus bringing the situation closer to that in
EOPP--the results are virtually identical to thosein table 2.
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and which will exceed E(B[T=To)p (To) if

aE(ﬁial:[I'- =To) > 0: estimation of ¢~ is

confounded by a composition effect stemming from the fact that individuals with more
training can be expected to have a higher return.
Summary

To summarize our discussion: heterogeneity in wage growth, promotions, and
direct costs are all partial explanations for the high estimated rates of return to training
appearing in Tables5 and 6. After correcting for these factors, we are left with returnsin
the neighborhood of 40-50 percent at the median positive level of training.*
Measurement error likely leadsto either minimal overestimates or to underestimates at
thislevel of training. These returns are several times the returns to schooling and are
very likely an underestimate in that they do not reflect cost-sharing with the employer.
Returns appear to be higher for those with low tenure. Heterogeneity in returnsisa
potential explanation as to how returns to formal training can be so high while most
workers do not get formal training. While those with formal training of 60 hours do have
annualized returnsto training of at least 40-50 percent, these returns cannot be
extrapolated to the untrained.

V. Conclusion

This paper has investigated the related questions of the functional form and
magnitude of the wage returns to formal training. Our results from both the NLSY and
EOPP indicate that the return to an extra hour of training diminishes sharply with the

amount of training received. A cube root specification generally fits the data best, but the

3! This estimate turns out to be similar to those obtained by Bartel and Mincer, but thisis by coincidence as
our estimate is obtained very differently. Unlike Bartel and Mincer, we use a nonlinear specification, allow
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log specification a'so doeswell. The linear specification always fits the data poorly and
substantially understates the effect of training, and the quadratic specification is quite
volatile.

Our best fitting specifications indicate that there are very substantial returns to the
initial interval of formal training. One explanation is heterogeneity in wage growth.
Fixed-effect regressions control for all factors whose effect on wages remains unchanged
during ajob match. However, unobserved factors that affect both wage growth and
training will bias fixed-effect estimates of the return to training. Controlling for
heterogeneity in wage growth by adding interactions of tenure and an individual’ s final
observed training in the current job to the wage equation has the effect of sharply
reducing the estimated return to training.

Returns are reduced further when one takes into account the effect of promotions
and the fact that direct costs are a substantial portion of the total cost of training. After
correcting for confounding factors, we are still |eft with arate of returnin the
neighborhood of 40-50 percent at the median positive level of training. This estimated
return, which is several times that associated with schooling, is an underestimate since it
does not take into account cost-sharing with the employer.

Heterogeneity in returns explains how returns to formal training can be so high
while most workers do not get formal training. Both NLSY and EOPP data provide
evidence of such heterogeneity: the return to training is significantly higher for managers
and professionalsin the NLSY and in more complex jobsin EOPP. With heterogeneity

in returns, our results cannot be considered structural estimates in the sense of showing

for one period lead and lagged effects asimplied by theory, and control for heterogeneity in wage growth,
promotions, and the direct cost of training.
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the return to training for an average member of the population, nor can estimated
margina returns be interpreted as the marginal returns to any member of the population.
However, under reasonable assumptions our fixed-effect method ensures that the
estimated average return can be interpreted as the return to a given amount of training for
those with that amount of training.

Structural estimation of returns to training when there is heterogeneity presents
challenges. While afair amount of research on the econometrics of heterogeneous
returns has recently been published (for example, Angrist, Imbens and Rubin 1996,
Heckman 1997, Heckman and V ytacil 1998), there are two problems with applying this
research to training. First, it isdifficult to find a plausible instrument. Second, as with
measurement error, the mixed continuous-discrete structure complicates the problem.
The only paper that we are aware of that deals with a problem of thistypeis Kenney et al.
(1979).% We leave amore complete analysis of heterogeneity in returns to training as a

topic for future research.

¥ Kenney et al. (1979) obtain structural estimates of the return to college education in amodel where there
isamass point at zero years of college. Intheir model, the returns to entering college are heterogeneous,
though the returns to years of college conditional on entering are not.
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Table 1

Descriptive Statistics, NLSY

Variable Mean
Ln Wage 1.88
# train. spells, current job 0.54
Training Hours 40.60
Ln (Training + 1) 1.02
Training Hours, Training > 0 164.60
Ln (Training + 1), Training > 0 4.12
Years Tenure 3.80
Year=1980 0.02
Year=1981 0.03
Year=1982 0.04
Year=1983 0.04
Year=1984 0.05
Year=1985 0.06
Year=1986 0.06
Year=1987 0.06
Year=1988 0.07
Year=1989 0.07
Year=1990 0.07
Year=1991 0.07
Year=1992 0.07
Year=1993 0.07
Year=1994 0.06
Year=1996 0.06
Year=1998 0.06
Year=2000 0.05
Black 0.26
Hispanic 0.18
Age at start of job 25.28
Years experience at start of job 5.88
Female 0.50
AFQT (residual) 0.37
Years education 12.77
Ever married 0.63
Union 0.20
Managerial/prof. (1st yr. in job) 0.17
Other white-collar (1st yr. in job) 0.34
Part-time 0.12

[Continued]

Std. Dev.

0.49
1.34
209.14
1.90
396.11
1.39
3.68
0.13
0.16
0.19
0.20
0.22
0.23
0.24
0.24
0.25
0.26
0.26
0.25
0.25
0.25
0.24
0.24
0.23
0.21
0.44
0.38
4.78
4.07
0.50
20.17
2.27
0.48
0.40
0.38
0.47
0.32

Min.

0.00
0.00
0.00
0.00
0.50
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
14.90
0.00
0.00
-65.48
0.00
0.00
0.00
0.00
0.00
0.00

Max.

4.53
21.00
9260.00
9.13
9260.00
9.13
22.77
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
41.19
23.47
1.00
45.94
20.00
1.00
1.00
1.00
1.00
1.00



Table 1, continued

Variable Mean Std. Dev.
Hours outside training on current

job 18.47  165.59
Missing AFQT 0.06 0.23
Missing Union 0.05 0.21
Missing Part-time 0.00 0.03
# spells missing tr. hrs, current job 0.01 0.12
Ever training spell, current employer 0.25 0.43
Any training spell, current period 0.10 0.30
N 17,809

Obs. 75,698

Min.

0.00
0.00
0.00
0.00
0.00
0.00
0.00

Max.

5440.00
1.00
1.00
1.00
4.00
1.00
1.00



Table 2

Percentiles of Distribution of Hours of Training, Training > 0

Percentile | Cumulative Hours of
Stock of | Training During
Training Previous Year
10 8 4
25 26 10
50 60 40
75 146 64
90 360 160
#>0 18,673 7,589




Table 3

Returns to Training for Different Functional Forms, NLSY

Specification R? Fraction Total
Fourier Effect at
Series Median

Explained

Complete Sample

No Training Vars. 0.2033 -- --

Dummy 0.2042 .624 0.031

Linear 0.2040 .332 0.003

Quadratic 0.2042 461 0.005

Cube root 0.2050 .842 0.036

Log 0.2049 .822 0.041

Dummy + Linear 0.2047 732 0.029

Fourier series 0.2057 - 0.039

N 17,809

Obs 75,698

Training Outliers Omitted*

No Training Vars. 0.2023 -- --
Dummy 0.2032 .630 0.031
Linear 0.2031 481 0.007
Quadratic 0.2035 .716 0.014
Cube root 0.2040 .842 0.037
Log 0.2038 .823 0.041
Dummy + Linear 0.2037 762 0.029
Fourier series 0.2047 -- 0.034
N 17,788

Obs. 75,497

*Top 1% of training duration omitted.



Table 4
Descriptive Statistics, EOPP
Variable

Ln Wage Growth

Formal training indicator
Informal training indicator
Hrs. formal tr., formal tr. > 0
Hrs. informal tr., informal tr. > 0
Ln (formal tr. + 1), formal tr. > 0
Ln (informal tr. + 1), inf. tr. >0
Ln # weeks until fully trained
Years relevant experience
Rel. experience squared

Age

Years education

Vocational schooling
Temporary or seasonal job
Part-time job

Union

Ln establishment size
Female
Managerial/professional
Tenure

Other white-collar

Missing Union

Missing Years education
Missing Tenure

Obs.

46

Mean

0.19
0.13
0.95
72.27
131.72
3.57
4.23
2.21
2.38
25.76
26.89
12.47
0.28
0.15
0.21
0.11
2.87
0.45
0.11
1.32
0.57
0.13
0.03
0.03

1,715

Std. Dev.

0.20
0.33
0.22
101.14
175.03
1.23
1.21
1.24
4.49
108.31
9.10
1.65
0.45
0.36
0.41
0.28
1.51
0.50
0.31
1.59
0.50
0.11
0.18
0.18

Min.

-.56
0.00
0.00
1.00
1.00
0.69
0.69
0.00
0.00
0.00

16.00
2.0
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Max.

151
1.00
1.00
640.00
2070.0
6.46
7.64
6.033
40.00
1600.00
64.00
24.00
1.00
1.00
1.00
1.00
8.60
1.00
1.00
29.92
1.00
1.00
1.00
1.00
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Table 5

Returns to Training for Different Functional Forms, EOPP

Specification R? Fraction Total
Fourier Effect at
Series Median

Explained

Complete Sample

No Formal Training 0.1756 -- --

Vars.

Dummy 0.1807 587 0.044

Linear 0.1813 .660 0.014

Quadratic 0.1837 951 0.031

Cube root 0.1834 .873 0.047

Log 0.1830 .840 0.052

Dummy + Linear 0.1822 .790 0.036

Fourier series 0.1833 0.041

Obs 1,715

Training Outliers Omitted*

No Formal Training 0.1749 --
Vars.

Dummy 0.1801 574 0.045
Linear 0.1829 .837 0.018
Quadratic 0.1831 .963 0.028
Cube root 0.1834 .899 0.050
Log 0.1827 .847 0.053
Dummy + Linear 0.1832 .902 0.035
Fourier series 0.1830 0.041
Obs. 1,713

*Top 1% of formal training duration observations omitted.
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Table 6

Rates of Return to Training for Different Functional Forms with Lagged and Lead
Training, NLSY

Specification R? Fraction Total Implied
Fourier Effectat Rate of
Series Median Return at
Explained Median
(%)
Complete Sample
No Training Vars. 0.1949 -- -- --
Dummy 0.1961 .581 .042 140
Linear 0.1957 .299 .004 12
Quadratic 0.1959 .378 .007 23
Cube root 0.1969 72 .045 149
Log 0.1968 .759 .053 175
Dummy + Linear 0.1965 .683 .040 132
Fourier series 0.1970 -- .059 197
16,534
Obs 69,800

Training Outliers Omitted*

No Training Vars. 0.1939 -- --

Dummy 0.1951 734 .042 140
Linear 0.1951 .590 .008 28
Quadratic 0.1956 .790 .018 59
Cube root 0.1959 .978 .048 159
Log 0.1958 .949 .053 178
Dummy + Linear 0.1957 914 .040 134
Fourier series 0.1960 -- .056 186
n 16,502

Obs. 69,573

*Top 1% of training duration omitted.
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Table 7

Fourier Series Estimates of Mean Rates of Return for 25" - 75" Percentiles of Positive
Training Distribution

Without correction for heterogeneity in
growth rates:

Complete 183
sample (33)
Outlier-omitted 178
sample (33)

Corrected for heterogeneity in growth rates:

Complete 128
sample (36)
Outlier-omitted 124
sample (36)

Corrected for heterogeneity in growth rates
and promotions:

Complete 79
sample (32)
Outlier-omitted 75
sample (32)

Corrected for heterogeneity in growth rates
and promotions’ effect on lead and current
training coefficients:

Complete 88
Sample (33)
Outlier-omitted 89
sample (30)

*Standard errors are in parentheses
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Table 8

Rates of Return to Training for Different Functional Forms with Lagged and Lead
Training and Final Training Interactions, NLSY

Specification R? Fraction Total Implied
Fourier Effectat Rate of
Series Median Return at
Explained Median
(%)
Complete Sample
No Training Vars. 0.1970 -- - -
Dummy 0.1973 411 0.021 69
Linear 0.1970 .063 0.001 2
Quadratic 0.1971 .099 0.001 5
Cube root 0.1974 518 0.025 82
Log 0.1974 .539 0.029 95
Dummy + Linear 0.1973 449 0.022 72
Fourier series 0.1986 -- 0.043 144
n 16,534
Obs 69,800

Training Outliers Omitted*

No Training Vars. 0.1959 -- -

Dummy 0.1962 .681 0.021 71
Linear 0.1960 316 0.003 10
Quadratic 0.1963 .634 0.009 30
Cube root 0.1963 .892 0.029 95
Log 0.1963 .895 0.030 102
Dummy + Linear 0.1963 .832 0.024 81
Fourier series 0.1966 -- 0.040 133
n 16,502

Obs. 69,573



Table 9

Selected Coefficients and Rates of Return, Cube Root Specification

Lead Training®®
Current Training'®
Lagged Training®®

Final Training® x Tenure

Final Training'® x
Tenure?

Final Training'® x
Tenure®/100

Effect of Training at
Median Positive Hours

Rate of Return to
Training at Median
Positive Hours

Full Sample

0.0024
(0.0014)
0.0051
(0.0012)
0.0040
(0.0010)

0.0448
(0.0070)

149

0.0006
(0.0014)
0.0043
(0.0012)
0.0013
(0.0011)
0.0021
(0.0008)

-0.0001
(0.0001)

0.0001
(0.0005)

0.0246
(0.0084)

82

0.0027
(0.0018)
0.0050
(0.0015)
0.0045
(0.0012)

0.0476
(0.0075)

159

Outliers Omitted

0.0010
(0.0018)
0.0044
(0.0013)
0.0019
(0.0015)
0.0020
(0.0009)

-0.0001
(0.0001)

0.0001
(0.0005)

0.0285
(0.0088)

95
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Table 10

Effect of Tenure on Returns to Training, Outlier-omitted Sample

Interactions of Tenure, Tenure?, Final Final Final
Tenure® with: Training Training, Training,
Current, Current
Lead Training
and
Lagged
Training

Effect of Median Positive Training at:

25th Percentile of Tenure (1.1 years) 0.0285 0.0365 0.0369
(0.0088) (0.0175) (0.0120)
50th Percentile of Tenure (2.5 years) 0.0285 0.0283 0.0266
(0.0088) (0.0127) (0.0101)

75th Percentile of Tenure (5.0 years) 0.0285 0.0226 0.0222
(0.0088) (0.0096) (0.0089)

Slope of Training Effect with Respect
to Tenure at:

25th Percentile of Tenure -0.0087 -0.0099
(0.0053) (0.0042)
50th Percentile of Tenure -0.0046  -0.0051
(0.0035) (0.0027)
75th Percentile of Tenure 0.0007 0.0011

(0.0027) (0.0022)
Effect of Median Positive Training on 0.006 0.008 0.008
Wage Growth at Median Tenure (Final
Training Interactions)

p value, Tenure-Training Interactions* 0.57 0.12

* Current, lead and lagged training in column (2); current training in column (3).
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Table 11

Selected Coefficients and Rates of Return, Cube Root Specification with Job
Characteristics Interactions, NLSY, Outlier-omitted sample.

Coefficient
Lead Training™? 0.0010
(0.0018)
Lagged Training? 0.0016
(0.0013)
Current Training™? 0.0012
(0.0017)
Initial Occ. Managerial/Professional
x Current Training™® 0.0063
(0.0013)
Initial Occ. Other White Collar
x Current Training™® 0.0015
(0.0011)
Part-Time x Current Training™? 0.0133
(0.0049)
Rate of
Effectat 60 Return at
Hours 60 Hours
Blue Collar 0.0152 o1
(0.0091) (30)
Managerial/Professional 0.0397 133
(0.0099) (33)
Other White-Collar 0.0212 71
(0.0094) (31)
Part-Time Blue Collar 0.0672 112*
(0.0205) (34)

*Calculated at work-year of 1000 hours.



Table 12

Interactions of Training and Job Complexity, EOPP

Cube Root Cube Root Cube Root
Formal Formal Formal
Training, Training, Training,
Log Informal Log Informal Log Informal
Training Training, Training ,
Formal Training
Training Interactions
Interaction
Coefficient
Cube Root Formal 0.014 0.006 0.008
Training (0.004) (0.010) (0.010)
Log Informal 0.015 0.015 0.008
Training (0.003) (0.003) (0.006)
Log Number of
Weeks Until 0.012 0.011 -0.000
Qualified (0.004) (0.004) (0.009)
Cube Root Formal
x Log Number of 0.003 0.002
Weeks (0.004) (0.003)
Log Informal x Log 0.003
Number of Weeks (0.002)
Log Weighted
Aggregate Training
Log Weighted
Aggregate Training
x Job Complexity
Weight on Formal
Training
Obs. 1,715 1,715 1,715
R? 0.1834 0.1834 0.1841

Perfect
Substitutes

0.015
(0.003)

-0.001
(0.003)

0.026
(0.004)

0.935
(0.034)

1,715

0.1844

Perfect
Substitutes,
Job
Complexity
Interaction

0.013
(0.008)

0.0055
(0.0028)

0.928
(0.038)

1,715

0.1857



Jeaul] —— ‘pend —=— Jeaurl+wng 1004 agn) —— B0 —=— J2lIN0OH —e—

(T+Buturen ‘siH)u

¥0°0-

1alino4

N

- ¢00-

¢00

Jeaul

ad

Jeaur+wng

- 700

900

80°0

P

100y 8gnQ

T0

7

‘pend

a|nusasad gL a|nusalad yise

¢T'o

suolnealjoads snoliea ‘sabem uj uo Bulurel] Jo 199} paldipald
T 2inbi4

qg

abem u| uo 198}



56

Figure 2

Ln Wages

Hours of Training



57

Appendix.
In this appendix, we give the details of our calculation of the maximum effect of
duration error and of the potential effects of misclassification error. Let n=In(T) -

In(T*) denote the measurement error in (non-misclassified) log training. We assume that

n isindependent of In(T*), and is distributed N(O, a,? ) and that In(T*) is distributed
N(u, 0Z). These measurement error assumptions are consistent with our datain that the

training distributionsin the NLSY and EOPP are both approximately log-normal.* In
fact, note that in the NLSY reported training hours for each spell are the product of
reported hours per week and reported spell duration in weeks, strongly implying a
multiplicative element to the measurement error.

Under our assumptions, the distribution of In(T*) conditional on In(T) is normal

2
with mean E(In(T*) |In(T)) = ,u+0—*2(ln(T) - () and variance
o

T

(A1) JI%\(T*)Hn(T) = (1-p) 0%,

Ox
where p =—— denotes the correlation coefficient between In(T*) and In(T), and
Ot

o; =0y +0), isthevariance of observed log training. Consequently, if the return to

training isalinear function of In(T*), say g(T*) = An(T*), then

(A2)  E(InWIn(T)= 1) = B E(In(T*)[In(T)= 1) = g(exp()) ,

so that the return to training is consistently estimated at the geometric mean of training.

% Estimating the Box-Cox transformation to normality (T°-1)/ 1 yields an estimate of A of .03 for the EOPP
positive formal training sample. Recall that A=0 corresponds to log-normality, and that our estimate of A is
—-.01inthe NLSY. Quantile plots also show that |log-normality is a good approximation in both datasets.
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If the return to training is not alinear function of In(T*), then the effects of
measurement error will not cancel out at the geometric mean, so that E(In WIn(T)= 1) #

g(exp(1)). To seethis, let h(Dlbe the function implicitly defined by h(In(x)) = g(x), and
note that E(In WIn(T)= ) = E(h(In(T*))[In(T)= ) = }h(T*) y(In(T*))d In(T*) , where

y(0I isthe (normal) density function for In(T*) conditional on In(T) = i Taking a

second-order Taylor expansion of h(J around x, the expected return to training for an

individual with observed non-misclassified training In(T) = x can be expressed as

(A3)  E(InWIn(T)= 1) = h(x) + h'(«) }(In(l’*) — ©)y(In(T*))d In(T*)
+(U2) fhe(@(In(T*)N)In(T*) = ) y(In(T*))d In(T*),

= g(exp(y)) + (1/2) i|°'h”(T(|n(T*)))(I n(T*) = ) y(In(T*))d In(T*),

where (In(T*)) is some value between x and In(T*), and the second term on the right
hand side of the first equation is 0 by virtue of the fact that E(In(T*)|In(T)= x. From (A3),
we see that the nature of the bias at 1zis determined by the sign of h”. If the true return to
training declines at a slower than logarithmic rate so that h” > 0, the estimated return to
non-misclassified observed training at the geometric mean will exceed the true return.

To estimate the potential upward biasif h” > 0, |et the return to true training be given
by g(T*) = ¢(T*)°, 0< d< 1, which means that h(x) = c(exp(x))°. Further expanding the
Taylor seriesin (A3), using the fact that h™(x) = J" h(x), and rearranging terms, the

proportiona upward bias in the estimated return to training at the geometric mean is
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E(InW In(T) = 1) ~h() _ & 0™ &0 = ) [In(T) =
h(x) = 2, oy @) = In(m) = 4).

Using (A1) and maximizing o .-, With respect to o while holding 0%
constant, one can show that o=, < (1/4)os . The variance of observed log

training in the NLSY is1.94. In EOPP, the variance of observed log formal training is
1.27. Numerical calculations thus show that if 0= .33, the maximum proportional biasin
the estimated return to geometric mean training is only about 3 percent in the NLSY and
2 percent in EOPP. If =75, the maximum proportional bias in the estimated return to
geometric mean training is about 18 percent in the NLSY and 11 percent in EOPP.

Classification error will cause underestimation of the returns at the geometric
mean (and all other points). We can make a plausible estimate of the extent of
classification error by using datafrom a 1993 survey matching workers’ and firms' reports
of training sponsored by the Upjohn Institute, similar in design to EOPP (Barron, Berger,
and Black 1997).3* The Upjohn survey covers formal (and informal) training on the first
four weeks on the job.

Wefirst deal with forgotten training, assuming for the time being that thereis no
falsetraining. Recall that training effects are g(T) — g(0), but we estimate f(T) — f(0).
With forgotten training, f(0)= E(In W[T=0) = E(g(T*)[T = 0). Let

r= (L= P)E(Q(T)|T =0) denote the proportion of the total g(T*)

(- P)E(g(T*) [T =0) + pE(g(T*) | T >0)

that is forgotten. Disregarding duration error, f(T,) = g(T,) and

¥ We thank Dan Black for supplying us with the data from this survey.
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E(g(T*)|T =0) = prE(si(T*) I_T >0) _ prE(_g(T) II >0)
(1-p@a-r (1-pa-r)

. Normalizing g(0) to zero,

the proportionate bias in the estimated return to training is thus given by

()= 10 =(9(T) ~9(0) _ _ prE((M|T>0)
9(T,) - 9(0) (- p)A-1)g(T,)

We assume that reports of formal training by the employer that are not mentioned
by the employee are forgotten training. Taking g(+) to be the cube root, the Upjohn data
indicate that about 33 percent of the cube root of formal training isforgotten. Inthe
NLSY,p=.1and E(g(T)|T >0) is4.36. Assuming that the proportion r of the total
g(T*) that isforgotten is the same in Upjohn asin the NLSY, forgotten training depresses
the estimated rate of return by 6%.

Now consider the effect of false training. Consider an example where the
probability of forgetting a spell of training is .35 (compatible with Upjohn data) and the
probability of reporting a spell where none existsis .01, where the observed probability
of training is.1 asin the NLSY, and where the distribution of false training is the same as
the distribution of true observed training. Notethat p = p* (1-a,) + (1- p*)a,, where
p* isthe true probability of training, ao isthe probability of false training (conditional on
no true training), and a; is the probability of forgetting training conditional on receiving
training. The percentage of reported training that isfalseis (1- p*)a, / p, which solving
for p* from the parameter values just given is 8.6%.

In summary, even small amounts of false training cause substantial bias when the

probability of training isrelatively low. In our example, afalse training probability of

1% leads to an 8.6% downward bias in the estimated return to training. Combining this



61

bias with the bias from forgotten training, one obtains a number of the same order of
magnitude as the maximum positive bias from duration error, so on net it scems unlikely
that there is significant positive bias to estimated returns at the geometric mean.

Our discussion neglects one potential complication inthe NLSY: the fact that our
measure of training stocks is not derived from a single questionnaire item, but is the sum
of training flows accumulated across periods, each component of which is subject to
misclassification and duration error. This greatly complicates the analysis. The EOPP,
with asingle formal training item, is not subject to this problem.

One factor that might work in the direction of overestimating the return to training
isthat duration error in the stocks of training in the positive training sample would
include the effects of misclassification error in the flows, as within the same job some
spells of training are forgotten and some false training is reported. If, asindicated by
Loewenstein and Spletzer (1996), training ishighly correlated within jobs and if
respondents sometimes forget to report training, the amount of training that respondents
with positive training receive on average could be underestimated, resulting in
overestimation of returns. On the other hand, the sum of measurement error across
multiple spells will tend to become less similar to the log-normal distribution and more
similar to the normal, which would tend to push down estimated returns at the geometric
mean for any given functional form.

We conducted a small Monte Carlo exercise in order to judge the probable effect
of the panel nature of our data on the direction of the measurement error effect. The set-
up isasfollows. Workers are observed for four periodst={0,1,2,3}. Time O corresponds

to the start of the job, before training is observed. Training spell duration is positivein
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periods 1-3 if the latent variable T** > 0. T, ** = K —.021t +.0006t> + pA ++/1- p’¢,,
where A, isaperson-specific fixed effect and &, isaresidua uncorrelated across

periods, both distributed normally with unit variance, and where p is a parameter that
varies across specifications. The coefficients on tenure, here and below, are taken from
the NLSY data. Training isforgotten with a constant probability a. The parameter K isa
function of a such that the observed probability of training over the four periodsis .10,
corresponding to the data.

Training duration for positive training observations is distributed log-normally,

with In(T,* | T ** > 0) = 3.84-.091t +.0052t* + e, where e is distributed normally with

mean zero and is uncorrelated with € and across periods. In specifications without

duration error, e has standard deviation 1.27. In specifications with duration error, e has

standard deviation 1.27/~/2 and a normal mean zero duration error variable with the
same standard deviation (and independent of the other variables) is added to produce
observed log training In(T;;) (when training is not forgotten). Geometric mean training
for an individual spell is about 40 hours with this specification, corresponding to the data.

Wages are generated by the following process:

InW, ) =1.92+ By(5 T, *) +.095t +.0021t* + k; +u,, where k is a normally-distributed

T<t
person-specific effect with mean zero and standard deviation 0.5 and u isanormally-
distributed residual uncorrelated across periods with standard deviation 0.2. The function
g varies across specifications, with the parameter 3 varying such that 60 hours of training

increases |og wages by .04.
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For computational simplicity, we simulate estimation by splines, taking quartiles
of the positive training distribution as our knot-points. We take as our bias measure the
percentage bias of the predicted effect of training at the median of positive training for
each smulated sample. For comparison purposes, we a so simulate comparable
specifications where we observe only periods t={0,1}. We computed 1,000 simulations
per specification.

Results are shown in Appendix Tables 1 and 2. Table 1 shows the results for the
four-period setup. There appears to be adownward bias in each specification due to the
spline functional form, in most cases small. (The small reported bias in the linear
specification with no duration error and zero probability of forgetting is due to sampling
error.) Measurement error in most cases appears to increase the downward bias. The
possibility of overestimation due to respondents with positive training sometimes failing
to report training appears to be a factor only for extreme specifications--specifically, the
linear specification with perfect correlation of the propensity to train across time periods,
moderate values of forgotten training, and no duration error. Duration error decreases
underestimation in some specifications, but typically in specifications with a great deal of
forgotten training, and not enough to lead to overestimation of returns.

Appendix Table 2 shows results from the 2-period setup. These arein line with
our theoretical analysis above: for some linear and T specifications with no or moderate
amounts of forgotten training duration error leads to overestimation of returns. In
summary, our Monte Carlo exercise indicates that the fact that the NLSY has more than
two periods of data makesit less likely that we are overestimating returns to median

hours of training.



Appendix Table 1

Percentage Bias at Median Hours of Training, Four-period Simulations

True o Probability % bias at median
functional of - .
form forgetting No duration Duration error
error present
Ln 0.4 0 -4.0% -5.1%
0.25 -11.9% -13.7%
0.50 -29.6% -28.6%
0.75 -66.7% -65.2%
0.6 0 -4.0% -4.9%
0.25 -12.0% -12.3%
0.50 -27.5% -26.8%
0.75 -62.9% -62.8%
0.8 0 -3.2% -5.3%
0.25 -12.0% -12.8%
0.50 -25.0% -25.0%
0.75 -59.8% -59.7%
1 0 -7.9% -10.1%
0.25 -12.3% -14.8%
0.50 -25.5% -25.8%
0.75 -52.0% -50.0%
Cube 0.4 0 -5.6% -9.1%
root 0.25 -14.2% -15.3%
0.50 -32.2% -33.1%
0.75 -70.4% -68.5%
0.6 0 -4.5% -10.4%
0.25 -16.4% -20.0%
0.50 -35.2% -36.4%
0.75 -71.1% -69.8%
0.8 0 -4.7% -11.1%
0.25 -20.1% -25.9%
0.50 -39.8% -42.8%
0.75 -70.5% -73.0%
1 0 -34.2% -53.7%
0.25 -52.9% -63.7%
0.50 -63.9% -68.8%
0.75 -80.7% -81.2%
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Appendix Table 1, continued

True P Probability % bias at median
functional of
form forgetting No duration Duration error
error present
T 0.4 0 -4.4% -5.0%
0.25 -14.5% -11.6%
0.50 -28.6% -22.9%
0.75 -69.4% -59.1%
0.6 0 -5.2% -6.3%
0.25 -11.4% -13.7%
0.50 -27.9% -22.6%
0.75 -69.1% -55.6%
0.8 0 -3.9% -10.8%
0.25 -9.4% -17.0%
0.50 -24.2% -25.2%
0.75 -64.0% -55.5%
1 0 -8.6% -21.2%
0.25 -10.8% -25.9%
0.50 -21.7% -26.7%
0.75 -56.9% -50.3%
Linear 0.4 0 -1.0% -2.1%
0.25 -6.2% -6.4%
0.50 -22.7% -14.6%
0.75 -75.2% -47.0%
0.6 0 2.1% -7.0%
0.25 -5.5% -6.3%
0.50 -14.2% -13.3%
0.75 -67.5% -43.3%
0.8 0 -1.1% -12.1%
0.25 0.4% -10.4%
0.50 -8.8% -10.4%
0.75 -59.4% -40.2%
1 0 -0.3% -12.0%
0.25 14.2% -3.6%
0.50 18.3% 1.5%
0.75 -31.4% -22.9%
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Appendix Table 2

Percentage Bias at Median Hours of Training, Two-period Simulations

True functional form | Probability | % bias at median
of

: No Duration
forgettin .
9 9 duration error
error present
Ln 0 -3.8% -5.0%

0.25 -6.4% -9.1%

0.50 | -15.2% | -18.2%

0.75 | -44.6% | -45.4%

Cube root 0 -4.3% -3.2%

0.25 -9.2% -7.5%

0.50 | -18.9% | -17.0%

0.75 | -50.0% | -45.3%

T™ 0 -7.6% 57%

0.25 | -15.7% 0.2%

0.50 | -28.9% | -10.8%

0.75 | -72.0% | -46.0%

Linear 0 -1.5% 14.2%

0.25| -11.3% 8.5%

0.50 | -30.6% -5.2%

0.75 | -91.3% | -45.2%




