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SUMMARY 
Classical small area estimation techniques assume either that all the areas are represented in the sample 
or  that  the  selection  of  the areas to the sample  is noninformative.  When the areas are sampled with 
unequal  selection  probabilities  that  are  related  to  the values of  the response variable,  the classical 
estimators are biased;  the magnitude of  the bias depends on  the sampling fraction and the covariance 
between the  sampling  weights  and  the response variable.  We illustrate this point using  very  simple  
models  employing  the notions of  the sample distribution  and  sample-complement  distribution.  We  
suggest simple unbiased estimators based on these distributions. 
Key words: Sample distribution, Sample-complement distribution 

1. The sample and sample-complement distributions 
Consider a finite population U consisting of N units belonging to M areas, with iN  units in area i , 

1

M

ii
N N�  ¦ . Let y define the study variable with value ijy  for unit j in area i and denote by ijx  the 

values of auxiliary (covariate) variables that are possibly known for that unit. In what follows we 
consider the population y-values as random realizations of the following two level stochastic process: 
First level- values (random effects) 1{ ... }Mu u  are generated independently from some distribution 

with probability density function (pdf) ( )p if u  for which 2 2( ) 0 ; ( )p i p i uE u E u V  , where pE  

defines the expectation operator; Second level- values 1{ ... }
ii iNy y  are generated from some 

conditional distribution with pdf  ( | , )p ij ij if y x u , for 1...i M . We assume a two-stage sampling 

scheme which in the first stage selects m areas with inclusion probabilities Pr( )i i sS  �  and in the 

second step in  units are sampled from area i  selected in the first step with inclusion 

probabilities | Pr( | )j i ij s i sS  � � . Note that the sample inclusion probabilities at both stages may 

depend in general on all the population or area values of y, x and possibly design variables z, used for 
the sample selection but not included in the working model. Denote by i,  and ij,  the sample indicator 

variables at the two stages ( 1i,   iff i s�  and similarly for ij, ) and by 1/i iw S  and 

| |1/j i j iw S  the corresponding first and second stage sampling weights. 

Following Pfeffermann et. al (1998), we define the conditional sample pdf of iu , i.e., the first level 

conditional pdf  of iu  for area i s�  as, 
 

                                   
Pr( 1 ) ( )

( ) ( | 1)
Pr( 1)

def Bayes
i i p i

s i i i
i

u f u
f u f u

,   ,   ,                     (1.1) 

Similarly, the conditional sample-complement pdf, i.e., the conditional pdf of iu  for area i s�  is 
defined in Sverchkov and Pfeffermann (2001) as, 

                               
Pr( 0 ) ( )

( ) ( | 0)
Pr( 0)

def Bayes
i i p i

c i i i
i

u f u
f u f u

,   ,   ,                        (1.2) 

Notice that the population, sample and sample-complement pdfs of iu  are the same iff 

Pr( 1 | ) Pr( 1)i i iu i,   ,  � , in which case the sampling of areas is noninformative.  
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The second level sample pdf and sample-complement pdf of ijy  are defined similarly to (1.1) and (1.2) 

as, 

Pr( 1 , , ) ( , )
( | , ) ( | , , 1)

Pr( 1 , )

def
ij ij ij i p ij ij i

s ij ij i ij ij i ij

ij ij i

y u f y u
f y x u f y x u

u

,  
 ,   

,  
x x

x
        (1.3) 

Pr( 0 , , ) ( , )
( | , ) ( | , , 0)

Pr( 0 , )

def
ij ij ij i p ij ij i

c ij ij i ij ij i ij

ij ij i

y u f y u
f y x u f y x u

u

,  
 ,   

,  
x x

x
       (1.4) 

The model defined by (1.1) and (1.3) defines the two-level sample model analogue of the population 
model defined by ( | )p i if u z  and ( | , )p ij ij if y x u ; see also Pfeffermann et. al (2001).  

The following relationships are established in Pfeffermann and Sverchkov (1999) and Sverchkov and 
Pfeffermann (2001) for general pairs of random variables 1 2,v v  measured for elements i U�  where 

,p sE E  and cE denote expectations under the population, sample and sample-complement 

distributions and ( ,i iwS ) define the sample inclusion probability and the sampling weight.  
 

          
1 2 1 2

1 2 1 2
2

( , ) ( )
( ) ( | , )

( )
p i i i p i i

s i i i i
p i i

E v v f v v
f v v f v v i s

E v

S
S �                        (1.5) 

                    1 2
1 2

2

( )
( )

( )
s i i i

p i i
s i i

E w v v
E v v

E w v
   ;  2

2

1
( )

( )p i i
s i i

E v
E w v

S                      (1.6) 

             

1 2 1 2
1 2 1 2

2

1 2 1 2

2

[(1 ) , ] ( )
( ) ( , )

[(1 ) ]

[( 1) , ] ( )

[( 1) ]

p i i i p i i
c i i i i

p i i

s i i i s i i

s i i

E v v f v v
f v v f v v i s

E v

E w v v f v v

E w v

S
S

� �  �
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                   (1.7) 

              
1 2 1 2

1 2
2 2

[(1 ) ] [( 1) ]
( )

[(1 ) ] [( 1) ]
p i i i s i i i

c i i
p i i s i i

E v v E w v v
E v v

E v E w v

S
S

� �  � �                         (1.8) 

Defining 1 2,i i iv u v =constant yields the relationships holding for the random area effects iu . 

Defining 1 2; ( , )ij ij ij ij iv y v x u   and substituting |j iS  and |j iw  for iS  and iw  respectively yields 

the relationships holding for the observations ijy . 

 
2. Optimal Small Area Predictors 

The target estimated population parameters are the small area means 
1

/iN

i ij ij
Y y N� ¦  for 

1...i M . Let |{( , , ), ( , ) ; ( , , ), ( , ) }s ij j i i kl k klD y i j s x k l US S � , , � define the known data. 

The MSE of a predictor ˆ
iY  given sD  with respect to the population pdf is, 

 
2 2

2

ˆ ˆ ˆ( | ) [( ) | ] {[ ( | )] | } ( | )

ˆ[ ( | )] ( | )

i s p i i s p i p i s s p i s

i p i s p i s

MSE Y D E Y Y D E Y E Y D D V Y D

Y E Y D V Y D

 �  � �
 � �

         (2.1) 

The variance ( | )p i sV Y D  does not depend on the form of the predictor and hence the MSE is 

minimized when ˆ ( | )i p i sY E Y D . In what follows we distinguish between sampled areas ( 1i,  ) 

and nonsampled areas ( 0i,  ). Denote by is  the sample of units in sampled area i . Then, for the 
sampled areas, 
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1
( | , 1) { ( | ) ( | , 0)

1
{ ( | )

i i

i i

p i s i p ij s p il s ilj s l s
i

ij c il sj s l s
i

E Y D E y D E y D
N

y E y D
N

� �

� �

,   � ,  

 �

¦ ¦
¦ ¦

          (2.2) 

For areas i  not in the sample, 

                        
1

1

1
( | , 0) ( | , 0)

1
( | )

i

i

N

p i s i p ik s ikk
i

N

c ik sk
i

E Y D E y D
N

E y D
N

�

�

,   ,  

 

¦
¦

                  (2.3)                        

The predictors in (2.2) and (2.3) can be written in a single equation as, 

              
1 1

1

1
( | ) { [ (1 ) | ]}

1
{ [ | ]}(1 )

i i

i

N N

p i s ik ik c ik ik s ik k
i

N

c ik s ik
i

E Y D y E y D
N

E y D
N

� �

�

 , � � , ,

� � ,

¦ ¦
¦

              (2.4) 

 
3. Bias of Small Area Predictors when ignoring the Sampling Scheme 

Consider for convenience the case of a sampled area. Ignoring the sampling scheme implies an implicit 
assumption that the sample-complement model and the sample model are the same such that 

,
ˆ ( | )

i i
i IGN ij s il sj s l s

Y y E y D� � �¦ ¦ . Hence, 

 

      

,

|

|

1ˆ[( ) | , 1] [ ( | ) ( | )]

( , | )1
[( 1) | ]

i

i

p i IGN i s i s il s c il sl s
i

s il l i s

l s
i s l i s

E Y Y D E y D E y D
N

Cov y w D

N E w D

�

�

� ,   �

 � �

¦
¦

             (3.1) 

with the second equality following from (1.8). Thus, unless the response  values ily  and the ‘within’ 

sampling weights |l iw  are uncorrelated, ignoring the sampling scheme results in biased predictors (see 

also the empirical results).  A similar expression for the bias can be obtained for the nonsampled areas. 
 

A simple Example.  Let the population model be the “unit level random effects model” 

                  2 2; ~ (0, ) , ~ (0, )ij i ij i u ij ey u e u N e NP V V � �                          (3.2) 

with all the random effects and residual terms being mutually independent.  
Let i ic NS  u  where c is some constant and | 0 /j i in NS   (fixed sample size 0n  within the 

selected areas), such that |Pr[( , ) ]ij i j ii j s constS S S �   . Note that the sample selection 

within the selected areas is noninformative in this case but if the area sizes iN  are correlated with the 

random effects iu  (say, the areas are schools, the study variable measures children’s attainment, the 
large schools are in the poor areas), the selection of the areas is informative. 

Suppose that the areas sizes can be modeled as 2log( ) ~ ( , )i i MN N Au V , implying that 
2

( | ) exp( )
2
M

p i i iE u Au
VS �E  by familiar properties of the lognormal distribution. It follows that 

(see Pfeffermann et al. 1998, example 4.3),  
 

                           2 2( ) ( )
( ) ( , )

( )
p i i p i

s i u u
p i

E u f u
f u N A

E

S V VS                             (3.3) 
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so that 2( ) ( ) 0s i u p iE u E uJV z  . The fact that the random effects in the sample have in this case 

a positive expectation is easily explained by the fact that the sampling scheme considered tends to 

select the areas with large positive random effects. Note, however, that by defining 2* uAP P V �  

and * 2
i i uu u AV � , the model holding for the sample data in sampled areas is **ij i ijy u eP � � , 

* 2 2~ (0, ) , ~ (0, )i u ij eu N e NV V , which is the same as the population model. Thus, the optimal 

predictors under the population model for the area means i iuT P �  of the sampled areas ( 1i,  ) 
are still optimal under the sample model  

Next consider nonsampled areas. By (1.7), 

    
[(1 ) | ] ( ) ( ) ( | ) ( )

( )
(1 ) (1 ) (1 )

p i i p i p i p i i p i
c i

p i p i p i

E u f u f u E u f u
f u

E E E

S S
S S S

�  �� � �                 (3.4)  

Let 
1 1 1

( ) [ ] [ ( |{ })] [ ] ( )
M M M

p p l p p l i p i p il l l
E m E E E N E MES S	 	 	 ,  ,   ¦ ¦ ¦ define the 

expected number of sampled areas, such that ( ) ( ) /p i pE E m MS  . If the number of sampled areas 

is fixed, ( )pE m m . By (3.4) and (1.5), 

 ( ) [ ( ) ( ) ( )] /[ ( )]c i p i p s i pf u Mf u E m f u M E m � �  and hence,  

                          
2( ) ( ) ( )

( )
( ) ( )

p s i p u
c i

p p

E m E u E m A
E u

M E m M E m

V �  �� �                             (3.5) 

Here again, the negative expectation of the random effects pertaining to nonsampled areas is easily 
explained by the tendency of the sampling scheme to select the areas with the large positive random 
effects. Thus, ignoring the sampling scheme underlying the selection of the areas and predicting the 
sample means in nonsampled areas by, say, the average of the predictors in the sampled areas yields in 
general biased predictors with a positive bias defined by the absolute value of the right hand side of 
(3.5).  

 
4. On Small Area Estimation based on Sample Distribution 

In order to illustrate the proposed approach, we suppose that the area level random effects model 
defined by (4.1) holds for the sampled areas, i.e., for ij s�  

2 2; | 1 ~ (0, ) , | 1 ~ (0, )ij i ij i i u ij ij ey u e u N e NP V V � � ,  ,                         (4.1) 

We mention in this respect that the sample model can be identified using conventional techniques, see, 
e.g., Rao (2003).  
Suppose that in the first stage m areas are selected with inclusion probabilities iS  (m is fixed) and in 

the second stage in  units are sampled from area i  selected in the first stage with inclusion 

probabilities |j iS  where again, we assume for convenience that the sample sizes in  are fixed. Assume 

that, 
                          | |( | , ) ( | ) exp( )s j i ij i s j i ij i ijE w y u E w y c by                          (4.2) 

where i iuT P �  and ic >0 and b  are fixed parameters. Notice that since in  is fixed, 

|( | ) /s j i i i iE w u N n . 

Comment: As with the sample model (4.1), the expectation in (4.2) refers to the sample distribution 
within the areas. The relationship between the sampling weights and the observed data holding in the 
sample can be identified and estimated therefore from the sample data. See Pfeffermann and Sverchkov 
(1999, 2003) for discussion and examples. On the other hand, the relationship between the sampling 
weights iw  and the small area means i iuT P �  is more difficult to detect since the area means are 
not observable and in what follows we do not model this relationship. See Pfeffermann et al. (2001) for 
an example of modeling the selection probabilities at both stages. 
As established in Section 2, the optimal predictor for areas in the sample is,  
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( | , 1) [ ( | , 1)] /
i i

p i s i ij c il s i ij s l s
E Y D y E y D N
 �,   � ,  ¦ ¦ . In order to compute the 

expectations ( | , 1)c il s iE y D ,  we follow the following steps. First, by (1.7), (4.1) and (4.2), 
 

|

|

[ ( , ) 1] ( )
( , 1)

( ) 1
s l i il i s il i

c il i i
s l i i

E w y f y
f y

E w

T TT T
�,   �  

                        
1

[ exp( ) 1] [ ] /[ 1]il i i
i il

e e i

y N
c by

n
TIV V

� � �                               (4.3) 

=
2 2 2( )1 1

{ exp( ) [ ] [ ]}
2

i e il i e il i
i i

i i e e e e

n b y b y
c b

N n
V T V TT I IV V V V

� � �� ��  

where I  is the standard normal pdf. Notice that if 0b   (noninformative selection within the 

sampled areas with equal inclusion probabilities), /i i ic N n  and the pdf in (4.3) reduces to the 
conditional normal density defined by (4.1). Second, by (4.3), 

 

         
2 2

2( | , 1) { exp( )[ ] }
2

i e
c il i i i i i e i

i i

n b
E y c b b

N n
VT T T V T,   � � ��               (4.4) 

Finally,  
      ( | , 1) [ ( | , 1, )] [ ( | 1, )]c il s i s c il s i i s c il i iE y D E E y D E E yT T,   ,   ,          (4.5) 

where the exterior expectation is with respect to the distribution of | , 1i s iDT ,  . Under the model 

(4.1), the latter distribution is normal with mean ˆ (1 )i i i iy yT J J � �  and variance 

2 2 2 1
1

(1 ) ( / )
m

i i i i i ii
v J V J J V �

 � � ¦  where 
1

/in

i ij ij
y y n� ¦  is the sample mean in sampled 

area i , 
1 1

/
m m

i i ii i
y n y n� � ¦ ¦ , 2 2 / ( | )i e i i in Var y uV V   and 2 2 2/[ ]i u u iJ V V V � .  

Thus, for the sampled areas ( | , 1)c il s iE y D ,   is obtained by computing the expectation of the right 

hand side of (4.4) with respect to the normal distribution of | , 1i s iDT ,  . We find that, 

 ( | , 1)c il s iE y D ,   
2

2 2ˆ ˆ ˆ{ [ ( )]exp[ ( )] }
2

i
i i i e i e i i

i i

n b
c b v b v

N n
T V T V T� � � � ��         (4.6) 

Notice that if b=0 (noninformative sampling within the areas with equal inclusion probabilities) 

/i i ic N n  and ( | , 1)c il s iE y D ,   îT .  
Comment: The optimal predictor obtained for the case of noninformative sampling, 

( | , 1)p i s iE Y D ,   ˆ[ ( ) ] /
i

ij i i i ij s
y N n NT� � �¦  (Eq. 2.2) is different from the common 

predictor, îT . This is so because the target parameter is defined to be the finite area mean iY  rather 

than iT . See also Prasad and Rao (1990). 
For the nonsampled areas the optimal predictor is defined in (2.3) to be, 

1
( | , 0) ( | , 0) /

N

p i s i c ik s i ik
E Y D E y D N�,   ,  ¦ . In order to compute the expectations 

( | , 0)c ik s iE y D ,   we note first that 
 

                ( | , 1) ( | , 0) ( | )p ij i i p ij i i p kl kf y f y f yT T T,   ,                           (4.7)           

signifying that conditionally on the area means iT , the population pdf is the same for all the areas 

irrespective of whether the areas are sampled or not. The pdf ( )p il if y T is obtained from (1.5), (1.6) 

and (4.2) similarly to the derivation of ( , 1)c il i if y T ,   in (4.3) as, 
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|

|

( , ) ( )
( )

( )
s l i il i s il i

p il i
s l i i

E w y f y
f y

E w

T TT T                                    (4.8) 

                                        
2 2 2( )1

exp( ) [ ]
2

i i e il i e
i

i e e

c n b y b
b

N
V T VT IV V

� � �                    

Notice that the population pdf is different from the sample pdf defined by (4.1) unless the sampling 
scheme within the areas is noninformative (b=0).  
 
By (4.8),  

                           
2 2

2( | ) exp( )( )
2

i i e
p il i i i e

i

c n b
E y b b

N
VT T T V � �                      (4.9) 

Now, 

                        

( | , 0) ( | , 0)

[ ( | , , 0) | , 0]

[ ( | ) | , 0] [ ( | ) | ]

Def

c ik s i p ik s i

p p ik i s i s i

Def

p p ik i s i c p ik i s

E y D E y D

E E y D D

E E y D E E y D

T
T T

,   ,  
 ,  ,  

 ,   

            (4.10) 

where the exterior expectations in the last row are with respect to the conditional distribution 
( | , 0) ( | )p i s i c i sf D f DT T,   .  

Finally, by (1.8) and (4.10), 
( 1) ( | )

( | , 0) [ ( | ) | ] [ | ]
( | ) 1

i p ik i
c ik s i c p ik i s s s

s i s

w E y
E y D E E y D E D

E w D

TT �,    �         (4.11) 

Denoting , ( | )i p p ik iE yT T , an estimator of the expectation ( | , 0)c ik s iE y D ,   is obtained 

from (4.11) as, 
 

       ˆ( | , 0)c ik s iE y D ,   , ,
ˆ ˆ( 1) ( 1)1

ˆ ( 1)( | ) 1
i i p i i p

i s i s
is i s i s

w w

m wE w D

T T
� �

�

� � ��¦ ¦ ¦           (4.12) 

where 
1ˆ( | )s i s ii s

E w D w
m

� ¦  and ,̂i pT  is obtained by substituting iT  in (4.9) by 

ˆ (1 ) ( | , 1)i i i i s i s iy y E DT J J T � �  ,   or by use direct Hajek estimator of 

, ( | )i p p ik iE yT T . Notice that the right hand side of (4.12) defines the predictor of the mean 

iT ’ s in the nonsampled areas.  
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