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1. Introduction  
 
   We consider variance estimation in the case of 
a calibrated estimator of a finite population  total 
of a variable of interest y  (the results can be 
generalized to more complicated finite 
population parameters, see Remark 3.3).  An 
estimator is calibrated with respect to a 
particular variable x  when the estimator is such 
as to yield the actual population total of the x ’s 
when x  is taken as the variable of interest (that 
is, when it is substituted for y  in the estimation 
formula), whatever the sample.  In this situation, 
we say a variance estimator is zero-calibrated if, 
for xy = , it takes the value 0.  Zero-calibration 
is a desirable property for calibrated estimators: 
actually if it is known that an estimate being 
applied to a particular variable has 0 variance 
then we would like the variance estimate to be 
equal to 0 too, since otherwise we may suspect 
overestimating the variance.  Another, maybe 
more important, desirable property for any 
variance estimator is that it does not 
underestimate the variance, at least 
asymptotically. In this paper we show that for 
replication-type variance estimators under very 
general conditions these two desirable properties 
can be achieved by calibrating the estimate on 
each partial sample. As an illustration we 
consider variance estimation of a finite 
population total estimate under a particular 2-
phase sampling scheme. 
 
 2. Definition and an example of Zero-
calibrated Estimator  
 
    Consider a population );,( Uixy ii ∈  and a 

sample );,( Sixy ii ∈ . Let our goal be to 

estimate a finite population total, i
U

def
y yt ∑= .  

Let ix  be an auxiliary variable (the results of 
this paper can be easily generalized to vector 
valued x ’s) and iw  be a sample weight; the 
latter is not necessarily equal to the inverse 
selection probability; see, for example, Section 5. 
 
Definition  
    (i) An estimate of yt , 

);,,(ˆ Siwxygt iiiy ∈= ,  is calibrated with 

respect to x  if 
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    (ii) a variance estimator (of calibrated with 
respect to x  estimator yt̂ ), =)ˆ(ˆ ytV  

)];,,([ Siwxygh iii ∈ ,  is zero-calibrated   if   

0)];,,([)ˆ(ˆ =∈= SiwxxghtV iiix .  
 
    To illustrate this definition consider the 

following simple example.  Let ∑=
∈ Si i
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be the Horvitz-Thompson’s Estimator  of  a 
finite population total under probability sample 
of fixed size n  proportional to size variable ix , 
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i
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nx=π . Obviously xx tt =,π̂  and therefore  

yt ,π̂  is calibrated with respect to x .  Two 

classical variance estimators of   yt ,π̂  are the  

Horvitz-Thompson’s  variance estimator, 
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and the Yates-Grundy’s variance estimator,   
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One can easily see that the Horvitz-Thompson’s 
variance estimator is not zero-calibrated since 
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this, consider a sample of 2 units from 
population of 3 units with ix  values 1,2 and 2. 
On the other hand the Yates-Grundy’s variance 

estimator is zero-calibrated since 0=−
k
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for all l  and k . 
 
3. Zero-calibrated  Jackknife Variance 
Estimator 
 
    As above write our estimator as, 

);,,(ˆ Siwxygt iiiy ∈= , where g  is a 

known function for a fixed population, for 
example if yt̂  is the ratio estimator then 
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treated as a constant. Consider a partition of the 
complete sample into nB ≤  disjoint 
subsamples, BSSS ∪∪= ...1 , and let b ’th 
partial sample be equal to the initial sample 
without b ’th subsample, }{][ bb SSS −= . 

Define an estimate based on b ’th partial sample 
(ebop) by );,,(ˆ ][][ biiiby Siwxygt ∈= . 

Consider B  ebop’s. Then the Jackknife 
estimator of  the variance of  yt̂   is defined by, 

)];,,([)ˆ(ˆ SiwXYghtV iiiyJack ∈=      

                             2
][

1
)ˆˆ(1

yby
B

b
tt

B
B −∑

−=
=

. 

(One can find alternative definitions of Jackknife 
variance estimators in Wolter 1985.) 
    The Jackknife estimator satisfies the following 
property. For the Horvitz-Thompson’s Estimator, 

∑= s iiy yt ππ /ˆ , ,  under a probability sample 

without replacement ,  

=)]ˆ(ˆ[ , yJackD tVE π  

                )]ˆ(ˆ[ , yPPSWRD tVE π ,                (3.1) 

where DE  denotes the expectation with respect 
to the design distribution and  
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is a design unbiased variance estimate of yt̂  as 

if the sample would be with replacement,  see 
Wolter (1985),  p.170. One may show that 
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and therefore  )]ˆ(ˆ[ , yPPSWRD tVE π  is close to 

)ˆ( , yPPSWR tV π  if the sample size is big. Eq. 

3.1 and 3.2 imply that if the given design is more 
efficient than the probability sampling with 
replacement (with the same selection 
probabilities) then the expectation over the 
design distribution of the Jackknife Estimator 
does not underestimate the correct variance of 
the estimator, which is the second desirable 
property of the Variance Estimator that was 
mentioned in the introduction. 
    Return now to calibrated estimators and 
consider them as they were introduced in Deville 
and  Särndal (1992). 
 
Definition  An estimate of a population total yt , 

);,,(ˆ , Siwxygt iiiCyC ∈= , is calibrated in 

the sense of Deville and Särndal (1992) with 
respect to x  and a given distance function ρ  if  

ii
Si

iiiCyC ydSiwxygt ∑=∈=
∈

);,,(ˆ , ,  

where  
== ),...,( 1 nddd   ),(argmin

:
wv

v
ρ

xtkxkv
Sk

=∑

∈

  

and  ),...,( 1 nww=w .  
 



  

 

     In words, an estimator calibrated with respect 
to x  is a weighted estimator with the weights as 
similar to the original sample weights as 
possible, given that it estimates perfectly the 
known information, where “as similar as 
possible” is defined by some given distance 
function ρ . 
    Given this definition, the Jackknife variance 
estimator for calibrated in the sense of Deville 
and Särndal (1992) estimate has to be based on 
ebop’s each of which is a weighted estimator 
with the weights as similar to the partial sample 
weights as possible, given that it estimates 
perfectly the known information, i.e.  

=∈= );,,(ˆ ][][, biiiCbyC Siwxygt  

                                       iib
bSi

yd ][
][

∑
∈

,       (3.3) 

 where  
),(minarg ][

][
:

][ b
xtkxkv

bSk

b wvd
v

ρ
=∑

∈

=  and 

),( ][][ bib Siw ∈=w .  

    In particular, under this definition the 
Jackknife Variance Estimator, 
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is zero-calibrated automatically. 
 
Remark 3.1 Eq. 3.1 implies that if the given 
design is more efficient than the sampling with 
replacement (with the same selection 
probabilities) and if ebop’s 
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UC  which depends only on the finite population 

then )ˆ()]ˆ(ˆ[ ,,0 yCyCJackCalD tVtVE ≥−−  

asymptotically. Illustrate the last statement by 
the following . 
 
Example 3.1 Consider the Generalized 
Regression Estimator (GREG), i.e. calibrated in 
the sense of Deville and Särndal (1992) estimator 
with respect to x  and 
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estimator can be written as,  
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the weighted estimate of the census linear 
regression coefficient,  
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If the weighted estimates of the census linear 
regression coefficients on partial and complete 
samples respectively are approximately equal to 

UB , UWLSbWLS BBB ≅≅][  and if 
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with UxU BtC =  and Uiii Bxyz += .   
    Therefore in the case of GREG, under mild 
assumptions the suggested zero-calibrated 
Jackknife variance estimator does not 
underestimate the correct variance. 
 
Remark 3.2 Note that well-known Deville and 
Särndal (1992) variance estimator based on the 
residuals is also zero-calibrated. 
 
Remark 3.3 Following Woodruff (1971) one 
can easily generalize (at least asymptotically) the 
results of this and next sections to  estimates of 
any finite population parameter that can be 
written as a function of finite population totals.  
 
4. Zero-calibrated  Balance Repeated 
Replication (BRR) Variance Estimators   
 
    In this section we assume that our sampling 
scheme is a 2-step sample where the first step is 
a Stratified Sample of two Primary Sampling 
Units (PSU). Let  
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where the first sub-index denotes stratum and  



  

 

1hS  and 2hS  denote two PSU’s selected from 

stratum h . Let A  be a multiple of 4  greater 
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and define the estimate based on α ’s half 

sample by );,,(ˆ )()( αα Siwxygt iiiy ∈= . 

Then the BRR estimator of  the variance of  yt̂   

can be defined as,  
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(see also Wolter 1985 for alternative definitions 
of BRR variance estimators). 
    By analogy with the Jackknife, the BRR 
variance estimator of an estimator calibrated in 
the sense of Deville and Särndal (1992) is,    
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    Obviously the last estimator is zero-calibrated. 
On the other hand, since the BRR variance 
estimator tends to estimate the variance as if the 
sample were selected with replacement (see 
Wolter  (1985) pp. 123-124) it, like the 

Jackknife, does not underestimate the correct 
variance.   
 
5. Calibrated Estimators with respect to 
Sampling Designs   
 
    Some estimators are calibrated under 
particular designs. For example, under simple 
random sampling without replacement, yt ,π̂  is 

calibrated with respect to a constant, Cx = , 

=∑=
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The same is correct for the stratified sampling 
with proportional allocation, NnNhi /=π .  
Under many 2-phase designs, see Särndal, 
Swensson and Wretman (1992), section 9.3, 
weighted estimates of finite population totals are 
also self calibrated. One such design is the 
National Compensation Survey (NCS).  The 
specifics of this survey is described in details in  
Guciardo  et al. (2004). Here we consider a part 
of NCS, the “Remaining 99 primary sampling 
strata”.  For this part, after some simplifications, 
the sampling scheme can be defined as follows. 
    Data is collected by a 2-step procedure.  
    Step 1. The population (the “Remaining 99 
primary sampling strata”) is divided into PSU’s 
grouped into area strata;  one PSU is selected 
from each stratum with a probability 
proportional to the employment in the PSU.  
     Step 2. The selected sample, PSUS , is 
regrouped into industrial strata, each industrial 
stratum is divided into Secondary Sampling 
Units (SSU), defined by the establishments in the 
stratum; for each industrial stratum SSU’s are 
sampled by systematic probability sampling 
proportionally to the employment level in SSU ×  
the inverse of probability of selection of PSU 
containing the establishment.  

   Denote by 
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the sample weight, where  PSU
iπ  denotes  the 

selection probability of the PSU containing the 
i ’th SSU and )|Pr( PSUSSi ∈  denotes the 

selection  probability of i ’th SSU from PSUS . 

Note that iw  depends on the sample selected on 
the first step and therefore it is not equal to the 
inverse selection probability, 
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On the other hand, one can easily check that  
∑=
∈ Si

iiyw ywt ,ˆ  is a design unbiased estimate 

of yt .   Moreover, in Wang et al. (2004) it is 

shown that for this sampling scheme 

x
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, where ix  denotes the 

employment level in i ’s SSU.   
    For this sampling scheme ywt ,ˆ  can be easily 

written in a form of a calibrated in the sense of 
Deville and Särndal (1992) estimator;  indeed if 
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),...,( 1 nww  then, for any sample (under this 
design)  and any distance function ρ  (i.e. 

0),( ≥baρ  and 0),( =baρ  if and only if 

ba = ), ii wd =   automatically for all i . 
    Therefore for calibrated estimators with 
respect to a given design we suggest choosing a 
simple distance ρ , for example the uniform or 
the euclidean distance, and estimating the 
variance of the estimator as if it is calibrated 
estimator in the sense of Deville and Särndal 
(1992).  Such an estimator does not 
underestimate the variance if the conditions of 
Remark 3.1 hold.  
 
Example 5.1 For simplicity let a distance 
function be, 
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where WLSB , UB , UC  and iz  are defined in 

Example 3.1. Thus ywt ,ˆ  satisfies the conditions 

of Remark 3.1 if: (a) the variance over given 
design distribution is not greater than the 
variance under with replacement sampling 
design; (b) the weighted estimates on partial and  
complete samples of the census linear regression 
coefficient are approximately equal to UB ; (c)  

0))(( 1 ≅−−∑
−

∈
Siiii
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satisfied, for example, when the sample 
residuals, Sii Bxy − , do not correlate with the 

deviations of sample weights iw  over the 
inverse selection probabilities. 
 
Remark 5.1 Sometimes, for calibrated 
estimators with respect to a given design, it can 
be easier and more effective, instead of using the 
distance function, to calibrate the estimate for 
each partial sample, for example, on the basis of 
sampling design information. Note that in the 
latter case it could be difficult to check the 
conditions of Remark 3.1 and therefore one can 
not guarantee that the estimator will not 
underestimate the correct variance.    

 
6. Monte-Carlo simulation study   
 
    In order to illustrate the performance of zero-
calibrated Jackknife variance estimators  
discussed in Section 3 we designed a simulation 
study using the sampling scheme described in 
Section 5. More complicated studies based on 
real NCS data are presented in Guciardo et al. 
(2004). The study was carried out as follows.  
    All pseudo random variables below are 
generated independently of each other. 
    Steps to generate the finite population:  
    (1) let 30=I  be the number of areas and 

6=J  be the number of industries; 
    (2) for each area i generate the number of 
PSU’s in the area, iL , from U[2,6], where 
U[a,b] denotes the Uniform distribution on {a, 
a+1,…,b};  



  

 

    (3) generate the number of establishments in 
each PSU il  and industry j , jilK , from 

U[5,30]; 
    (4) generate the “employment level” for each 
establishment, ijlkx , ,,...,1 Ii =  ,,...,1 JJ =   

,,...,1 iLl =  ,,...,1 jilKk =  from the Gamma 

distribution with shape parameter 10=a  and 
scale parameter 2.0=b , so that the mean is 

50/ =ba  and the variance is 250/ 2 =ba ; 
    (4) generate an auxiliary variable, ijlkz , 

,,...,1 Ii =  ,,...,1 JJ =   ,,...,1 iLl =  

,,...,1 jilKk =  from the Gamma distribution 

with shape parameter 10=a  and scale 
parameter 1=b , and define 4 target variables: 

ijlkijlk xy =)1( ,  

 ijlkijlk zy =)2( , 

 ijlkijlkijlk xzy +=)3( ,    

 2/13/2)4( ijlkijlkijlk xzy += . 

    After the population was obtained, 10,000 
samples, )10000(),...,1( SS , were drawn from 
the population independently. In each run, a 
sample of size 120=n  was generated using the 
sampling scheme described in Section 5: on the 
first step one PSU was selected from each area 
with a probability proportional to the 
employment in the PSU; on the second step the 
selected sample, PSUS , was regrouped into 6 
industrial strata (by j ), from each industrial 

stratum 20=jn  establishments were selected 

using systematic probability sampling 
proportionally to the employment level  in the 
establishment, ijlkx , multiplied by the inverse 

probability of selection of PSU containing the 

establishment, PSU
iπ .  

    For each sample )(aS , 10000,...,1=a , and 

each target variable )(qyijlk , 4,...,1=q , we 

calculate  
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)(aPSUS  is a set of establishments selected on  

the first step, kiijliilkiijl x1−= πα  and 
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..π  is the ratio of employment level 

in the l ’th PSU and the area stratum i  to 
employment level in the stratum i ; see Wang et 
al. (2004) for the details. In addition, for the first 
1,000 samples we calculate two Jackknife 
variance estimates for each  ),(ˆ , qat yw . Both 

estimates are based on partial samples defined by 
the areas, i.e. b ’th partial sample, )(][ aS b , 

IBb == ,...,1 ,  is equal to the initial sample, 
)(aS , without units that belong to area b . The 

first (uncalibrated) Jackknife variance estimator 
is,  
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The second (zero-calibrated) Jackknife estimator 
is,     
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where ...ix  is  the employment level in the i ’th 
area stratum. 
    Finally, for each 4,...,1=q ,  we calculate the 
following empirical statistics:   
    (a) the square root of the empirical variance of 

),(ˆ , qat yw  over 10,000  simulated samples,  
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    (b) the square root of the empirical average of 
the uncalibrated Jackknife variance estimator 
over the first 1,000 samples, 
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    (c) the square root of the empirical average of 
the zero-calibrated Jackknife variance estimator 
over the first 1,000 simulated samples, 
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 The values of these statistics (with the standard 
errors for the last two in the brackets) are shown 
in Table 1. 
    The conclusions from this limited simulation 
study are as follows: 
    - obviously for the estimate of population total 
of the calibration variable, the empirical variance 
and the empirical mean of the zero-calibrated 
variance estimator are equal to 0, whereas the 
estimator that ignores the calibration produces 
huge values for the variance estimate; 

    - the second column illustrate the other 
extreme situation, when the target variable is 
independent of the calibration variable. We 
expected insignificant or slightly significant  
overestimation for the zero-calibrated  estimator. 
On the contrary, in our study the uncalibrated 
estimator produces small but statistically 
significant overestimation. One possible reason 
for this is that the uncalibrated estimator tends to 
estimate the variance as if the design is with 
replacement, when zero-calibrated one accounts 
partly for the sampling structure by calibrating 
its ebop’s; 
    - the last two columns, where the target 
variables are functions of the calibration variable 
and the “noise”, show that the zero-calibrated 
estimator gives correct estimate of the variance 
when the estimator that ignores the calibration 
hugely overestimates the correct variance. 
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(Standard Error) 

 
7154   
(73) 
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(22) 

 
10245 
(75) 
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(13) 
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(Standard Error) 
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