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1. Introduction

We consider variance estimation in the case of
a calibrated estimator of a finite population total
of a variable of interest y (the results can be

generalized to more complicated finite
population parameters, see Remark 3.3). An
estimator is calibrated with respect to a
particular variable X when the estimator is such
as to yield the actual population total of the Xx’s
when X is taken as the variable of interest (that
is, when it is substituted for ¥ in the estimation

formula), whatever the sample. In this situation,
we say a variance estimator is zero-calibrated if,
for y = Xx, it takes the value 0. Zero-calibration

is a desirable property for calibrated estimators:
actually if it is known that an estimate being
applied to a particular variable has 0 variance
then we would like the variance estimate to be
equal to 0 too, since otherwise we may suspect
overestimating the variance. Another, maybe
more important, desirable property for any
variance estimator is that it does not
underestimate  the  variance, at  least
asymptotically. In this paper we show that for
replication-type variance estimators under very
general conditions these two desirable properties
can be achieved by calibrating the estimate on
each partial sample. As an illustration we
consider variance estimation of a finite
population total estimate under a particular 2-
phase sampling scheme.

2. Definition and an example of Zero-
calibrated Estimator

Consider a population (¥;,X;;iJU) and a
sample (¥;,X;;i0S). Let our goal be to

def
estimate a finite population total, # y = > Vi

Let X; be an auxiliary variable (the results of
this paper can be easily generalized to vector
valued x’s) and W; be a sample weight; the

latter is not necessarily equal to the inverse
selection probability; see, for example, Section 5.

Definition
@) An estimate of t o
fy =gy, x;,w;3i0S), is calibrated with
respect to X if
) def
Iy = g(xi’xi’wi;iDS) =iy = le' )
U
(ii) a variance estimator (of calibrated with

respect to X  estimator fy ), I}(fy) =
h[g(y;,x;, w;;108)], is zero-calibrated if

V(i) = hlg(x;,x;,w;3i08)]=0.
To illustrate this definition consider the
following simple example. Let { Ty = > i
i0s 7t

be the Horvitz-Thompson’s Estimator of a
finite population total under probability sample

of fixed size n proportional to size variable X;,

= X . P =
; =—. Obviously f;; =1, and therefore
x

{ my is calibrated with respect to x. Two

classical variance estimators of fn’ y are the
Howvitz-Thompson’s variance estimator,
Vig-r(y) =
(70 = 17) ic 1
y 3y AR

KOs 108 Tty o 11
and the Yates-Grundy’s variance estimator,



Vy-G () =

2
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One can easily see that the Horvitz-Thompson’s
variance estimator is not zero-calibrated since

T — 70,77 ) X1 X
> —( kL "k l)—k—l;to; to check
k0s 108 Tt Tt 71
this, consider a sample of 2 wunits from
population of 3 units with x; values 1,2 and 2.

On the other hand the Yates-Grundy’s variance

. . . . Xp Xk
estimator is zero-calibrated since — ——— =
no T

forall [ and k.

3. Zero-calibrated
Estimator

Jackknife Variance

As above write our estimator as,
1y =g(y;,x;,w;;i108), where g is a
known function for a fixed population, for

example if ¢ y is the ratio estimator then

2V
P ils  — i0s )
y T tx _g(yiaxial ) and tx is
Zx,-
ills

treated as a constant. Consider a partition of the
complete sample into B <n disjoint

subsamples, S =8; U...00Sp, and let b ’th
partial sample be equal to the initial sample
without b ’th subsample, Spp) =S —{Sp}.
Define an estimate based on b ’'th partial sample
(ebop) by fyp =&V X Wi LS -
Consider B ebop’s. Then the Jackknife

estimator of the variance of fy is defined by,

I}Jack(fy) =hlg¥;,X;,w;;i1S)]

B-18 . .
=g & L)

(One can find alternative definitions of Jackknife
variance estimators in Wolter 1985.)

The Jackknife estimator satisfies the following
property. For the Horvitz-Thompson’s Estimator,

{ 7,y = 2gYi/TT; , under a probability sample

without replacement ,

Ep [I}Jack (fr[,y )=
EplVppswr (Emy)], (3.1)

where E ) denotes the expectation with respect
to the design distribution and

Vepswr(tn,y) =
1 ny; 1 ny;.n
— 5 -y
n(n=l)0s 74 nios T
is a design unbiased variance estimate of { y as

if the sample would be with replacement, see
Wolter (1985), p.170. One may show that

Vepswr () = EplVppsir (i )] =
1
n-1
and therefore E DU}PPSWR ( 7,)] is close to

VpGry) ~Vepswr(in,y)). (32

Vepswr (fﬂ,y) if the sample size is big. Eq.

3.1 and 3.2 imply that if the given design is more
efficient than the probability sampling with
replacement  (with the same  selection
probabilities) then the expectation over the
design distribution of the Jackknife Estimator
does not underestimate the correct variance of
the estimator, which is the second desirable
property of the Variance Estimator that was
mentioned in the introduction.

Return now to calibrated estimators and
consider them as they were introduced in Deville
and Sirndal (1992).

Definition An estimate of a population total # L
fC,y =gc (i, x;,w;3i1S), is calibrated in

the sense of Deville and Sérndal (1992) with
respect to X and a given distance function QO if

fC,y =gcp,x;,wiidS)= Y d;y;,
ias

where

d:(dl,-..,dn): argmin p(V,W)

VY VX =ty
KOS

and W=(Wp,...,w,).



In words, an estimator calibrated with respect
to X is a weighted estimator with the weights as
similar to the original sample weights as
possible, given that it estimates perfectly the
known information, where “as similar as
possible” is defined by some given distance

function 0.

Given this definition, the Jackknife variance
estimator for calibrated in the sense of Deville
and Sérndal (1992) estimate has to be based on
ebop’s each of which is a weighted estimator
with the weights as similar to the partial sample
weights as possible, given that it estimates
perfectly the known information, i.e.

te,yip] = &c (Vi> X, wisi OSppy) =

BN
where
dip) = arg min P(V,W[p)) and
VioY VipXk =ty
kUS[p)

W[b] = (Wl-,i DS[b]) .
In particular, under this definition the
Jackknife Variance Estimator,
Vo-Cal-Jack (tC,y )=
B-138 A
TEI (e yip) ~te,y) s

is zero-calibrated automatically.

Remark 3.1 Eq. 3.1 implies that if the given
design is more efficient than the sampling with
replacement  (with the same selection
probabilities) and if ebop’s

gc Wi, x;,wy;il S[b]) can be approximated
z
as Cy+ X Zk with  some
kOIS Tk
zyp = f(Vk,Xp,Wr) and some constant
Cyy which depends only on the finite population

then  Ep[Vo-Cal-Jack (e )12V (ic,y)

asymptotically. Illustrate the last statement by
the following .

Example 3.1 Consider the Generalized
Regression Estimator (GREG), i.e. calibrated in
the sense of Deville and Sarndal (1992) estimator
with respect to b and

pv,wp) = Y (v —w)?/w;.  This
iUS[p]

estimator can be written as,
e,y = 2 Wiy Yt = X wix;)Byrs .,
ias ias
— 211 .
where Byyg =[ 2w;x/] = 2wix;y; is
ias ias
the weighted estimate of the census linear
regression coefficient,

— 24-1
By =[ 2xi] " Zxy;.
i0ou i0u
According to Eq. 3.3,
te,yp] =
X oWy ¥t = 2 wix)Bys o
iUS[p] iUS[p] (5]

If the weighted estimates of the census linear
regression coefficients on partial and complete
samples respectively are approximately equal to

BU, BWLS[b] DBWLS DBU and if

Wi

~ z
icyp) BCu + k%[b] n—’;

= ﬂi_l,then

with CU = thU and zZ; = Vi +xiBU'

Therefore in the case of GREG, under mild
assumptions the suggested zero-calibrated
Jackknife  variance estimator does not
underestimate the correct variance.

Remark 3.2 Note that well-known Deville and
Sérndal (1992) variance estimator based on the
residuals is also zero-calibrated.

Remark 3.3 Following Woodruff (1971) one
can easily generalize (at least asymptotically) the
results of this and next sections to estimates of
any finite population parameter that can be
written as a function of finite population totals.

4. Zero-calibrated Balance Repeated
Replication (BRR) Variance Estimators

In this section we assume that our sampling
scheme is a 2-step sample where the first step is
a Stratified Sample of two Primary Sampling
Units (PSU). Let

S=(S110812) 0.0 m USy1)

where the first sub-index denotes stratum and



Sy and Sjo denote two PSU’s selected from

stratum /. Let A be a multiple of 4 greater

than H+1, ¢\7 h=1,.,H; a=1..4
(@)

be an orthogonal array, i.e. ¢ A takes values -1

A
and 1, Y, C}(la)=0 for any h and
a=1

A
> C}(IG)C}(I?):O for any h#h'. For
a=1

a =1,...,A define a set of A half samples as,
5@ -

U Sy U U S
| 2
h;(,(l") -1 h:c}(la) -1

and define the estimate based on @ ’s half
sample by f)(,a) :g(yl-,xi,wl-;iDS(a)).
Then the BRR estimator of the variance of 7 y

can be defined as,

> N _1 A @) _2 2

VBRR(ty) _z Z (ty _ty) )
j=1

(see also Wolter 1985 for alternative definitions
of BRR variance estimators).

By analogy with the Jackknife, the BRR
variance estimator of an estimator calibrated in
the sense of Deville and Séarndal (1992) is,

Vo-cal-BRR (ty) =

14 32
zai_l (Cal-BRR,y ~1y)"

where f((,’gl)—BRR,y = ¥ dl-(a)yl-,
i0s (@)
d@ = arg min ,O(v,w(a)) and
viY VipXk =ty
ks (@)

w(@ =(w,,i0s@).

Obviously the last estimator is zero-calibrated.
On the other hand, since the BRR variance
estimator tends to estimate the variance as if the

sample were selected with replacement (see
Wolter  (1985) pp. 123-124) it, like the

Jackknife, does not underestimate the correct
variance.

5. Calibrated Estimators with respect to
Sampling Designs

Some estimators are calibrated under
particular designs. For example, under simple

random sampling without replacement, { my is

calibrated with respect to a constant, x =C,

frc=Y C/m =Y = NxC.
s ins (n/N)
The same is correct for the stratified sampling

with proportional allocation, 77; =nNy /N .

Under many 2-phase designs, see Sérndal,
Swensson and Wretman (1992), section 9.3,
weighted estimates of finite population totals are
also self calibrated. One such design is the
National Compensation Survey (NCS). The
specifics of this survey is described in details in
Guciardo et al. (2004). Here we consider a part
of NCS, the “Remaining 99 primary sampling
strata”. For this part, after some simplifications,
the sampling scheme can be defined as follows.

Data is collected by a 2-step procedure.

Step 1. The population (the ‘“Remaining 99
primary sampling strata”) is divided into PSU’s
grouped into area strata; one PSU is selected
from each stratum with a probability
proportional to the employment in the PSU.

Step 2. The selected sample, Spgrr, is

regrouped into industrial strata, each industrial
stratum is divided into Secondary Sampling
Units (SSU), defined by the establishments in the
stratum; for each industrial stratum SSU’s are
sampled by systematic probability sampling
proportionally to the employment level in SSU X
the inverse of probability of selection of PSU
containing the establishment.

1
Y xPr(i0 S| Spsyy)

Denote by w; =

the sample weight, where I'QP sU denotes the
selection probability of the PSU containing the

i’th SSU and Pr(i0S

Spsyy) denotes the
selection probability of Z *th SSU from Spgy; -

Note that W; depends on the sample selected on

the first step and therefore it is not equal to the
inverse selection probability,



1 1
= :
1Y x Ep[Pr(i0S | Spgy))]

On the other hand, one can easily check that

~

Lw,y

= > w;y; is a design unbiased estimate
ias
of ty. Moreover, in Wang et al. (2004) it is
shown that for this sampling scheme
> Wix; =t,, where X; denotes the
ias
employment level in I ’s SSU.
For this sampling scheme tAW’ y can be easily

written in a form of a calibrated in the sense of
Deville and Sérndal (1992) estimator; indeed if

fy = > d;y;, such  that d=
ias
argmin  P(V,w) and w =
ViYL VEXj =ty
k0OS

(W,...,w;,) then, for any sample (under this
design) and any distance function 0O (i.e.
pP(a,b)=0 and p(a,b) =0 if and only if
a=b), d; =w; automatically forall i.
Therefore for calibrated estimators with

respect to a given design we suggest choosing a
simple distance O, for example the uniform or

the euclidean distance, and estimating the
variance of the estimator as if it is calibrated
estimator in the sense of Deville and Séirndal
(1992). Such an estimator does not
underestimate the variance if the conditions of
Remark 3.1 hold.

Example 5.1 For simplicity let a distance
function be,

p(V,W[J]) = > (Vi - Wi)2 /Wi , and let
il:lS[j]
us check when 7. W,y satisfies the conditions of
Remark 3.1.
L,y = 2wy H(ty = 2 wix;)Byrs =
as as

-1
txBwrs + %S 7 (vi =X Byrs) +
1

> (w; =1 (v = xiByrs) O
ias

-1
Cy+t+ 2 mz+
i0s

-1
X (W =1 )y —x;iBys).
ias
where By, By, Cpy and z; are defined in

Example 3.1. Thus { W,y satisfies the conditions

of Remark 3.1 if: (a) the variance over given
design distribution is not greater than the
variance under with replacement sampling
design; (b) the weighted estimates on partial and
complete samples of the census linear regression

coefficient are approximately equal to BU; (©)

> (w— 7'[1-_1)()/1- —x;Bg) U0. The latter is
ias
satisfied, for example, when the sample
residuals, y; _xiB <, do not correlate with the

deviations of sample weights W; over the

inverse selection probabilities.

Remark 5.1 Sometimes, for calibrated
estimators with respect to a given design, it can
be easier and more effective, instead of using the
distance function, to calibrate the estimate for
each partial sample, for example, on the basis of
sampling design information. Note that in the
latter case it could be difficult to check the
conditions of Remark 3.1 and therefore one can
not guarantee that the estimator will not
underestimate the correct variance.

6. Monte-Carlo simulation study

In order to illustrate the performance of zero-
calibrated  Jackknife  variance  estimators
discussed in Section 3 we designed a simulation
study using the sampling scheme described in
Section 5. More complicated studies based on
real NCS data are presented in Guciardo et al.
(2004). The study was carried out as follows.

All pseudo random variables below are
generated independently of each other.

Steps to generate the finite population:

(1) let 1 =30 be the number of areas and
J = 6 be the number of industries;

(2) for each area igenerate the number of

PSU’s in the area, L;, from U[2,6], where

Ula,b] denotes the Uniform distribution on {a,
atl,...,.b};



(3) generate the number of establishments in
each PSU /; and industry j, Kli j» from

U[5,30];
(4) generate the “employment level” for each

establishment, X;yy, i=1....1, J=1,..,J,
[=1,..,L;, k :1""’K1[j’ from the Gamma
distribution with shape parameter @ =10 and
scale parameter b =0.2, so that the mean is

a/b =50 and the variance is a/b> =250;

(4) generate an auxiliary variable, Zijlk »
i=lL..I, J=1..J, [=1,..,L;,
k=1..,K ;j» from the Gamma distribution

with shape parameter @ =10 and scale
parameter b =1, and define 4 target variables:

Vijik D) = x5,
Yijik (2) =z

Vijik ) = Zijie * Xijtge »

—_2/3 1/2
yijlk(4)—zl~ﬂk +xijlk'

After the population was obtained, 10,000
samples, S(1),...,5(10000), were drawn from
the population independently. In each run, a
sample of size n =120 was generated using the
sampling scheme described in Section 5: on the
first step one PSU was selected from each area
with a probability proportional to the
employment in the PSU; on the second step the

selected sample, S PSU » was regrouped into 6
industrial strata (by j), from each industrial
stratum 71 ; = 20 establishments were selected
using systematic probability  sampling
proportionally to the employment level in the
establishment, Xjjji, multiplied by the inverse
probability of selection of PSU containing the
establishment, 7'1}P SU.

For each sample S(a), a =1,...,10000, and
each target variable y;iji(q), ¢ =1,....4, we
calculate
g w,y (a,9) =

> Wik (@yi(q) .
(i,j,1,6)0S(a)

where
-1

_ Jijlk
wl'jlk (a) - >
2 Ayjl,.1
(r,t):1,0S psy (a)

Spsy (a) is a set of establishments selected on

|
the first step, aijll’k —lTl.ll_ Xijl ik and

Xil.
> x
u

in the /’th PSU and the area stratum i to

employment level in the stratum I ; see Wang et
al. (2004) for the details. In addition, for the first
1,000 samples we calculate two Jackknife

is the ratio of employment level
iu.

variance estimates for each tAW’ y(a,q) . Both
estimates are based on partial samples defined by
the areas, i.e. b ’th partial sample, S[b] (a),
b=1,..,B=1, is equal to the initial sample,
S(a) , without units that belong to area b . The

first (uncalibrated) Jackknife variance estimator
is,

Vjack (b, (a,9)) =
B-18B

A 2 2
o t s -t 5 )
B 13%1 ( w, y[b] (a,9) w,y (a,9))

with fw,y[b] (a,q) =

2 Witk (@) Vi () -
(4,7,1,k)0S[p1(a)

The second (zero-calibrated) Jackknife estimator
is,

Vo-Cai - Jack (s, y (@) =
B-138

, ) 2
- t 9 -t 9 ’
2 bZ::l (tc,yp(a.q) =ty y(a,q))

with fC,y[b] (a,q) =

2 Viitkp] (@ Yijik (@)
(6,/,1,k)0S[ b (@)

and Vijlk[b] (a) =



-1
2.

T " Qijik
Z Xi... z arjlrt
i#b (r,H0S psy[p) (@)

where X; is the employment level in the 7 ’th
area stratum.
Finally, for each ¢ =1,...,4, we calculate the

following empirical statistics:
(a) the square root of the empirical variance of

tAW’ y(a,q) over 10,000 simulated samples,

Vemp (@) =

1 10000 -,
PPN Z [tw,y(aaq)_t(q)] >

10000 4=
_ 1 10000
h t = t a,q);
where #(q) 10000 0221 w,y(@.9)

(b) the square root of the empirical average of
the uncalibrated Jackknife variance estimator

over the first 1,000 samples,
\/Eemp W jack (@)} =

1 10001} R
Py Ly, y(a,q)) ;
1000 02::1 Jack( w,y( 9))

(c) the square root of the empirical average of
the zero-calibrated Jackknife variance estimator
over the first 1,000 simulated samples,

\/Eemp <U}O—Cal —Jack (@)} =

~

1 1OOOI}
—_— —Co]— t a, .
1000 az=:1 0-Cal—Jack( w,y( q9))
The values of these statistics (with the standard
errors for the last two in the brackets) are shown
in Table 1.

The conclusions from this limited simulation
study are as follows:

- obviously for the estimate of population total
of the calibration variable, the empirical variance
and the empirical mean of the zero-calibrated
variance estimator are equal to 0, whereas the
estimator that ignores the calibration produces
huge values for the variance estimate;

- the second column illustrate the other
extreme situation, when the target variable is
independent of the calibration variable. We
expected insignificant or slightly significant
overestimation for the zero-calibrated estimator.
On the contrary, in our study the uncalibrated
estimator produces small but statistically
significant overestimation. One possible reason
for this is that the uncalibrated estimator tends to
estimate the variance as if the design is with
replacement, when zero-calibrated one accounts
partly for the sampling structure by calibrating
its ebop’s;

- the last two columns, where the target
variables are functions of the calibration variable
and the “noise”, show that the zero-calibrated
estimator gives correct estimate of the variance
when the estimator that ignores the calibration
hugely overestimates the correct variance.
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q=1 q=2 q=3 q=4
Vemp (q) 0 5416 5416 3231
\/ E ip V jack (@)} 7154 5687 10245 3711
(Standard Error) (73) (22) (75) (13)
\/ E omp Vo-car-sack (0} 0 5440 5440 3264
(Standard Error) (0) (33) (33) (19)




