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Abstract

In this paper we consider variance estimation for population totals and ratios in complex, cross-
stratified surveys in which the ultimate sampling weights are random variables, dependent on the first
phase of sampling. A new hybrid variance estimator, dependent on both model-based and design-
based ideas, is introduced. Theoretical and empirical justifications are given which demonstrate that
the proposed method handles well the difficult aspects of this sample design.
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1. Introduction

In this paper we consider variance estimation for population totals and ratios in complex,
cross-stratified surveys in which the ultimate sampling weights are random variables, de-
pendent on the first phase of sampling (cf.Ernst, 1989). Such designs are useful where, for
reasons of cost or logistics, it is expedient to sample primary sample units (PSUs) within
one dimension of the stratification (say, area strata) and secondary units within the second
dimension of the stratification (say industrial strata), the choice of secondary units being
limited to the PSUs already selected. This is the situation, for example, in the US National
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Compensation Survey (NCS) used by the US Bureau of Labor Statistics to estimate wage
levels for occupational groups. A description of this survey can be found “on the Web”
at www.bls.gov/ncs/home.htm; in the NCS, the PSUs are either Metropolitan Statistical
Areas (MSAs), groups of MSAs, or single non-metropolitan counties, the area strata are
collections of (1 or more) PSUs, and the secondary units are establishments selected within
industrial strata.

The particular survey design and estimation we shall describe can be thought of as two
stage sampling with complications, or, following the lead ofSärndal et al. (1992, Chapter 9),
as a variant of two-phase sampling; see, e.g.,Cochran (1977, Chapter 12), Kott and Stukel
(1997), Kim et al. (2000), andBinder et al. (2000). In its use of a stratification scheme for the
ultimate sample units which ignores the strata used to select PSUs, it is similar to the design
discussed inKott (1990). However, it has complications that cast doubt on the applicability
of currently available variance estimation methods; in particular, at both phases, it employs
nonmeasurable (cf.Särndal et al. (1992, Chapter 9)) stratified pps sampling, going beyond
the scope of the papers cited. We discuss this further in Section 6.

To fix ideas we borrow terminology from the NCS and employ the following notation:

i = index for areas (i = 1, . . . , I ),
j = index for industries (j = 1, . . . , J ),
� = index for PSUs within areai (� = 1, . . . , Li),
k = index for establishments within PSU (k=1, . . ., Kij� for PSU� in areai and industryj),
Eijk� = the employment level for establishmentk in PSU�, areai and industryj,
Yijk� = a variable of interest,
Nj = number of total establishments in industryj,
N = ∑

j Nj , the overall population size.
Of interest is estimating the overall population totalT =∑

j

∑
i

∑
�

∑
k Yijk� or the ratio

of two such population totals, as well as the corresponding quantities for each industry. The
goal in this paper is to provide proper variance estimates for their point estimators.

We now briefly describe the sample design. Letnj be the number of establishments
sampled in industryj, assumed to be known, andn = ∑

j nj , the total number of sampled
establishments. Note that this is different from situations where the desired sample size per
industrynj depends on the results of the first phase of sampling, as in, for example,Folsom
et al. (1987).

PSUs are selected with certainty when there is one PSU per area stratum, and, otherwise
are considered non-certainties. We assume only one PSU is selected from each area. Non-
certainty PSUs are selected by probability proportional to employment level, within the
stratum,Ei··� = ∑

jk Eijk�.
Let

�i� = employment level in the(i, �)th PSU

employment level in theith area
= Ei··�∑

u Ei··u
,

�i = index for the sampled PSU in areai,

�ijk�i = �−1
i�i

Eijk�i .

Then�i and�ijk�i are random variables. The�ijk�i are used as size measures for selecting
secondary units (establishments) within industrial stratumj.

http://www.bls.gov/ncs/home.htm
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When there are no certainty establishments, define

�ijk�i = nj�ijk�i∑
r,t �rj t�r

∈ (0,1), (1)

When there are certainty establishments, collect the establishments that have�ijk�i in (1)
�1, and call the collectionCj . LetnCj

be the subsample size assigned toCj proportional
to its size, andn∗

j = nj − nCj
. Define

�ijk�i =


1 for (i, k) ∈ Cj ,

n∗
j�ijk�i∑
Cj

�rj t�r
for (i, k) ∈ Cj .

(2)

If some of�ijk�i are still�1, repeat the standard procedure above until all of them are<1.
The sampling procedure is:

(1) use inclusion probabilities�i� to select one PSU (certainty or not) per area;
(2) for each industry, conditional on the sampled PSUs sample establishments using sys-

tematicppssampling with inclusion probabilities�ijk�i .

Here we assume that at phase 1, sampling of a PSU within each area is independent of
sampling in other areas and that phase 2 (given phase 1) sampling of establishments within
each industry is independent of sampling in other industries, at least approximately at both
phases.

Let

wijk� =
{
(�ijk�i�i�)

−1 if (i, j, k, �) is in sample,
0 otherwise.

(3)

Once we have obtained the sampled data, we use

T̂ =
∑
j

∑
i

∑
�

∑
k

wijk�Yijk� =
∑
j

T̂j (4)

to estimateT, whereT̂j = ∑
i

∑
k wijk�i Yijk�i . It can be shown that̂T is unbiased forT. A

proof of this is given below. The idea follows the work ofErnst (1989).
Note thatwijk� is a random variable. It suffices to show thatE(wijk�)=1 for all i, j, k, �.

This is a key desirable property for random weighted designs. We have

E(wijk�) = E{E(wijk�|�1, . . . , �I in sample)}
=E{(�ijk�i�i�)

−1P [(i, j, k, �) sampled|�i = �,

�1, . . . , �I in sample] · P(�i = �|�1, . . . , �I in sample)}
=E{(�ijk�i�i�)

−1�ijk�i�i�} = 1,

completing the proof.
One reason behind this sampling scheme is that in the special case whenYijk� = Eijk�,

the design variable, we have the desirable property thatT̂ = T a.s. To show this, we
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observe that

T̂j =
 ∑

(i,k)∈Cj

+
∑

(i,k)∈Cj

wijk�iEijk�i

=
∑

(i,k)∈Cj

1

�i�i

Eijk�i +
∑

(i,k)∈Cj

�i�i

∑
(r,t)∈Cj

�rj t�r
n∗
jEijk�i

1

�i�i

Eijk�i

=
∑

(i,k)∈Cj

1

�i�i

Eijk�i +
∑

(r,t)∈Cj

�rj t�r

=
∑
i

1

�i�i

Eij ·�i

a.s. since
∑

(r,t)∈Cj
�rj t�r=

∑
(r,t)∈Cj

Erjt�r /�r�r a.s.Therefore,̂T=∑
j T̂j=

∑
iEi··�i /�i�i=∑

i

∑
uEi··u=T a.s., as was to be shown. However, in this case it is seen thatT̂j is generally

not equal toTj .
Now the main question is how to estimate the variance ofT̂ . Among the difficulties

associated with this particular sampling scheme, there is only one PSU per area. There
are also various correlations among the terms inT̂ . We are also interested in estimating
the variance of industrywide estimatorŝTj . Existing methods for two-phase sampling do
not appear to be readily applicable to our problem (see Section 6). One difficulty, the fact
of one PSU per area stratum is frequently handled in practice by an ad hoc collapsed
stratum approach. We propose instead a model-based approach for the first-phase variance
component, and use a design-based approach for estimating the second-phase variance
component, leading to an overall hybrid estimator.

The rest of the paper is organized as follows. Some existing methods for variance esti-
mation are reviewed briefly in Section 2. In Section 3, a new variance estimator is proposed
for T̂ defined in (4) together with its analytic justifications. Some results of a simulation
study are given in Section 4. The methodology is extended to the problem of estimating
population ratios in Section 5 with additional simulation results. Some concluding remarks
are given in Section 6.

2. Some existing methods

We here discuss two replication methods of variance estimation. It is not intended to
suggest that these are particularly appropriate to the sample design in question. Indeed work
of Kott and Stukel (1997)would tend to suggest they are not. Nonetheless, because of their
relative ease of application they seem to us to be worthy of consideration and comparison,
and at this point in time, as we note below, no clearly better replication methods appear to
be available.
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2.1. Balanced half-sample variance estimation

One possible approach is to apply a balanced half-sample (BHS) variance estimation
procedure proposed byMcCarthy (1969)to this problem; see alsoValliant et al. (2000,
Section 10.2). We describe the BHS methodology here briefly. It should be noted that the
BHS and jackknife variance estimators require more than one PSU per (area) stratum. The
BHS demands two PSUs per stratum, and to implement it, we conjoined “adjacent” pairs of
strata into single “variance strata”, adjacent being judged by supposed (and in the simulation,
actual) likeness in the relationship ofY toE in the areas. For the jackknife we used a “delete
one stratum at a time” approach. These are perhaps over simple ad hoc procedures, but
with some support from “tradition” behind them (compareWolter (1985, Section 2.5)), and
would be readily implemented, if it could be shown, for particular data, they do not give
estimates that are too unreasonable.

For simplicity, letI be even. Some adjustments will be required whenI is odd. We first
divide theI sampled PSUs intoH = [I/2] groups. LetQ be the number of minimal half
samples that are in full orthogonal balance. ThenH + 1�Q�H + 4 (Valliant et al. (2000,
p. 331)). A minimal set of half-samples in full orthogonal balance can be obtained by
properly using a Hadamard matrix. For example, in our simulation study reported later,
H = 15,Q= 16, and columns 2–16 of the 16× 16 Hadamard matrix are used to construct
such a set of half-samples, where each row of the submatrix corresponds to a unique half
sample.

For theqth half-sample, we define estimatorT̂ (q) for estimating the population totalTas
follows:

T̂ (q) = 2
∑
j

∑
i

∑
l

∑
k

w
(q)
ijk�Yijk�

= 2
∑
j

∑
i

∑
k

w
(q)
ijk�i

Yijk�i

=
∑
j

T̂
(q)
j ,

wherew(q) are the original weights given in (3) for the establishments in theqth half-
sample and 0 otherwise, and̂T (q)

j = 2
∑

i

∑
kw

(q)
ijk�i

Yijk�i . The new weights 2w(q) are cho-
sen intuitively and conveniently to reflect the half-sample size relative to the full sam-
ple size inT̂ . Using alternative weights is possible. For example, replacing 2w

(q)
ijk�i

by

w
(q)
ijk�i

∑
m

∑
pwmjp�m/

∑
m

∑
pw

(q)
mjp�m

has been considered in our simulation study with
little improvement in the variance estimation.

The BHS variance estimator is then defined as

vBHS = 1 − f

Q

Q∑
q=1

(T̂ (q) − T̂ )2, (5)
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wheref = n/N and 1− f is an approximate finite population correction factor in the
half-sample sampling context. Using a more complicated correction factor is possible, but
it would lead to little numerical difference in our setting.

2.2. Jackknife variance estimation

A second approach is to use the jackknife methodology first introduced byQuenouille
(1949)andTukey (1958). Note that in selecting half-samples in the BHS procedure half of
the areas are chosen in each half-sample. A jackknife variance estimator can be constructed
similarly. Let T̂(i) be the deletei estimator ofT, i.e.,

T̂(i) = I

I − 1

∑
j

∑
m=i

∑
k

wmjk�mYmjk�m

andT̂Jack= ∑
i T̂(i)/I . Then the standard jackknife variance estimator is defined as

vJack= (1 − f )

(
1 − 1

I

) I∑
i=1

(T̂(i) − T̂Jack)
2. (6)

As will be seen later, we have examined the performance ofvBHS(T̂ ) andvJack(T̂ ) in our
simulation study. We have also attempted to use modified weights other than those used in
(5) and (6), but the performance does not appear to be much improved. One option for the
jackknife we tried, which was later also proposed by a referee, replacesI/(I − 1) in T̂(i)
by E/(E − Ei···), whereE = ∑

i Ei···.
Following the ideas used in (5) and (6), it is quite straightforward to define the BHS and

jackknife variance estimators for estimated industrywide totals. For thejth industry total
Tj , the variance of its point estimator̂Tj given in (4) may be estimated by dropping the
summation over the industries (j) in (5) and (6). The resultant BHS and jackknife variance
estimators are

vBHS,j = 1 − fj

Q

Q∑
q=1

(T̂
(q)
j − T̂j )

2 (7)

and

vJack,j = (
1 − fj

) (
1 − 1

I

) I∑
i=1

(T̂j (i) − T̂Jack,j )
2, (8)

where each subscriptj indicates estimation specifically for thejth industry andfj =nj/Nj

is used to approximate the finite population correction.
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3. A new variance estimator

We now propose a new hybrid method for the variance estimation problem that makes
use of both design-based and model-based strategies. First, we have

V = var(T̂ )

=E{var(T̂ | phase 1)} + var{E(T̂ | phase 1)}

=
∑
j

E{var(T̂j | phase 1)} +
∑
i

var

 Li∑
�=1

�i�Yi··�
�i�


=A + B, (9)

where�i� = 1 if �= �i and 0 otherwise. In the third equation above, the first term is due to
the zero correlation assumption of phase 2 sampling (given phase 1) across the industries,
while the second term uses the zero correlation assumption of phase 1 sampling across the
areas. Therefore, we have partitionedV into two variance components:A the second-phase
variance andB the first-phase variance.

Assume that the population listing of establishments can be regarded as approximately
random within each industry. Recall that the second-phase sampled units are obtained by
systematic pps sampling given the sampled PSUs from first phase of sampling. Then for
eachj, Aj = E{var(T̂j | phase 1)} may be estimated by several methods given inWolter
(1985), such as the Yates and Grundy-type estimator (described asv9 in Wolter (1985,
p. 287)), or an alternative (v10 in Wolter (1985, p. 287)) by treating the second-phase
sampling as if it were with replacement. Therefore, the first term in (9) is estimable. In this
work, we choose to use the alternative estimator (with a finite population correction term
1 − fj for eachj) since it is simple to implement and it appears to fit well our framework.
It tends to be conservative. In many applications including the NCS, thefj ’s are negligibly
small. The resulting estimator forA is

Â =
∑
j

(1 − fj )nj

nj − 1

∑
(i,k) in sample

(wijk�i Yijk�i − Ŷ ·j ··)2, (10)

whereŶ ·j ··= the sample mean ofwijk�i Yijk�i for eachj.
The remaining question is how to estimate the second termB in (9) which measures the

variation of the first-phase sampling. LetZi = Yi··�i /�i�i . There is only oneYi··�i for each
area, which makes it difficult to estimate var(Zi) using only the observed information from
the ith area. The standard Horvitz–Thompson based estimators have the same problem as
the replication estimators in this case. Furthermore, theZi is unobservable sinceYi··�i is
the triple sum overj, k, �, not just the sampled total.

To overcome this problem we propose a hybrid approach that makes use of a stipulated
model for the population which is embedded in a superpopulation.Assume that(Yijk�, Eijk�)

follow a working superpopulation model:

Yijk� = �ijk� + �ijk�
= gj (Eijk�) + �ijk�, (11a)
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where�ijk� = gj (Eijk�) are the mean functions in terms ofEijk�, �ijk� are independent
random errors with mean 0 and variance�2

ij . For simplicity, we assume that�2
ij = �2

j and
gj are polynomial functions, say quadratic:

gj (E) = �j0 + �j1E + �j2E
2. (11b)

The design variance ofW = ∑
i� �i�Yi··�/�i� in (9) is

B =
I∑

i=1

var

 Li∑
�=1

�i�Yi··�
�i�


=

I∑
i=1

Li∑
�=1

Y 2
i··�

�i�

−
I∑

i=1

Y 2
i···. (12)

With the setup of model (11), we can estimate both terms in (12). Here, we continue to use
a dot to denote the sum over a particular index as before. Then from (11) we have

Yi··· = �i··· + �i··· ≈ �i··· (13)

and

Y 2
i··� = �2

i··� + 2�i··��i··� + �2
i··� ,

so that

I∑
i=1

Li∑
�=1

Y 2
i··�

�i�

≈
I∑

i=1

Li∑
�=1

1

�i�

�2
i··� +

J∑
j=1

Kij��2
j

 . (14)

The approximations in (13) and (14) are due to the Central Limit Theorem which indicates
that

∑
jk� �ijk� and

∑
i��i··��i··�/�i� are small relative to their dominating terms, respec-

tively, asKij� and/orLi increase. Furthermore, in (14) we have used the approximation
�2
i··� ≈ ∑

jKij��2
j , the latter being the expected value of the former. This term is typically

smaller relative to the dominating term, also due to the CLT, but we keep this term to avoid
a negative bias in the resulting estimator.

Note that while the independence of errors�ijk� in (11) leads to approximations (13) and
(14), it requires only more relaxed covariance structure among the errors for the approxi-
mations to be still valid. Moreover, the assumption of constant error variance within each
industry is more for convenience than for necessity. These points are demonstrated in the
simulation study in Section 4.

NowB in (12) may be approximated by

B∗ =
I∑

i=1

Li∑
�=1

1

�i�

�2
i··� +

J∑
j=1

Kij��2
j

 −
I∑

i=1

�2
i···. (15)

The�i··�, �i··· and�2
j are generally unknown, but they can be estimated. Since the second-

phase inclusion probabilities depend on the outcome variable only throughE-variables
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which are in fact conditioned in the model, the second-phase design is ignored in getting a
model-based variance formula in (15). First we fit regression model (11) properly for eachj
by the least-squares method. Then we obtain the sums of the fitted values�̂i··� =∑

jk�̂ijk�,

�̂i··· = ∑
��̂i··� and variance estimateŝ�2

j . Hence, via (15),Bmay be estimated by

B̂ =
I∑

i=1

Li∑
�=1

1

�i�

�̂2
i··� +

J∑
j=1

Kij��̂2
j

 −
I∑

i=1

�̂2
i···. (16)

Under the correct model (11), this hybrid plug-in estimator is asymptotically unbiased
provided that bothn andN become large. Moreover, even if the fitted model (11) does not
provide much useful clue about the relationship betweenYandE, B̂ seems to continue to
do well, as is suggested by our simulation results. In addition,B̂ is always�0 since for
any constantsci··�,

∑Li

�=1c
2
i··�/�i� −c2

i···= var
{∑

��i� ci··�/�i�

}
�0. Finally, using (16) and

(10) we obtain a new estimator forV= var(T̂ ):

vnew = Â + B̂. (17)

The issue of having certainty PSUs and/or establishments is easily handled in this ap-
proach. If there is a certainty PSU in any areai, the variation contributed from this area to
the first-phase varianceB is zero. Hence, such areas should be omitted from the summation
over i in B, B̂ andB̂j in (12), (16) and (19) below. On the other hand, if there are certainty
establishments in any given industryj, naturally these establishments need to be excluded
in computing the second-phase variance estimateÂj in (19) and (10). Both terms in (17)
are generally important numerically. For example, as we will see in the next section, the
mean square root of “expected”̂B is about 30% of that of̂A in the first example.

The partition ofV =A+B is valid even though the second-phase units are not sampled
independently across the selected PSUs. Sincevnew is consistent forV in this case, it takes
into account naturally the possible correlations of the sampled data within and across the
industries. Ignoring such correlations may result in simpler but perhaps significantly biased
estimators. One such possibility is to use the following simple estimator forV:

ṽ =
J∑

j=1

vnew,j , (18)

wherevnew,j is the new variance estimator given in (19) below, which is defined in the same
fashion asvnew but for industrywide varianceVj= var(T̂j ). Some empirical evidence of the
performance of all these estimators is provided in the simulation experiments described in
Section 4.

We now discuss how to estimateVj . This can be readily done by using (10) and (16) for
each industryj. Specifically, define

vnew,j = Âj + B̂j , (19)
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where

Âj = (1 − fj )nj

nj − 1

∑
(i,k) in sample

(wijk�i Yijk�i − Ŷ ·j ··)2

and

B̂j =
I∑

i=1

Li∑
�=1

1

�i�

(̂�2
ij ·� + Kij��̂2

j ) −
I∑

i=1

�̂2
ij ··,

with �̂ij ·� and �̂2
ij ·· being the sums of the fitted valueŝ�ijk� over the indices with a dot,

respectively. In the simulation study, we have also examined the performance ofvnew,j .
Recall that the main purpose of this work is to find accurate variance estimators ofV

andVj . However, we are also interested in constructing confidence intervals. This can be
done conveniently by using the standardt-type confidence intervals once an estimator for
the variance of̂T is obtained. Empirical coverage probabilities of the confidence intervals
using several variance estimators,vBHS, vJack, vnew andṽ, have been investigated and are
reported in the next section.

4. A simulation study

In this section, we describe a simulation study to compare the performance of several
variance estimators discussed in the earlier sections. We start with the steps for generating
an artificial complex cross-stratified population in keeping with the set up in Section 1 but
with a smaller scale then what is in the NCS. All the pseudo random variables below are
generated independently of each other.
Steps to generate a finite population:

(1) Let I = 30,J = 6,R = 5;
(2) GenerateLi ∼ Unif [2,6] (end points inclusive),Kij� ∼ Unif [5,30];
(3) GenerateEijk� ∼ Gamma(10,0.2), wherea = 10 is the shape parameter andb = 0.2

is the scale parameter, so that the mean isa/b = 50 and the variance isa/b2 = 250;
(4) Generate�j ∼ N(15,0.82), �j ∼ N(0.05,0.012), �j ∼ N(0.05,0.012);
(5) Generate	r ∼ N(0,0.82) for r = 1, . . . , R, 
� ∼ N(0,1), �ijk� ∼ Gamma(5,0.2);
(6) Computeuijk� = cj�ijk� − 25, where(c1, c2, c3, c4, c5, c6) = (2,1.5,1,1, .5, .5),

�ijk� = E
1/2
ijk� uijk�

and

Yijk� = �j + �jEijk� + �jE
2
ijk� + E

1/2
ijk� (	[1+(i−1)R/I ] + 
�) + �ijk�,

with [1+ (i − 1)R/I ] being the largest integer not exceeding 1+ (i − 1)R/I to reflect
some correlations among neighboring areas. IfYijk� <5, defineYijk� = 5;

(7) Collect all pairs(Yijk�, Eijk�) to compose a finite population.
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Fig. 1. Scatter plot of the first population.

A population was generated using the steps above with the overall population mean
of 318.2. It reflects the possibility of various correlations ofY’s among industries, within
areas, among neighboring areas and within PSUs. The error terms do not have constant
variance and their correlations also exist among neighboring areas and PSUs. The resulting
population size isN = 10508 with subpopulation sizesN1 = 1636,N2 = 1724,N3 = 1887,
N4=1815,N5=1722,N6=1724.The population total isT=3 343 531 and the subpopulation
totals areT1 = 788 754,T2 = 746 859,T3 = 604 749,T4 = 618 425,T5 = 269 252 and
T6 = 315 493. The scatter plot of the population is given inFig. 1.

After the population was obtained, 1000 samples were drawn from the population inde-
pendently. In each run, a sample of sizen= 120 was generated using the sampling scheme
described in Section 1, with subsample sizenj = 20 for eachj (jth industry). For each
sampled data set, we computed several variance estimators for the estimated population
total T̂ : vBHS, vJack, vnew, v∗ andṽ, where

v∗ = (1 − f )n

n − 1

∑
(i,k,j) in sample

(wijk�i Yijk�i − T̂ )2

is included here for comparison also, andT̂ is the overall sample mean ofwijk�i Yijk�i . The
“true” variance inTable 1is the empirical variance of the 1000 realizedT̂ . Note that with
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Table 1
Comparisons of variance estimators in estimation of the total in the first population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 102 277 327 643 305 572 106 575 148 130 140 856
j = 1 83 050 149 858 140 716 82 446 56 706 N/A
j = 2 67 388 134 178 129 434 68 068 46 763 N/A
j = 3 53 011 103 995 100 124 56 412 39 726 N/A
j = 4 57 511 108 794 105 163 58 897 37 592 N/A
j = 5 28 240 49 787 47 609 28 911 22 876 N/A
j = 6 29 979 55 310 54 979 30 377 21 308 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

1000 runs the “true” variance contains some simulation error, but it is an accurate enough
approximation for the purpose of our comparisons.

Table 1gives the averages of all these variance estimators over the 1000 runs, in the
square root readings. It is seen thatvBHS andvJack are both very positively biased, with
vBHS being even worse thanvJack. On the other hand,vnew appears to estimateV very well,
much better than all other estimators considered. The other two estimatorsṽ andv∗ both
overestimateVas well, although not as badly asvBHS andvJack. However, it is interesting to
observe that at the industry level,v∗

j (which is now reduced tôAj ) seriously underestimates
Vj .

As we mentioned in Section 2, we have tried different weights when constructingvBHS
andvJack, but have not noticed any significant improvements in their performance. Note
also that the empirical bias of̂T andT̂j are negligible, confirming their unbiasedness. For
example, the empirical bias of̂T is 4158 with standard error 3234. We have also obtained
the square root of estimatedE(Â) andE(B̂) to be 97 083 and 28 983, respectively.

It seems generally reasonable to assume model (11) with non-zero�j1 and/or�j2 for
the relationship betweenY andE, as is the case for the first artificial population. On the
other hand, we may want to check what might happen ifY andE are not related at all
or the relationship betweenY andE does not follow our working model (11) when the
sampling scheme and all the variance estimation procedures stay the same. For this reason,
we generated two other artificial populations in the same fashion as for the first population
except forYijk�. For the second population,

Yijk� = 298+ 6uijk�

was used. The resulting population size isN =10 562 with subpopulation sizesN1 =1813,
N2=1718,N3=1747,N4=1692,N5=1854,N6=1738.The population total isT=3 278 323
and the subpopulation totals areT1 = 812 136,T2 = 637 305,T3 = 526 510,T4 = 501 974,
T5 = 413 792 andT6 = 386 607.
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Fig. 2. Scatter plot of the second population.

For the third population,

Yijk� = 1000− �j {(Eijk� − 40)/1.5}3 + �ijk�

was used. The resulting population size isN =11 138 with subpopulation sizesN1 =1838,
N2 = 1878,N3 = 1934,N4 = 1812,N5 = 1805,N6 = 1871. The population total isT =
10 082 432 and the subpopulation totals areT1 =1 952 967,T2 =1 812 370,T3 =1 786 224,
T4=1 575 376,T5=1 441 977 andT6=1 513 519. The scatter plots of these two populations
are shown inFigs. 2and3. The three populations represent three quite different scenarios.

The results for the second and third populations corresponding to those inTable 1are
shown inTables 2and3, respectively. It is reassuring to observe that in these different
situations, similar performance of the variance estimators is shown: the new estimatorvnew
again works well, while other methods often provide biased estimates for the variances
of the estimated overall population total and those of the estimated subpopulation totals,
although they appear to be less severe than in the case of the first population.

One might suspect that severe over estimation in the BHS and jackknife procedures might
be caused by unequal inclusion probabilities�i� and�ijk�i used in our two-phase sample
design. To investigate this possibility, we generated a fourth artificial population using the
same setup as that for the first population except thatLi = 5, Kijk� = 15 andEijk� = 50
were used for all(i, j, k, �). In this case,�i� and�ijk�i are constants for all PSUs and
establishments. Using 1000 runs, we obtained the square root of the “true” varianceV of
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Fig. 3. Scatter plot of the third population.

Table 2
Comparisons of variance estimators in estimation of the total in the second population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 132 683 333 797 306 415 138 134 162 570 162 370
j = 1 99 534 159 428 152 011 98 536 84 872 N/A
j = 2 74 124 126 833 119 418 77 044 61 740 N/A
j = 3 64 089 105 331 98 714 63 525 50 273 N/A
j = 4 55 054 100 038 93 365 55 860 45 727 N/A
j = 5 44 067 76 321 71 672 43 956 35 266 N/A
j = 6 38 599 68 875 67 123 40 387 31 473 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

T̂ and the estimated mean of its estimatesvBHS, vJack, vnew, v∗ andṽ as 121 387, 316 638,
271 636, 120 236, 190 231 and 120 236, respectively. Here, the fitted regression values in
each industry required invnew are reduced to be the industrywide sample mean since no
regression can be done with constantEijk�. The numerical results above are similar to those
in Tables 1–3, suggesting that the main cause for over estimation invBHS, vJackand̃v is due
to something other than unequal inclusion probabilities. The main difficulty with them is
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Table 3
Comparisons of variance estimators in estimation of the total in the third population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 519 544 995 380 911 499 512 425 515 857 573 998
j = 1 259 823 382 004 366 140 266 822 224 163 N/A
j = 2 266 605 366 809 345 353 253 805 218 621 N/A
j = 3 216 245 332 960 320 374 221 029 190 868 N/A
j = 4 223 135 316 867 315 309 235 783 208 498 N/A
j = 5 203 748 287 986 279 385 210 369 187 016 N/A
j = 6 202 141 304 866 291 873 212 509 190 027 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

that no theory has been found to support their use even in this highly simplified special case
with the unique two-phase sample design. Note that in this special case,vnew = ṽ. This is
because�i� = 1/Li and thuŝB = ∑I

i=1
∑Li

�=1

∑J
j=1Kij��̂2

j andB̂j = ∑I
i=1

∑Li

�=1Kij��̂2
j ,

so that
∑J

j=1B̂j = B̂. The simulation results for variance estimates ofV (T̂j ) also show
similar comparisons observed inTables 1–3. The details are omitted here.

In addition to the problem of finding a proper variance estimator, we would also wish
to construct a confidence interval that has a correct coverage probability. Here, we use the
standardt-type(1 − �)100% confidence interval forT as follows:

T̂ ± tn−3,�/2
√
v,

wheretn−3,�/2 is thet critical value at level�/2 with n− 3 degrees of freedom andv is one
of the variance estimates. In our simulation examples,n=120, so it is essentially the same if
we use the normal critical value. The empirical coverage probabilities of various confidence
intervals for the overall population totals of the three artificial populations are provided in
Table 4. The nominal coverage probability is 0.95. The results inTable 4are based on 1000
runs, so that the standard errors of the empirical coverage probabilities are about .0068.
It is seen that the new variance estimator performs quite well for all three populations,
producing confidence intervals with length and coverage very close to those obtained by
using the “true” variance. On the other hand, the other four methods are too conservative
except for one case (v∗ in population 3). This is especially true forvBHS andvJack which
lead to exceedingly wide intervals. The coverage probabilities and interval lengths for the
fourth population are similar to those given inTable 4, and are thus omitted.

5. Variance estimation for estimating population ratios

The methodology developed in this paper can be readily extended to the problem of
variance estimation for estimating population ratios. LetXijk� be another variable of interest
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Table 4
Comparisons of the empirical coverage probabilities and lengths of the confidence intervals for the overall totals
of the three populations using various variance estimators

Population “true”V vBHS vJack vnew v∗ ṽ

Coverage
First 0.958 1.000 1.000 0.967 0.997 0.994
Second 0.945 1.000 1.000 0.957 0.976 0.984
Third 0.947 1.000 1.000 0.943 0.947 0.968

Lengths
First 405 096 1 282 609 1 202 445 420 574 584 520 557 076
Second 524 945 1 305 333 1 204 150 542 321 613 683 639 938
Third 2 057 859 3 889 899 3 582 219 2 020 063 2 019 139 2 266 532

The nominal coverage probability is 0.95. The coverage probabilities are based on 1000 runs. The “true”
variances are based on 1000 realized point estimates.

for establishment(i, j, k, �). Suppose that we are interested in estimating the ratio

R =
∑
i,j,k,�

Yijk�

/ ∑
i,j,k,�

Xijk�

= TY /TX

and that, by (4), we use the standard estimator

R̂ =
∑
j

∑
i

∑
k

wijk�i Yijk�i

/∑
j

∑
i

∑
k

wijk�iXijk�i

= T̂Y /T̂X

for R. One special and important case in this framework is whenXijk� =Eijk�. In general,
theX variable is presumably related to theE variable. However, as we have seen earlier,
while such a relationship is usually helpful for point estimation, it is not required for our
variance estimation procedure.

The estimation of the variance of̂R, VR̂= var(R̂), can be done as follows. First, by the
Taylor series expansion, we obtain the usual approximation toR̂:

R̂ ≈ R + 1

TX

∑
j

∑
i

∑
k

wijk�i (Yijk�i − RXijk�i ) = R̃. (20)

ThenVR̂ can be approximated by

var(R̃) = 1

T 2
X

var

∑
j

∑
i

∑
k

wijk�iDijk�i

 , (21)
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whereDijk� = Yijk� − RXijk�. Comparing the sum in (21) with that in (4), we see that if
we knewR then the variance in (21) can be estimated in exactly the same fashion as in (17)
by replacing theY’s by theD’s. More specifically, we have

VR̂ ≈ 1

T 2
X

(AR + BR),

whereAR andBR areA andB in (9) except that theY’s are replaced by theD’s.
Of course, in practice,RandTX are generally unknown, but their consistent estimates can

be employed without affecting the asymptotic properties of the variance estimator. Using
the same ideas as in Section 3, our estimator forVR is defined to be

vnew,R = 1

T̂ 2
X

(ÂR + B̂R), (22)

whereÂR andB̂R areÂ in (10) andB̂ in (16) except that̂Dijk� = Yijk� − R̂Xijk� are used
in place ofYijk�.

In estimating the industrywide ratios

Rj =
∑
i,k,�

Yijk�

/∑
i,k,�

Xijk�

= TYj /TXj ,

the following point estimator

R̂j =
∑
i

∑
k

wijk�i Yijk�i

/∑
i

∑
k

wijk�iXijk�i

= T̂Yj /T̂Xj

is often used. Then our estimator for var(R̂j ) is

vnew,Rj
= 1

T̂ 2
Xj

(ÂRj
+ B̂Rj

), (23)

whereÂRj
andB̂Rj

areÂj andB̂j in (19) except that̃Dijk� = Yijk� − R̂jXijk� are used in
place ofYijk�.

Simple extensions may also be made to obtain the other four variance estimators consid-
ered in the previous sections in a parallel form. They are denoted byvBHS,R, vJack,R, v∗

R and
ṽR. Note that by definitionv∗

R andṽR make use of the Taylor series expansion in (20), but
the replication estimatorsvBHS,R, vJack,R are constructed with deleted versions of the raw
ratio estimates without relying on the Taylor series expansion, as is reported inTables 5–8
in the next subsection. Alternatively, a version of the BHS and jackknife estimators may be
obtained by using the expansion in (20) witĥD in (22). While it may be more appealing to
use the raw ratio estimates, empirically neither version consistently outperforms the other.
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Table 5
Comparisons of variance estimators in estimation of the ratio in the first population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 0.195 0.246 0.247 0.203 0.282 0.200
j = 1 0.659 0.710 0.723 0.713 0.691 N/A
j = 2 0.530 0.559 0.567 0.561 0.545 N/A
j = 3 0.393 0.422 0.432 0.431 0.420 N/A
j = 4 0.395 0.413 0.422 0.425 0.415 N/A
j = 5 0.262 0.257 0.264 0.272 0.266 N/A
j = 6 0.248 0.240 0.247 0.253 0.246 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

Table 6
Comparisons of variance estimators in estimation of the ratio in the second population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 0.252 0.267 0.349 0.262 0.295 0.261
j = 1 0.963 0.933 0.950 0.957 0.942 N/A
j = 2 0.711 0.707 0.717 0.733 0.718 N/A
j = 3 0.579 0.570 0.572 0.586 0.577 N/A
j = 4 0.544 0.516 0.527 0.545 0.535 N/A
j = 5 0.377 0.364 0.377 0.386 0.381 N/A
j = 6 0.337 0.338 0.349 0.366 0.361 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

Table 7
Comparisons of variance estimators in estimation of the ratio in the third population

Population “true”V vBHS vJack vnew v∗ ṽ

Overall 0.919 0.846 1.974 0.924 0.914 0.919
j = 1 2.380 2.289 2.342 2.466 2.429 N/A
j = 2 2.442 2.164 2.194 2.353 2.311 N/A
j = 3 1.997 1.865 1.914 2.055 2.003 N/A
j = 4 2.144 2.074 2.146 2.337 2.290 N/A
j = 5 2.010 1.964 2.017 2.116 2.076 N/A
j = 6 1.998 1.923 1.974 2.087 2.046 N/A

The entries are the square root of the “true” variances and the averages of the estimators over 1000 runs. The
“true” variances are based on 1000 realized point estimates.

5.1. Additional simulation results

In this subsection, we report the results of a simulation study to compare the performance
of the aforementioned five methods for estimating the variances ofR̂ andR̂j . The simulation
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Table 8
Comparisons of the empirical coverage probabilities and lengths of the confidence intervals for the overall ratios
of the three populations using various variance estimators

Population “true”V vBHS vJack vnew v∗ ṽ

Coverage
First 0.958 0.973 0.980 0.967 0.997 0.964
Second 0.945 0.951 0.983 0.957 0.976 0.955
Third 0.943 0.904 0.999 0.943 0.945 0.942

Lengths
First 0.772 0.955 0.960 0.802 1.114 0.789
Second 0.998 1.034 1.341 1.030 1.159 1.026
Third 3.640 3.278 7.662 3.643 3.601 3.622

The nominal coverage probability is 0.95. The coverage probabilities are based on 1000 runs. The “true”
variances are based on 1000 realized point estimates.

framework followed that in Section 4. We used the same three artificial populations and the
same 1000 samples from each population. We letX=E for the second variable of interest.

Tables 5–7give the results of the comparisons for each of the three populations, respec-
tively. These tables correspond toTables 1–3with ratios instead of totals. The true overall
ratios are 6.376, 6.226 and 18.173, respectively. Formulas (21) and (22) were used for the
new method in these tables, althoughTX andTXj are available whenX =E. However, we
have usedTX andTXj as well and obtained identical results to the decimals in the tables
for estimatingR and nearly identical results for estimating industrywideRj . We observe
that, unlike in the case of estimating totals, the methods are somewhat more competitive
to each other except maybe for the jackknife method. One main reason for this seems to
be that the point estimators for the ratios are much more stable across areas and PSUs and
the correlations among the industries diminish, so that the effect of the sample design on
their variance estimation is closer to that of stratified simple random sampling. Still, the
jackknife estimatorvJack,R is significantly positively biased in the case of estimating overall
ratios for all three populations. The BHS estimatorvBHS,R is positively biased for the first
population, and negatively biased for the third population, but is quite close to the “true”V
for the second population. Thev∗

R has a substantial positive bias for the first two populations,
while theṽR works very well in contrast to its performance in the case of estimating totals.
The general conclusion is that these estimators are not stable for all these cases. On the
other hand, the proposed estimatorvnew,R continues to perform well for all the populations.

The summary above is confirmed by the results of the empirical coverage probabilities and
lengths of the corresponding confidence intervals given in Table 8. Recall that the standard
error of the empirical coverage probabilities is about 0.0069. Therefore, the confidence
interval usingvBHS,R is on target for the second population, but not so much for the other
two populations. The confidence intervals usingvJack,R are clearly too wide. Meanwhile, the
confidence intervals usingvnew,R have reasonably good coverage probabilities and lengths
for all three populations. It is worth noting that the empirical coverage probabilities of the
new method are exactly the same for both cases of estimating overall totals and ratios for all
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three populations. It is a coincidence: the corresponding empirical coverage probabilities
based on the first 500 runs are not all the same.

In the simulation study, we have also considered using the expansion in (20) withD̂

for the BHS and jackknife estimators. One significant observed change is that for the third
population the jackknife estimator now underestimates the variance of the overall ratio
estimator, behaving very closely to the BHS estimator which had little change from the
standard version.

All the simulation experiments were conducted in Splus. The Splus code is available
upon request.

6. Concluding remarks

Complex sample designs such as the one considered in this paper can often be thought
of aseithermulti-stage or multi-phase. From the former point of view, we select different
typesof units at each stage. From the latter point of view, the units are always the ultimate
sample units, and at each phase we gather more and more information, about narrower
and narrower subsets of the population.Särndal et al. (1992, Chapter 9)regard multi-phase
as subsuming multi-stage, and offer a general formula for two-phase variance estimation.
Not surprisingly, a good deal of the subsequent literature has tended to emphasize the
two-phase aspect, with a major question being the existence of simply applied replication
variance estimation methods in this more general context.

Two referees point out that the relatively poor showing of the jackknife and BHS es-
timators is perhaps not surprising, when a key element of the design is that sampling of
the second phase units is done according to a different classification than that dictating the
first-phase selection, and there is a lack of the usual independence and invariance. In partic-
ular, the estimator of total we have considered here is a version of KS’s “double expansion
estimator” (DEE), and a key point is that KS find no satisfactory version of a jackknife esti-
mator. They show through a simple example that standard versions of the jackknife cannot
in general be consistent for the variance of the DEE estimator, as we have indeed found in
our simulations.

Kim et al. (2000)offer a variant of the jackknife which is consistent for the DEE, in
the particular case where the second phase of sampling is simple random sampling within
second-phase strata.Binder et al. (2000)develop a Taylor series-based variance estimator,
also limited to this case. It is at this point unclear whether their approaches extend to within
stratum probability proportional to size sampling at the second phase, and how exactly
this would be done. This looks like a promising avenue for further research. A referee has
suggested that perhaps their estimators as they stand would be satisfactory, provided the
one psu per stratum difficulty can be handled, and this is also worthy of exploration.

The hybrid method proposed in this paper makes use of both design-based and model-
based strategies with the aim to solve difficult estimation problems arising from some
complex, cross-stratified, random weighted two-phase sampling schemes, such as the NCS.
We have provided technical justifications and some numerical support for this new ap-
proach. Judging from both the theoretical and empirical results, we see that the method
appears to overcome the difficulties associated with this survey design. The new variance
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estimator appears to be versatile, likely to be of use in practice. Finally, the ideas behind
the construction of the hybrid estimator may be applied more generally to other settings of
complex surveys.
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