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1.  Introduction 

Pfeffermann (1994) has proposed a solution to 
the long-standing problem of variance measures for 
time series seasonally adjusted by the X-11 method 
(Ladiray & Quenneville, 2001).  Pfeffermann’s 
approach builds from a method suggested by Wolter 
& Monsour (1981), using sampling error information 
and the linear approximation to X-11.  The present 
paper pulls together results across the last decade, 
plus new results for variance estimation of seasonally 
adjusted change.  The U.S. Bureau of Labor Statistics 
(BLS) is considering use of these measures for the 
analysis of employment and unemployment statistics 
as early as 2007. 

After a brief preview of results in this section, 
methodology will be reviewed in Section 2.  Section 
3 presents basic results, both for pure X-11 seasonal 
adjustment and for the case of ARIMA extrapolation, 
with highlights from Pfeffermann & Scott (1997) and 
Pfeffermann, Scott, & Tiller (2000).  Next, we 
compare our method with a method proposed by Bell 
& Kramer (1999), first treated in Scott & 
Pfeffermann (2003).  Section 4 contains results for 
employment change, which expand and improve 
results presented in Scott, Sverchkov, & Pfeffermann 
(2004).  The final section summarizes additional past 
work, outlines next steps to be taken, and offers 
conclusions. 

We begin with the usual notion that an 
economic time series consists of a trend or trend-
cycle, a seasonal component, and an irregular term,  

tttt ISTY ++= . 

Typically, our data come from a sample survey, 
leading us to describe an observed value in terms of 
the population value plus sampling error, 

ttt Yy ε+= . 

We use the notations, 

tttttt SyASYA ˆˆ, −=−=  

for the population seasonally adjusted value and its 
estimate at time t, respectively.  The variance 
measures we consider are 
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Our notation fits with the presentation of results in 
terms of standard deviations, rather than variances.  
For most applications, the most important of these 

measures is SDA, the standard deviation (SD) of the 
error in estimating the (population) seasonally 
adjusted value.  SDT is useful, because some 
countries, including Australia and the U.K. (but not 
the U.S.), publish trend estimates.  The hybrid 
measure SDH, the SD of the error in estimating the 
trend by the seasonally adjusted series is included 
mostly for methodological purposes and 
comparisons.  We use corresponding notations for 
change, for example,  
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−− −−−= ttttt AAAAVarSDAC . 
For a series seasonally adjusted with pure X-11, 

Fig. 1a plots SDH, along with SDU, the SD of the 
unadjusted series, that is, the sampling error SD.  
This picture fits with a characterization given by 
Wolter and Monsour (1981, p. 400):  the SD for the 
seasonally adjusted series is likely to be below SDU 
in the center of the series, but tends to increase and 
exceed SDU at the two ends of the series.  Fig. 1b 
overlays SDH and SDU when seasonal adjustment 
has been performed with ARIMA extrapolation.  
Here the seasonally adjusted measure lies below SDU 
throughout the series. Finally, for a different series, 
Fig. 1c presents an overlay of SDA and SDU , 
showing that an adjusted SD can exceed SDU 
throughout the time span.  Thus, the relationship 
between SDU and our seasonally adjusted SD’s 
depends considerably on characteristics of the series 
and the X-11 options used.  The results in Figs. 1a 
and 1b are explored further in Section 3 and Figs. 4d 
and  4e; those for Fig. 1c in Section 4 and Fig. 5a.  
For now, we remark that the tendency of SDA or one 
of the other measures to lie below SDU over most or 
all of the time span is to be expected, since seasonal 
adjustment is a smoothing procedure.  Furthermore, 
based on the assumed model, ARIMA extrapolation 
spreads the smoothing weights more broadly.  This 
reduces the seasonally adjusted SD’s near the ends of 
the series, compared to pure X-11. 

 
2.  Methodology 

By combining the first equations presented 
above, the observed series is described as 

ttttttt ISTYy εε +++=+= .             (1) 

Important for us is the combined error 

ttt Ie ε+= . 

A basic assumption for seasonal time series is that 

tT , tS , and tI  are mutually independent, and we  



 

Figure 1.  Some Results for SD Measures for X-11 Seasonal Adjustment 
Unadjusted SD – dash, Adjusted SD measure (SDA or SDH) – solid  

 
                           1a.  AKEP SDH – Pure X-11                                      1b.  AKEP SDH – Extrapolation  

1981 1983 1985 1987 1989 1991 1993 1995

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1981 1983 1985 1987 1989 1991 1993 1995

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

 
1c.  EMPP SDA, Extrapolation 
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further assume mutual independence with tε .  We 

assume that tI  and tε  are stationary time series.  

Writing kν  and kλ  for their respective 

autocovariances, the combined errors te  have 

autocovariances 

                                kkkV λν += .                       (2) 

Under the assumption that X-11 produces unbiased 
estimates for the trend and seasonal components, 
Pfeffermann (1994) develops the approximations 
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where }{ tkw  represents the seasonal adjustment 

filter weights for time t.  A formula similar to that for 
SDH applies for SDT.  To estimate SDH, Formula (3) 

implies that we only need estimates kV̂  of the 

combined error autocovariances.  For SDA, we also 

need estimates of the kν ’s, obtainable from (2) if we 

have estimates of the kλ ’s.  The latter estimates, 

which reflect the survey design, are available in our 
applications.  We claim that a reasonable approx-
imation for SDA is obtained by using only the 
sampling error variance and dropping the final 
summation, which is typically small due either to 

small magnitudes of the weights tkw  or to small or 

vanishing values of kν  for 0≠k . 

For estimation of the kV ’s in (2), consider the 

irregular component tR  produced by X-11.  
Pfeffermann (1994) derives the approximation 

                          ∑ =
≈ N

k ktkt eaR
1

,                          (4) 

where }{ tka  represents the irregular filter weights 

for time t.  Notice that the X-11 irregular series is 
nonstationary because of the use of asymmetric, 
time-dependent weights when moving away from the 
center of the series.  Taking autocovariances in (4), 
we obtain an expression for ),( mtttm RRCovU +=  in 

terms of the kV ’s.  Estimating tmU  by 
mtt

RR +  and 

averaging over t  leads to a linear system for 
estimating V  of the form 

                     )ˆˆ(ˆˆ νλ +== DVDU .                  (5) 

The matrix D  is a known matrix built from the 

irregular weights.  We assume CkVk >= ,0 , for 

some cut-off value C .  When sampling error 

autocovariance estimates λ̂  are available externally, 



 

we can solve the system (5) for ν̂ .  We model the 
irregular component as a low order moving average 
process, so (5) becomes a low order system.  Often, 
the irregular is modeled simply as white noise.  See 
Pfeffermann & Scott (1997) for more details. 

Pfeffermann, Morry, & Wong (1995) and 
Pfeffermann, Scott, & Tiller (2000) treat ARIMA 
extrapolation.  We may write 
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where each value )( f
ky  is a forecast or backcast 

derived from the ARIMA model fitted to the series. 
For given model coefficients, each of these values is 
a linear combination of the observed y’s, so that the 
seasonal adjustment has again a close linear 
approximation. 
 
3.  Results for monthly estimates 

 
3.1  AKEP experiment 

We have simulation results for seasonal 
adjustment with pure X-11 and with ARIMA 
extrapolation.  The simulation is related to the Alaska 
Employment-to-Population ratio series (AKEP), 
which appears in Figure 2.  The “EP ratio” and the 
unemployment rate are the key labor force statistics 
for U.S. states.  They are derived from the Current 
Population Survey (CPS), a monthly household 
survey whose size has ranged from 47,000 to 60,000 
in recent decades.  The sample is composed of 8 
panels, with a rotation scheme of 4 months in sample, 
8 months out, and a final 4 months in sample.  Figure 
3 exhibits the per cent sample overlap, along with the 
estimated autocorrelations for AKEP, according to 
the lag in months.  The per cent overlap is 75% at a 
one-month lag and 50% at a 12-month lag, with no 
overlap for lags 4 to 8 and beyond lag 15.  The 
autocorrelations have the same general shape with  

 
Figure 2.  AKEP, 1979-86 
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lower peaks but with positive values even for lags 4 
to 8.  This is due to the replacement of households in 
the sample within small homogeneous geographical 
regions. The conclusion from Figure 3 is that one 
needs to account for high-order autocorrelations 
when computing the SD measures.  A considerable 
amount of work in recent years (e.g., Pfeffermann, 
Tiller, & Zimmerman, 2000) attests to reliability of 
estimated autocorrelations, which allows us to use the 
low order system (5) to obtain the needed error 
autocovariances. 

The simulation experiment uses data generated 
from a structural model (Harvey, 1989) 

ttttt ISTy ε+++= . 

The trend tT  is a random walk with a constant drift.  

The seasonal effect St  evolves according to the 
trigonometric relationship defined in Harvey (1989, 

Ch. 2) and the irregular component tI  follows an 

MA(2) model with coefficients .6 and  -.3.  The 
sampling error ε t  is generated from an AR(15) 
model with coefficients computed from the Yule-
Walker equations, with standard deviation (SD) 1.14 
and the sampling error autocorrelations displayed in 
Table 1.  The remaining components have 

disturbance SD’s of 51096.1 −× , 0.02, and 0.61, 
respectively.  This model differs from the model fit to 
the original series by including the irregular 
component and reducing the sampling error variance 

so that the combined error te  has about the same 

variance as the sampling error in the official model 
used by BLS.  We simulate 3000 series, apply to each 
the X-11 method with and without ARIMA 
extrapolation (as described below) using the X-12-
ARIMA software (Findley et al, 1998), and compute 
the SD measures as described in Section 2.   
 

Figure 3.  CPS Overlap and AKEP ACF 
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Table 1.  AKEP Sampling Error Autocorrelations 
Lag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Value 0.64 .46 0.32 0.18 0.16 0.16 0.18 0.20 0.23 0.26 0.29 0.34 0.28 0.24 0.18 
 

The simulations provide us with an approximation to 
the true standard deviations as follows.  Fix a time 
point.  For each replicate series, we have the true and 
estimated values, so, for example, we can compute 

the error tt AA ˆ− .  The empirical standard deviation 
of these 3000 errors is our approximation to the true 
value for the fixed time point, which we can compare 
to estimates from the method.  We compare results 
for X-11 runs of 7 and 14 year spans, the short spans 
coming from the middle years of the longer series.  
(The results reported for this simulation in 
Pfeffermann & Scott, 1997, were based on only 300 
replicates). 

Table 2 shows mean estimates of the combined 
error autocovariances across the 3000 replicates.  The 
top row shows the true values kV , k= 0 to 3.  (Recall 

that we solve (5) with order q for ν̂  and compute 

νλ ˆˆˆ +=V , q=0 to 3.  For example, with q=1, kν̂  is 
nonzero only for k=0 and 1.)  For the long series, the 
table indicates underestimation of 0V   with q=0 and 
overestimation with q=1 or 3.  The estimates are very 
close with the true value, q=2.  For the short series, 
estimates are not quite as good:  solving with q=2 
gives the best estimates, with mild overestimation. 

Figure 4 shows estimation results for SDA and 
SDH.  (Recall that SDA estimates the SD of the error 
in estimating the true seasonally adjusted value; SDH 
estimates the SD of the error in estimating the trend 
by the seasonally adjusted value).  Each part of 
Figure 4 shows mean SD estimates for MA(q) 
models, q=0 to 3, the solid symmetric curves.  The  

 
Table 2.  Estimates of AKEP Combined Error 

Autocovariances, According to the Fitted  
MA(q) Model and Series Length 

      0V     1V     2V     3V  

     
    True     1.85      .98    .48    .41 
Estimates     
  Long     
         q=0      1.78     .83    .59    .41 
MA       1     1.95   1.08    .59    .41 
order     2     1.88   1.01    .51    .41 
             3     2.01   1.14    .61    .50 
  Short     
         q=0     1.78     .83    .59    .41 
   MA    1     1.95    1.08    .59    .41 
   order  2     1.92    1.07    .56    .41 
             3     2.06    1.20    .69    .54 

red dot-dashed horizontal line is SDU, the SD of the 
unadjusted estimate.  The rough black dashed line 
represents the empirical estimates of the truth from 
the simulation.  Notice the variation in these values 
even at the center of the series where the true SD’s 
are the same. 

The estimates for SDH in Fig. 4d are 6.3% 
below SDU in the central part of the series.  They 
increase toward the ends of the series, and the three 
points at each end of the series average 2.0% higher 
than SDU.  The good performance of the estimates is 
seen in the extremely close agreement between the 
simulated truth and estimates when assuming the 
(correct) MA(2) model for the irregular.  The bias is 
1.7% near the ends and only 0.4% in the center.  This 
provides strong evidence that both the shape and the 
magnitude of the estimates are correct.  Table 3 
presents the bias statistics; Table 4 reports the per 
cent reduction in moving from SDU to SDA or SDH.  

Turning to Fig. 4e, the SDH estimates are the 
same in the center, but the estimates are actually 
lower at the ends of the series than in the center.  The 
per cent reduction from SDU values is 6.4% in the 
center and 11.2% at the ends.  The difference is that 
here seasonal adjustment has been applied with 
ARIMA extrapolation.  Note that again the q=2 
estimates agree very closely with the empirical 
estimates, even at the ends.  The decrease in SDH 
toward the ends is a genuine property of X-11 with 
extrapolation and is due to the use of a model.  The 
ARIMA extrapolation has been carried out with a 
(0,1,3) (0,1,1) model, fixing the model but estimating 
the model parameters independently for each 
replicate.  Fig. 4f shows the results from the 7-year 
span.  The results are similar to those for the long 
span, except that the q=2 estimates are larger than the 
simulated truth, 1.7% in the center, which fits with 
the mild overestimation of the )(kV ’s shown in 
Table 2.  For both long and short spans, the SDH 
estimates do vary with q, with the best estimates 
obtained under the MA(2) model for the irregulars.  

Graphs for SDA in Fig. 4a-4c have the same 
shape as their counterparts for SDH, except that they 
are much lower.  In the center of the series, the 
reduction from SDU is about 19%; at the ends the 
reduction is just above 20% with extrapolation and 
close to 10% with pure X-11.  The choice of q makes 
little difference, since the estimates are so close. 



 

Figure 4.  AKEP Empirical and Mean Estimated Standard Deviations with MA(q) Irregulars, q=0 to 3 
Empirical – black dash, q=0 – solid blue, q=1 – solid purple, q=2 – solid green, q=3 – solid gold, Unadjusted – red dot-dash 
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Table 3.  Mean SDA and SDH Estimates and % Bias in Center and at Ends for Four Seasonal Adjustments of AKEP 

  SDA    SDH  
 Est (q=2) “True” % Bias  Est (q=2) “True” % Bias 
Ends        
  Pure X-11   Long 1.17 1.16 1.07  1.33 1.30 1.70 
                     Short 1.18 1.18 -.65  1.34 1.33 1.00 
  Extrap         Long 1.02 1.03 -.46  1.16 1.15 .63 
                     Short 1.04 1.06 -1.90  1.16 1.17 -.25 
Center        
  Pure X-11   Long 1.05 1.06 -.34  1.22 1.21 .38 
                     Short 1.05 1.05 -.37  1.22 1.20 1.60 
  Extrap        Long 1.05 1.06 -.35  1.22 1.21 .36 
                     Short 1.06 1.06 -.26  1.23 1.21 1.73 

 
Table 4.  % Reduction from SDU with SDA 
 and SDH with an MA(2) Irregular (negative 
 values indicate values higher than SDU) 
 SDA SDH 
 Ends   
     X-11     Long 9.7 -2.0 
                  Short 9.5 -3.2 
    Extrap   Long 21.2 11.2 
                  Short 20.4 10.6 
Center   
     X-11     Long 18.9 6.3 
                   Short 19.2 6.0 
    Extrap    Long 19.0 6.4 
                   Short 18.8 5.5 
 
3.2  Comparison with the Bell-Kramer method 

Bell & Kramer (1999) have developed an 
alternative variance measure, also building from the 
linear approximation to X-11.  For a given time point, 
they define the target seasonally adjusted value as the 
value that would result from application of the 
symmetric linear seasonal adjustment filter to the 
series without the sampling error.  The variance 
measure accounts therefore for two sources of error:  
the sampling error and the error arising from 
extending the observed time series with enough 
ARIMA forecasts and backcasts for application of the 
symmetric filter.  The latter error is known as 
revision error.  Suppose that the X-11 symmetric 
filter is of length 2m+1.  (For the default X-11 filter, 
m=84).  Building from previous notation, denote by 

)()()( bbb Yy ε+=  and )()()( fff Yy ε+=  the vectors of 

past and future values of length m.  The target vector 
of seasonally adjusted values is YA Ω=*  where 

)'','(' )()()( fobsb YYYY =  with )',...,()( Nobs YYY 1=  defines 

the population values and Ω  is the matrix of 
dimension )2( mNN +×  of the symmetric X-11 
filter weights used for the adjustment.  The vector of 

the observed series augmented with the backcasts and 
forecasts can be written  

)'ˆ,','ˆ('ˆ
)()()( fobsb yyyy = , 

with )|(ˆ
)()()( obsbb yyEy = and )|(ˆ

)()()( obsff yyEy = .  

Thus, the seasonal adjustment error is  

yYAA ˆˆ* Ω−Ω=−  
and the variance-covariance matrix of the error is  

')ˆ()ˆ*( Ω−Ω=− yYVarAAVar . 
The matrix Ω  is known, and Bell & Kramer (1999) 
provide the details for computing )ˆ( yYVar − . 

We briefly review a simulation experiment 
reported in Pfeffermann & Scott (2003), which 
compares the Bell-Kramer and Pfeffermann methods, 
denoted BK and DP, respectively.  The simulation is 
based on models for Teenage Male Unemployment 
(TMU), which, like AKEP is derived from the CPS.  
TMU is one of eight series used to compute the 
seasonally adjusted civilian unemployment rate, the 
key household figure reported in the monthly BLS 
Employment Situation press release.  Given the form 
of the models for the population series Y, and for the 
sampling error ε , William Bell’s REGCMPNT 
program (Bell, 2003) estimates these components and 
the parameters for the component models.  For TMU, 
this leads to an airline model for the signal, whose 
parameters 1θ  and 12θ  are rounded to 0.6.  Signal 
extraction of this model yields a (0,2,2) model for the 
trend, an (11,0,11) model for the seasonal 
component, and white noise for the irregular.  An 
AR(15) model is adopted for the sampling error.  
These modeling steps are described in more detail in 
Pfeffermann & Scott (2003). 

Three thousand replicates are generated from 
these models, each of length 22 years:  8 central years 
as the test period and 7 years at both ends in order to 
compute target values for the BK method.  For the 
DP method, we carry out X-11 seasonal adjustment 
on the 8-year span with 5 years of forecasts and  



 

Figure 5.  Empirical and Mean Estimated Standard Deviations about Seasonal Adjustment Target 
                          a.  Pfeffermann Measure (q=0 to 3)                                         b.  Bell-Kramer Measure 
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backcasts, the maximum available in the X-12 
software, a close approximation to using the 
symmetric filter for the 8-year test period. In contrast 
to the AKEP experiment, the X-11 runs for TMU 
allow automatic selection of the model, as well as 
estimation of the model parameters.  (Arguably, 
either approach reflects practice:  sometimes, 
agencies allow automatic model selection; in other 
cases, an analyst selects and uses a particular model 
until it no longer fits well).  SD results are restricted 
to replicates for which applicable models are found:  
2584 replicates for the DP method, 2073 for Bell-
Kramer.  The figure is lower for Bell-Kramer, since 
signal model parameters estimated from 
REGCMPNT yielded nonstationary models in many 
cases; the DP method simply used the models 
estimated by X-12, which restricts models to be 
stationary.  In both cases, we compute mean 
estimates across replicates and empirical estimates of 
the true SD’s. 

Fig. 5a contains mean DP estimates of SDA for  
MA(q) models for the irregulars, q=0 to 3, (solid 

lines), empirical estimates of the true values (black 
dash), and SDU (red dash).  Estimates for q=0, the 
true value in blue, average 6.6% lower than the 
empirical values, based on the last three points at 
each end; they are 1.9% lower in the center, based on 
the central 24 time points.  By comparison, the BK 
estimates, shown in Fig. 5b, are 5.4% lower at the 
ends and 1.2% lower in the center.  Notice how the 
difference in target values affects the SD measures.  
Fig. 5c overlays mean estimates from the two 
methods.  The DP estimates are 6.7% higher in the 
center and 5.0% higher at the ends.  Unlike the BK 
method, the DP method is designed to capture the 
contribution of the irregular , which accounts for the 
sizable difference.  In the presence of a time series 
irregular, the two methods can differ appreciably. 

The BK method has less bias:  on average it 
comes closer to its target.  It also has less variability.  
Interestingly, it requires no output from X-11; it is 
calculated from estimated models for the population 
and the sampling error.  The DP method is more 
flexible:  it can be applied with pure X-11; it captures 
an extra source of variability, which can be 
appreciable, as will be seen in Section 4.  While it 
benefits from sampling error information, it can 
provide SD estimates with little or no sampling error 
knowledge.  This simulation provides evidence that 
both methods provide usable (but different) SD 
measures with good properties. 
 
4.  Results for month-to-month change 

Each month the Commissioner of Labor 
Statistics must characterize change in employment 
and unemployment statistics to the Joint Economic 
Committee of the U.S. Congress.  When seasonally 
adjusted change is +100,000, is employment 
“essentially unchanged” or has it “increased”?  
Assessing significance of change is of much greater 
practical importance for statistical agencies than  



 

having confidence limits for the level.  While one-
month change is far and away the most important 
case, we can consider more generally h-month 

change, htt AA −− ˆˆ .  Conceptually, handling change is 
quite easy.  Since the difference of linear filters is 
again a linear filter, we can adapt the methods of 
Section 2 to calculate all three SD measures for h-
month change.  However, for the important 
employment application of this section, an alternative 
approach described in Scott, Sverchkov, and 
Pfeffermann (2004) seems more appropriate.  A 
further advantage is that this alternative approach 
appears applicable to index number time series, such 
as price indexes. 

BLS industry employment statistics come from 
its Current Employment Statistics (CES) program, a 
monthly survey of over 300,000 establishments.  As 
described in Morisi (2003), in recent years this large 
survey has become a probability survey with industry 
coding switched to the North American Industrial 
Classification System (NAICS).  Variance and 
covariance estimates for the unadjusted series are 
computed monthly using the balanced repeated 
replication (BRR) method.  The survey has the 
further advantage of having an annual population 
figure from an external source, the Unemployment 
Insurance program.  With a 10-month lag, these 
benchmark population values become available and 
are incorporated into estimation.  An employment 

estimate ty  comes from a “link-relative” estimator, 

                           
tt

rrrYy L210 ⋅⋅= .                

0Y  is the latest available benchmark, subsequent 

subscripts denote number of months away from the 
benchmark, and  
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is the ratio of weighted employment in months j  and 

j-1, with ijy  representing the employment of 

establishment i  in month j  and jM  the set of 

establishments reporting in both months. 
 
 Table 5.  CES Series  
Code  12/03 

Level 
EMPP Total Private Employment 108.49 
MFGD Durable Manufacturing 8.87 
MFGN Nondurable Manufacturing 5.46 
CONS Construction 6.77 
MING Mining 0.50 
WTRD Wholesale Trade 5.60 

Traditionally, all CES national employment 
series have been seasonally adjusted multiplicatively.  
This leads us to consider monthly change on the log 
scale, 

      )log(log)log()log( t
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This simple form looks promising for deriving a 
sampling error model.  We may write 
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to express monthly change in terms of a signal part 
and a sampling error part.  If we can find an ARIMA 
model for the logarithm of the series with at least one 
regular difference, then we will have an ARIMA 
model for use in applying X-11 with extrapolation to 

).log()(
t

yB−1   Summarizing, our variance for 
seasonally adjusted change comes from applying the 
basic method to the series )log(

t
r . 

Using data for 1994-2003, we analyze 
employment change for six NAICS supersectors.  
Table 5 lists these industries, short-hand codes used 
subsequently, and their Dec 03 employment levels in 
millions.  To test our variance measures, we make 
“concurrent” runs for 2003 to mimic a production 
setting.  Based on seasonal adjustment specifications 
derived from the 1994-2002 span, we carry out 12 
runs on 9-year spans ending in successive months of 
2003, and apply the method to the results of each run.   

As a preview to the detailed results, Table 6a. 
contains the results for MFGD of applying the SDA 
measure to form nominal 95% confidence limits 
( SDA⋅± 2 ) for the seasonally adjusted log ratio.  
There are significant declines for the first nine 
months, but no significant change during the last 
three.  Table 6b. has an extract from a single run on 
employment levels ending in Dec 03.  It shows 
month-to-month per cent change in the seasonally 
adjusted series during 2003.  These values range from 
over ½% to about 1/6% during the first 9 months, 
deemed significant by our measure.  While the 
numbers in Table 6a. and 6b. are not directly 
comparable, they are consistent with each other and 
indicate that the measure is very sensitive, since one-
sixth per cent represents about 20,000 out of roughly 
9 million.   

As described above, the form of the link-relative 
estimator leads us to work with monthly log ratios.  
The payoff for this approach comes from relatively 
simple sampling error characteristics.  First, monthly 
sampling error variance estimates for the log ratios 
show considerable variability but little relation to size 
of the log ratio (except possibly for CONS) or month 
of the year.  Thus, we assume them to be constant  



 

Table 6.  Results for MFGD 
a.  Confidence Limits for Seasonally Adjusted Log Ratio (x104), 12 Runs 

 
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

             
upper limit -29 -42 -31 -52 -25 -25 -49 -3 -7 6 23 13 

lower limit -61 -74 -64 -85 -58 -58 -82 -37 -41 -27 -10 -20 

change? Y Y Y Y Y Y Y Y Y N N N 

 
b.  Month-month % Change in Seasonally Adjusted MFGD Level, 1/95-12/03 Run 

_________________________________________________________ 
Jan    Feb     Mar    Apr   May    Jun     Jul     Aug    Sep    Oct   Nov    Dec 
-0.51  -0.60  -0.47  -0.65  -0.38  -0.37  -0.58  -0.17  -0.18  -0.10  0.04  -0.07 

 
and estimate 0λ  by the median value, reported in 
Table 8.  Table 7 exhibits summary statistics for 
autocorrelations at lags 1 and 12.  These are based on 
monthly estimates from 3/01 to 12/03, except that 
only a shorter span, 4/01-12/03, is available for 
EMPP.  Median lag 1 autocorrelations are less than 
.10 in magnitude for these series, except for MING, 
and there is a great range in the estimates, seen from 
the minima and maxima.  Still, the medians are 
consistently negative.  Similarly, the lag 12 
autocorrelations exhibit great variability, but all have 
the same sign (in this case, positive).  Half have 
magnitude .10 or more.  Median autocorrelations at 
other lags are all very low in magnitude.  This leads 
us to carry out concurrent runs under two sampling 
error models for each series, white noise ignoring the 
autocorrelations and an MA(13) model based on 
fitting a (0,0,1) (0,0,1) model to the median lag 1 and 
lag 12 autocorrelations.  While differences are not too 
large, we present SD results based on the MA(13) 
model for two reasons: 

 
Table 7.  Summary Statistics for Sampling Error 

Autocorrelations for Six Series 
Lag Industry Median Min Max 

     
1 EMPP -.08 -.31 .27 

 MFGD -.05 -.46 .32 
 MFGN -.05 -.47 .29 
 CONS -.07 -.29 .34 
 MING -.15 -.57 .40 
 WTRD -.09 -.43 .38 
     

12 EMPP .10 -.08 .48 
 MFGD .17 -.26 .38 
 MFGN .18 -.26 .48 
 CONS .08 -.14 .24 
 MING .03 -.37 .41 
 WTRD .06 -.24 .55 

(1)  they appear to improve estimation of the 
)(kV ’s, 
(2)  intuitively, low magnitude autocorrelations 

with the observed signs seem reasonable. 
In addition to the sampling error variances 0λ , 

Table 8 contains variance estimates 0ν  for the 

irregular and 0V  for the combined error.  It also 
shows the order selected for the MA(q) irregular.  
Note that for EMPP and MFGD, the irregular 
variance 0ν  is more than double the sampling error 

variance 0λ .  These series have the largest samples 
and, consequently, the smallest sampling error.  We 
obtain no valid estimates for 0ν  for MING, which 

has by far the largest 0λ , and so we take 0ν  to be 0.  

MFGN and WTRD also have small or vanishing 0ν .  
These five series exhibit a pattern of relatively large 
irregular variance 0ν  when sampling error variance 

0λ  is small and small 0ν  for large 0λ .  CONS is an 
exception, having sizable values of both. 

Figure 6 contains SDA results from the 12 
concurrent runs, along with a red horizontal line for 
SDU.  To simplify the pictures somewhat, SDA and 
SDU are plotted according to time point in the X-11 
run span rather than date.  For example, point 108 is  

 
Table 8.  Variances for Sampling Error, Irregular, and 
Combined Error for Six Series (with selected orders q 

for MA(q) models for Irregular) 
Series 

0λ  0ν  0V  q 

EMPP 20.5 41.9 62.4 1 
MFGD 52.4 129.7 182.1 2 
MFGN 119.7 30.2 149.9 1 
CONS 385.0 346.4 731.4 2 
MING 1512.4 0 1512.4 0 
WTRD 202.6 0 202.6 0 



 

Figure 6.  SDA for CES Series from 12 “Concurrent” Runs with 
Unadjusted Standard Deviation (solid red horizontal line) 
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Time

0 20 40 60 80 100

4.
50

4.
60

4.
70

4.
80

b.  MFGD with q=2

Time

0 20 40 60 80 100

7.
2

7.
4

7.
6

7.
8

8.
0

c.  MFGN with q=1

Time

0 20 40 60 80 100

8
9

10
11

d.  CONS with q=1

Time

0 20 40 60 80 100

16
17

18
19

20

e.  MING with q=0

Time

0 20 40 60 80 100

32
34

36
38

f.  WTRD with q=1

Time

0 20 40 60 80 100

10
11

12
13

14

 



 

Jan 03 for the first run and Dec 03 for the 12th run.  
The variability across runs is due to changing 
estimates of 0ν  and model parameters.  (As could be 
expected, this variability is least for MFGN, MING, 
and WTRD, where the variability comes almost 
entirely from the model parameters).  For EMPP and 
MFGD, SDA exceeds SDU throughout the time span, 
with end values larger than the central values.  As 
seen in Table 9, for EMPP, SDA is 3.4% higher at 
the ends and 3.1% higher in the center.  MFGD’s 
SDA is also higher than SDU, about the same 
percentage as EMPP in the center and an even greater 
percentage at the ends.  Even so, we have already 
seen that the SDA measure is quite sensitive in 
detecting significant change for MFGD.  The other 
four series all have positive reductions with SDA, in 
the 15-25% range at the ends and 5-15% in the 
center. 
 

Table 9.  % Reduction from SDU with SDA 
Series Ends Center 
EMPP -3.4 -3.1 
MFGD -8.4 -2.9 
MFGN 24.4 13.5 
CONS 16.5 4.9 
MING 16.0 12.5 
WTRD 20.7 13.1 

 
 
5.  Conclusions and Additional Work 
5.1.  Conclusions for Pfeffermann’s 

 2
.1
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Overall performance 

Pfeffermann’s method estimates SDA well, 
both for pure X-11 and for X-11 with ARIMA 
extrapolation in a variety of settings.  The bias was 
mostly about 1% or less in magnitude for the Alaska 
simulations.  For the teenage series, there was 1.9% 
underestimation in the center of the series and 6.6% 
underestimation at the ends. 
 
Relation to SDU, the standard deviation of the 
unadjusted estimate 

In most cases, SDA is less than SDU in the 
center of the series.  When extrapolation is used with 
X-11, SDA also tends to be lower at the ends.  
However, in series with relatively low sampling 
error, a sizable irregular can be identified, and SDA 
can exceed SDU. 
 
Sensitivity of measure 

The Durable Manufacturing example shows that 
the measure is sensitive in practical settings.  That is, 

the measure is able to identify quite small month-to-
month change as significant. 
 
Comparison with Bell-Kramer method 
Pfeffermann’s method has larger bias and is less 
stable in the simulation reported here.  Recall again 
that the two methods estimate different errors.  
Pfeffermann’s captures the effect of the irregular 
component, which makes a major contribution to 
series variability in cases such as our change measure 
for Durable Manufacturing. 
 
Flexibility of the method 

Although the method works best when sampling 
error autocorrelations are available, the method yields 
reasonable SDA approximations even when only 
sampling error variance estimates are available.  The 
method can be applied in index number settings to 
obtain SDA for change. 
 
5.2.  Additional work 
 
Multiplicative adjustment 

A variant of the method is available for 
multiplicative seasonal adjustment.  Simulation 
results have been obtained for a multiplicative 
seasonal adjustment with time-varying sampling error 
variances.  The SDA estimates tended to track the 
simulated truth quite closely.  Multiplicative 
adjustment with constant sampling error variances 
can also be handled.  Since this mode occurs more 
frequently than additive, this very important case 
needs further study. 
 
Change 

Because of the importance of change, future 
work will focus on simulation experiments for 
change, both with the straightforward linear filter 
approach and with the method employed in Section 4. 
 
Autocovariance estimation 

Chen, Wong, Morry, & Fung (2003) have 
developed spectral approaches to estimation of the 
combined error autocovariances.  These methods can 
handle additive and multiplicative seasonal 
adjustment modes and availability/nonavailability of 
sampling error autocorrelations.  The method uses X-
11 irregulars and assumes they follow a stationary 
process.  In practice, this means cutting off at least a 
couple of years at each end of the series, a major 
disadvantage if the series is short.  Some results show 
the method to have greater stability than the method 
of moments used in this paper.  Further 
experimentation is planned. 

 



 

X-11 filter options 
For implementation, the method should be able 

to handle any combination of X-11’s trend and 
seasonal filters.  So far, our experiments have been 
restricted to the former default X-11 filter choices:  
the 13-point Henderson filter for trend, the 33×  
filter for preliminary estimation of the seasonal, and 
the 53×  filter for final estimation of the seasonal.  
Given a series of length N, we currently run a special 
program to obtain the NN ×  matrix of linear filter 
weights for both the trend and seasonally adjusted 
series.  Simple relations allow deriving from these the 
irregular and seasonal linear filter weights. 

We plan to test the method for other X-11 filter 
options.  The simplest approach will be to extend the 
series with enough forecasts and backcasts that the 
symmetric filter applies to the entire input span.  In 
this case, only one vector of filter weights is needed 
for each set of X-11 filter options, rather than a 
matrix of weights depending on the series length. 
 
Measure for levels of index-style estimators 

We have derived a variant for handling level 
estimates in the employment estimation setting of 
Section 4.  This procedure has yet to be tested. 
 
Acknowledgments 
We thank Julie Gershunskaya, Tamara Zimmerman, 
Steve Miller, and Ed Robison for providing sampling 
error information, and Shail Butani, Pat Getz, and 
George Werking for supporting this project.  We also 
thank William Bell for helpful discussions. 
 
References 
Bell, William R. & Matthew Kramer (1999), 

“Toward Variances for X-11 Seasonal 
Adjustments,” Survey Methodology 25, 13-29. 

Chen, Zhao-Guo, Paul Wong, Marietta Morry, & 
Helen Fung (2003), “Variance Estimation for X-11 
Seasonal Adjustment Procedure:  Spectrum 
Approach and Comparison,” Statistics Canada 
Report BSMD-2003-001E. 

Findley, David F., Brian C. Monsell, William R. Bell, 
Mark C. Otto, & Bor-Chung Chen (1998), “New 
capabilities and methods of the X-12-ARIMA 
seasonal-adjustment program,” Journal of Business 
and Economic Statistics 16, 127-152. 

Ladiray, Dominique and Benoit Quenneville (2001), 
Seasonal Adjustment with the X-11 Method, 
Springer, New York. 

Morisi, Teresa L. (2003), “Recent Changes in the 
National Current Employment Statistics Survey,” 
Monthly Labor Review 126, 3-13. 

Pfeffermann, D. (1994), “A General Method for 
Estimating the Variances of X-11 Seasonally 

Adjusted Estimators,” Journal of Time Series 
Analysis 15, 85-116. 

Pfeffermann, D., M. Morry, and P. Wong (1995), 
“Estimation of the Variances of X-11 ARIMA 
Seasonally Adjusted Estimators for a Multiplicative 
Decomposition and Heteroscedastic Variances,” 
International Journal of Forecasting 11, 271-283. 

Pfeffermann, Danny & Stuart Scott (1997), 
“Variance Measures for X-11 Seasonally Adjusted 
Estimators; Some New Developments with 
Application to Labor Force Series”, Proceedings of 
the ASA Section on Business & Economic Statistics, 
211-216. 

Pfeffermann, Danny, Stuart Scott, & Richard Tiller 
(2000), “Comparison of Variance Measure for 
Seasonally adjusted and Trend Series,” 
Proceedings of the 2nd International Conference on 
Establishment Surveys, American Statistical 
Association, 755-764. 

Pfeffermann, Danny, Richard Tiller, & Tamara 
Zimmerman (2000), "Accounting for Sampling 
Error Autocorrelations:  Towards Signal Extraction 
from Models with Sampling Error," Proceedings of 
the ASA Section on Business & Economic Statistics, 
108-113. 

Scott, Stuart, Michail Sverchkov, and Danny 
Pfeffermann (2004), “Variance Measures for 
Seasonally Adjusted Employment and Employment 
Change,” ASA Proceedings of the Joint Statistical 
Meetings, 1328-1335. 

Scott, Stuart and Danny Pfeffermann (2003), 
“Evaluation of Two Estimation Methods for 
Variance of X-11 Seasonally Adjusted Series,” ASA 
Proceedings of the Joint Statistical Meetings, 3760-
3767. 

Wolter, K. M. & N. J. Monsour (1981), “On the 
Problem of Variance Estimation for a Desea-
sonalized Series,” in Current Topics in Survey 
Sampling, ed. D. Krewski, R. Platek, & J. N. K. 
Rao, Academic Press, New York, 367-403. 

 
The views expressed are those of the authors and do 
not represent official positions of BLS. 
 
 


