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Introduction 
 
We consider estimation of finite population 
totals in the presence of non-response 
assuming that non-responses arise randomly 
within response classes. We compare in 
Section 1 two regression estimators: one of 
them is based on the adjusted for non-
response probability weights and another is 
based on unadjusted weights. We show that 
when the auxiliary variables used for non-
response adjustment are included in the 
estimators then they differ only very 
slightly. In this case the non-response 
adjustment step can be omitted from the 
estimation process without loss of generality 
(from Result 5 of Deville and Särndal 1992 
it follows that the same remains correct for a 
wide class of calibration estimators). At the 
end of Section 1 we suggest a general idea 
of testing if regression estimators based on 
adjusted and unadjusted weights are 
significantly different. In Section 2 we 
consider a multivariate analog of a 
“regression through the origin" estimator, 
and show that the “adjusted" and 
“unadjusted" estimators coincide in this 
case. Then in Section 3 we consider the 
important practical case in which auxiliary 
variables are stratum indicators. We show 
that in this case all previous regression 
estimators coincide. In Section 4 we 
consider calibration estimators under 
restrictions on weights. We show that if 
there exists even one set of weights 
satisfying the calibration equations and 
restrictions then the regression through the 
origin estimator does not depend on the 
restrictions.  

 

1. Linear Regression Estimator 
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where 11 =A  if A  is true and 0   
otherwise. 
 
Let xt  and xt%  be respectively 1K + -

dimensional and K -dimensional vectors of 
constants, corresponding to ix , ix~  

respectively.  
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case L = −∞  and U = ∞  is a Linear 
Regression Estimator (see Deville and 
Särndal 1992).  
Until Section 4, we assume that L = −∞  
and U = ∞ .  
 
It can be shown (see Deville and Särndal 
1992 and Valliant, et. al 2000) that 
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where xt  is a vector of constants, 
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COMMENT 1. S ∗  and s∗  can be 
considered as a set indicating a population 
and a set of finally selected units (sample) 

respectively, { }kS∗  and { }ks∗  represent non-

response adjustment groups in the 
population and the sample, iy  and ix ’s 

represent values of target and auxiliary 
variables, id ’s are weights adjusted for non-

response, and xt  is a vector of population 

totals of the auxiliary variables with the first 
coordinate equal to N , the number of 
population units (in particular if iX  is a 

variable used for non-response adjustment 
with known “totals by group", 

∑= ∈ *)(
kSi iX XkT , then ki ix X=  if 

ki S ∗∈  and 0 otherwise); then ˆ y regt ,  is a 

linear regression estimator of the population 

total yt . Assume that id ∗  are the original 

inverse inclusion probabilities. Then in the 

case of non-response, 1 id ∗/  can differ from 

the ultimate probabilities of inclusion in the 
sample and thus to get consistent estimates 
based on these probabilities, non-response 
adjustment is done. Usually when 
adjustment is made based on auxiliary 
variables the adjusted weights and primary 
probability inverse weights are connected by 
(1) with some ic ’s. In this section we try to 

estimate the difference of two regression 
estimators one of which is based on the 

adjusted weights and another on the original 
unadjusted weights, i.e. we would like to 

estimate ( ) ( )ˆ ˆy reg y regt t
∗

, ,−d d .  

 
First we note the following very simple 
lemma.  
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This follows immediately from substitution 
of (2) and (3) into (4).  
 
Corollary 1. 
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This follows from the fact that (2) and (3) 
are the first of the WLS Normal Equations 

respectively for ( )B d  and ( )∗B d .  
 
Lemma 2. Let N  denote the size of a finite 
population, and let the following conditions 
be satisfied: as N → ∞ ,  

 i) 1lim yN t−  and 1lim N −
xt  exist. 

ii) 1 ˆ( ( )) 0yN t t− − →d  and 
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In particular under i) and ii),  (5) is 
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where summation is over the population. 
(Proof  below.)  
 
Corollary 2. Under i) and ii), 
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Note that (6) and (6 )′  do not use the kc ’s 

and (6) refers to a sample and therefore can 
be tested.  
 
COMMENT 2. If we consider iy  and 1
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as random variables generated by some 
super population (model) distribution then 
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where Eξ  means expectation with respect to 

the model distribution. A usual basic model 
assumption in linear regression theory is  
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which is in general stronger than (6M) 
which is in turn stronger than (5M).  
 
Proof of Lemma 2. It follows from Corollary 
1 that we have to estimate the difference 

between ( )B d  and ( )∗B d . Consider the 

WLS Normal equations for ( )B d  and 
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Remark 1.  Suppose  (1), i)  and ii) do not 
hold.  We have in any case     
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Remark 2. Based on (9) one can test 
whether calibrated estimators based on d -

weights and on *d -weights are significantly 
different or not. Under the assumption that  
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2. Regression Through The Origin  

 
In this section we consider a particular case 
of the regression estimator (regression 
without intercept) for which 
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Additionally, from Lemma 3, 
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3. Calibration On Known Totals 

 
Under the practically important case in 
which auxiliary variables are strata 

indicators the Linear Regression estimators 
with and without intercept coincide and thus 
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4. Bounds For Adjusted Weights 
 
Let us return to the general expression for 
the calibration estimator (see the beginning 

of section 1), ( )ˆ y reg i ii s
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On the other hand suppose (15) holds. 
Comparing this to (12), one can note that the 
central part of (15) is the benchmark factor, 
that is, is the multiplier of di used to get the 
calibration weights iν .   Thus a set of 

weights satisfying (14) exists if and only if 
(15) holds.  Therefore the following 
statement is correct.  
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Remark 4. From Lemma 4 it follows that in 
the case of calibration on known totals the 
only way to get the restrictions (14) is to 

collapse cells ks∗ ’s such that (15) is satisfied.  
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