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Abstract 
 
To produce monthly employment and unemployment estimates for all 50 States, the District 
of Columbia and selected metropolitan areas, the Bureau of Labor Statistics (BLS) uses time 
series models applied to estimates from the Current Population Survey (CPS).  The CPS 
design raises two types of problems for time series modeling.  The first, and most obvious, is 
the variability in the data due to small samples.  Secondly, the CPS has an overlapping 
design that induces strong autocorrela tions in the survey errors (SE).   
 
When fitting time series models to CPS State data, it is important to explicitly account for the  
two important properties of the SE.  This is done by using a  signal plus-noise model where 
the monthly CPS estimates are treated as stochastically varying time series obscured by 
survey error.  Given a model for the true labor force values (signal) and survey error (SE) 
variance-covariance information, we construct an estimator or filter that suppresses SE along 
with seasonal variation in the population.  We also extend this model to a bivariate form to 
incorporate information in related series. 
 
Introduction 
 
To produce monthly employment and unemployment estimates for all 50 States and the 
District of Columbia, the Bureau of Labor Statistics (BLS) uses time series models  applied to 
estimates from the Current Population Survey (CPS).  While the CPS provides reliable 
estimates of national aggregates, its sample is spread too thinly geographically to provide 
acceptable reliability at the State and sub-State level.  The time series approach provides a 
way of reducing variability by pooling survey data across time within a State.  This approach 
treats the unknown true population values as stochastic and uses signal extraction 
techniques to estimate these true values from a noisy series.   Because of the complex 
design of the CPS, the behavior of the observed sample estimates differs in important ways 
from the behavior of the hypothetical true values.  An overlapping sample design and 
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changes in reliability induce strong positive autocorrelation and heteroscedasticity in the 
sampling errors.  To account for the dynamic behavior of the true values and the errors 
induced by the survey design, a model of the population values is combined with a model of 
the survey errors.  The population model is formulated to produce seasonally adjusted series 
and uses covariate series along with the CPS series in a bivariate model to estimate the CPS 
trend. 
 
Under the Bureau of Labor Statistics (BLS) Federal-State cooperative Local Area 
Unemployment Statistics (LAUS) program, State model-based estimates provide controls for 
over 7,000 sub-State area estimates produced by various methods (Bureau of Labor 
Statistics, Handbook of Methods).  BLS is responsible for the methodology, technical 
procedures, validation, and publication of the estimates.  State employment security agencies 
are responsible fo r preparing the monthly estimates according to BLS standards.  These 
State and area estimates are used by a wide variety of customers.  Federal programs base 
allocations to States and areas on the data, as well as eligibility determinations for 
assistance. State and local governments use the estimates for planning budgetary purposes 
and to determine the need for local employment and training services.  Private industry and 
individuals use the data to compare and assess local labor market developments. 
 
 
 
History of State Labor Force Estimation 
 
Historically, CPS samples have not been sufficiently large, in all but the most populous 
States, to produce reliable monthly estimates directly from the survey.  As a result, indirect 
methods have been used to estimate employment and unemployment. As far back as 1960, 
statewide estimates were developed using the Handbook method.  In 1978, following a series 
of sample expansions, BLS adopted the direct use of monthly CPS estimates in the 10 most 
populous States and later one additional State was added.  In the remaining States the 
Handbook continued to be used but adjusted to a 6 month moving CPS average and at the 
end of the year benchmarked to the CPS annual average. 
 
For 39 States and the District of Columbia, the Handbook method was replaced in 1989 by a 
time series approach to modeling State unemployment and employment series.  For each 
State, a dynamic regression model was developed with CPS as the dependent variable and 
auxiliary series from unemployment insurance data and an employer survey of payroll 
employment as regressors with stochastic coefficients.  To produce seasonally adjusted 
estimates, the model estimates were adjusted externally by X-11 ARIMA.  At the end of the 
year, model estimates for each State were benchmarked to their respective CPS annual 
average. 
 
In 1994 a major revision to the structure of the time series model was introduced to explicitly 
control for characteristics of the survey error.  Known as the signal plus noise approach, a 
model of the  survey errors based on design information is combined with a dynamic 
regression model of the true values to decompose the CPS into estimates of the  
true population values and the survey errors.  In 1996 these models were extended to all 
States.  The practice of external seasonal adjustment with X-11 and benchmarking to annual 
average State CPS estimates was continued. 
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Finally, in 2005, the dynamic regression model was replaced by a bivariate structural time 
series model of the true CPS values that directly produces seasonally adjusted estimates.  In 
addition, the practice of benchmarking to the State CPS annual average was replaced by real 
time and historical benchmarking of estimates to the monthly national CPS. 
 
State CPS series 
 
The State series modeled consists of all 50 States and the District of Columbia.  The two 
most populous States, California and New York are subdivided into two areas.  California is 
divided into Los Angeles-Long Beach-Glendale metropolitan division and the balance of 
California, and New York is divided into New York City and balance of New York.  In addition, 
five major metropolitan CPS series are also modeled (see details below). 
 
Small samples in each State result in unacceptably high variation in the monthly CPS 
estimates of State employment and unemployment.  The table below gives the  State sample 
sizes, and standard errors, and coefficient of variation (CVs) for the unemployment rate and 
the employment-to-population ratio assuming an unemployment rate of 6  percent for the 
States and the Nation as a whole. 

 
Reliability of State CPS Monthly Estimators Under the 

2000 Design 

 Unemployment Rate (%) Employment-to-
Population Ratio (%) 

Number of 
Households 
in sample 

 CV% SE CV% SE  

Nation 1.9 0.11 0.22 0.14 71,681 

States      

median 17.51 1.05 2.03 1.32 1,204 

 range 13.00 - 20.35 0.78 - 1.22 0.92 - 3.47 0.58 - 1.92 700 - 5,344 
 
To produce less variable labor force estimates as well as produce more stable seasonally 
adjusted estimates, BLS introduced time series models to ‘‘borrow strength’’ over time by 
using historical series of sample observations for a given State to increase its effective 
sample size.  On average the variance of month-to-month change in the model estimates is 
about one third of the size of the CPS variance.   
 
The models are based on the signal plus-noise approach to small area estimation where the  
monthly CPS estimates are treated as stochastically varying  time series obscured by survey 
error (Tiller, 1992).  Given a model for the true labor force values (signal) and survey error 
(SE) variance-covariance information, we construct an estimator or filter that suppresses SE 
along with seasonal variation in the population.  We also extend this model to a bivariate form 
to incorporate information in related series.  The estimator of the signal developed from this 
general model is optimal under the model assumptions and is design consistent under 
general conditions.  This approach was first suggested by Scott and Smith (1974) and has 
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been more fully developed by Bell and Hillmer (1990), Binder and Dick (1990) and  
Pfefferman (1992).   
 
Because the model estimates depend heavily on historical data they are slow to respond to 
sudden permanent shifts in CPS levels.  To improve the robustness of the models, State 
estimates are constrained to sum to the National CPS estimates. 
 
MODEL OF CPS SERIES 
 
The CPS design raises two types of problems for time series modeling .  The first, and most 
obvious, is the variability in the data due to small samples.  Moreover, this variability changes 
systematically over time with changes in the population values, sample size, and sample 
design.  Secondly, the CPS has an overlapping design that induces strong autocorrela tions in 
the survey errors (SE).   
 
When fitting time series models to CPS State data, it is important to explicitly account for 
these two properties of the SE. This is done by fitting separate (independent) time series 
models for the survey errors and the population values.  An important target variable is the 
seasonally adjusted population series.  Accordingly, we formulate the  population model as a 
basic structural model that decomposes a single series into stochastic trend seasonal and 
irregular components (Harvey, 1989).  SE is treated as an additional unobserved component 
of the time series, with the special advantage that its variance-covariance structure is 
objectively identified by design information.  In effect this combined model filters out both 
survey error and seasonality. 
 
Two models—one for unemployment and one for employment—are developed for each 
State.  Let the direct survey estimator (CPS) for a given State, yt (either unemployment or 
employment) be represented as the sum of two independent processes, the true population 
values, Yt, and the survey errors, et, arising from survey only a portion of the total population   
 

yt = Yt + et (1) 

 
Survey Error Model 
 
The CPS survey's complex design induces heteroscedasticiy and autocorrelation in the 
survey errors, which is represented below,   
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where, 

DY = design effect for Yt, Nt = population size; nt =  sample size 
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We formulate the variance-covariance structure of each State’s CPS series as a linear 
stochastic process since it can be easily put into a state -space form, which as explained later, 
has  important advantages for estimation.  Specifically, the SE model is specified as a 
ARMA(2,17) process with changing variance. 
 

*
t t te eγ=  (3) 

where, 
t e e

γ σ σ ∗=  
* * *

1, 2,t t te e e= + , 
*
1, 1, 1 1, 1 2 1, 2 3 1, 3 12 1, 12 13 1, 13 14 1, 14 15 1, 15t t t t t t t t te a a a a a a a aθ θ θ θ θ θ θ− − − − − − −= + + + + + + +  
* * *
2, 1 2, 1 2 2, 2 2,t t t te e e aφ φ− −= + +  

 
The at are uncorrelated independent disturbance terms with zero mean and fixed variance.  
The scale factor, γt accounts for the changing CPS variance.  The autocorrelated SE is 
modeled by *

te  as the sum of a MA(15) process, *
1,te  , and an AR(2) process, *

2,te , which results 
in an ARMA(2,17) process for the aggregate.  Each of these processes represents specific 
characteristics of the survey design described below.   
 
The MA (15) model accounts for the overlap of identical households in the CPS sample 
induced by the 4-8-4 rotation pattern.  This scheme results in a sample overlap of 75%, 50% 
and 25% for the first three monthly time lags, overlaps of 12.5%, 25%, 37.5%, 50%, 37.5%, 
25% and 12.5% at lags 9 to 15 and no overlap at lags 4 -8 and 16 and over.  Accordingly,  

*
1,te  has non-zero autocorrelations at only those lags corresponding to a sample overlap. 

 
Another important feature of the CPS survey design is that panels rotating out of the sample 
are replaced by panels sampled from the same census block, implying that the survey errors 
are actually correlated even outside the sample overlap period. A model accounting for this 
source of autocorrelations is the AR (2) model, *

2,te .  The two roots of the AR operator are 
real, which captures the slow decay in the autocorrelations with increasing lag length.   
 
Model of the Signal 
 
We refer to the true population values as the “signal”.  Since a seasonally adjusted series is 
an important target, we specify the signal in terms of the classical time series decomposition, 
 

, , , =   + + t Y t Y t Y tY T S I  (4) 
 
where TY,t is the trend-cycle, SY,t the seasonal, and IY,t the irregular component. 
 
The trend-cycle and seasonal components have mutually independent normal disturbance 
terms that cause them to drift slowly over time.  The variances of these disturbances 
constitute the “hyperparameters” of the signal and determine the properties of the individual 
components.  A positive variance for a component implies that it is stochastic (not perfectly 
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predictable from past history), while a zero variance implies deterministic behavior (a fixed 
pattern over time).  The irregular is treated as an uncorrelated zero mean disturbance with 
fixed variance (white noise process). 
 
Trend-Cycle 
 
The trend-cycle is represented as a local approximation to a linear trend-cycle with a random 
level, TY,t and slope, RY,t  
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This simple trend-cycle model can accommodate patterns ranging from an irregular cyclical 
series to a linear trend with a fixed rate of growth.  Shifts up or down in the level give the 
trend-cycle a jagged appearance while changes in slope are inherently more gradual, 
causing acceleration, deceleration or change in direction.  Overall smoothness, therefore, 
depends on the magnitude of the level variance relative to the slope variance.  A small level 
variance relative to the slope variance implies a smooth trend (i.e. few turning points).  In 
contrast, if the slope variance is small relative to the level variance, the trend will frequently 
change direction.  In general, the trend-cycle is a combination of a long run trend and more 
variable cyclical fluctuations. 
 
Seasonal 
 
The seasonal component is specified in terms of 6 trigonometric terms associated with the 12 
month periodicity and its harmonics (periodicities of 6, 4, 3, 2.4, and 2 months). 
 

6
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S S
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Each frequency component is represented by a pair of stochastic variables expressed in 
recursive form as a vector autoregressive process, 
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The disturbance terms, , ,Y j tη  and *

,jY tη  allow the seasonal effects to evolve stochastically over 

time but in a way that guarantees that the expectation of the sum of 12 successive seasonal 
effects will be zero.   

11
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The seasonal disturbances are assumed to have a common variance, 2
YSσ , thus the change 

in the seasonal pattern depends upon a single parameter.  If the common variance is zero 
then the seasonal pattern is fixed over time (Harvey 1989). 
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Irregular 
 
The irregular component is a residual not explained by the components discussed above .  
This component is specified as consisting of a single white noise disturbance with a zero 
mean and constant variance 
 

( )2
, ,, ~ 0,t I t I t II NIDν ν σ=  (7) 

 
If the variance for this component is zero, then the irregular is identically zero and can be 
dropped from the model.  From a diagnostic point of view it is useful to start with an irregular 
component since it is sensitive to outliers and therefore useful for identifying the presence of 
the latter in the series. 
 
Outliers  
 
Time series are occasionally influenced by exogenous disturbances that shift the level of the 
series.  We model this type of behavior as either temporary or permanent without stochastic 
disturbance terms, 
 

, , , ,Y t Y j Y j t
j

O λ ζ= ∑  (8) 

 
where ζY,j,t is an indicator variable identifying when the outlier effect first occurred and its 
duration.  The coefficient λY,j is the change in the level of the series at time j.  For an outlier 
that affects only one observation, 
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and for a permanent shift in level, 
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Covariate Model 
 
The above model uses information in a single State CPS time series. A natural extension of 
the structural model is to allow one or more of the unobserved components of the signal to be 
related to corresponding components in another series.  A common core of State specific 
monthly covariates have been developed from auxiliary data sources – unemployment 
insurance claims from the Federal-State Unemployment Insurance System is used for the 
unemployment model, and nonagricultural payroll employment estimates from the Current 
Employment Statistics (CES) program for the employment model.  
 
The model for the covariate, Xt , follows the same basic structural form as for Yt, with 
stochastic trend, seasonal and irregular components, 
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, , , =   + + t X t X t X tX T S I  (9) 

 
with hyperparameters { }2 2 2 2= , , ,

X X X XX T R S Iσ σ σ σΩ . 

 
The two series, Yt and Xt are treated as related in a bivariate time series model with 
contemporaneous correlations between their respective trend disturbances.   
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Correlations between irregular and seasonal components could also be allowed, but because 
they are very weak it is not worth the additional complexity.   
 
This model is a special case of the seemingly unrelated time series equations (SUTSE) 
model (Harvey, 1989).  It allows for a cointegrating relationship between the two trends such 
that some linear combination of the two is either stationary in levels or first differences.  That 
is, this model allows for a stable relationship between either levels or slopes or both.  For the 
most part the empirical correlations are not strong enough to imply the presence of 
cointegration. 
 
ESTIMATION 
 
Our combined CPS model with covariates has a complex form with a very large number of 
parameters to estimate.  Two major simplifications make it feasible to implement.  First, the 
availability of design based information allows us to estimate the SE parameters 
independently of the time series parameters.  Secondly, estimation of the unobserved 
component series is simplified by casting the model into state-space form. 
 
Estimation of Unknown Model Parameters 
 
When fitting time series models to CPS data, our objective is to account for the variances and 
correlations of the survey errors.  Our combined model consists of up to 17 SE ARMA 
coefficients, SE variance estimates for each time point and up to 10 hyperparameters 
associated with the time series components.  Estimation is complicated since neither the 
population series nor the SE is observable and the only data available for fitting the time 
series model is the observed survey series.  Estimating simultaneously the parameters for 
the combined model is problematic because of their large number and the identification 
problems arising when the SE model, because it is autocorrelated, is partially confounded 
with the model for the population values. 
 
To overcome the identification problem as well as to simplify estimation we use a two step 
process.  First we estimate the survey error model parameters from design based information 
independently of the time series model of the signal.  In the second step we estimate the 
parameters of the signal from the survey series, holding the parameters of the SE model 
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fixed.  The model holding for the signal is thus identified and estimated from the observed 
series.  See Bell and Hilmer (1990), Tiller (1992), Pfeffermann, Feder and Signorelli (1998) 
and Harvey and Hwang (2000) for application of this modeling paradigm. 
 
The estimation of the two sets of parameters—those related to the SE model and to the time 
series model—are discussed below. 
 
Variance estimates 
 
To assess the reliability of national statistics on an ongoing basis, the Census Bureau uses 
the method of generalized variance functions (GVF).  This approach fits variance curves to 
groups of statistics for which variances have been estimated directly from the survey replicate 
variances.  This curve is then generalized over time and to other statistics not used in the fit 
but with similar coefficients of variations .  The form of the GVF is 
 

2

ty
t

b
V a

y
= +  (11) 

 
where 2

tyV  is the rel-variance of the estimate yt and a and b are estimated parameters. 
 
This approach raises problems at the State level where sample sizes are small and non-self 
representing (NSR) samples often have a substantial contribution to total variance. Since 
only one PSU is selected per NSR stratum, there is no direct way to estimate the NSR 
sampling variance without collapsing strata .  This approach creates an artificial between 
stratum variance component that inflates the variance estimate.   
 
At the State level, the variance parameters are computed indirectly as described below.  
 

, t
t t y t

bN
b k D a

n N
= = −  (12) 

 
where, 

Dy = within PSU design effect  
N  =  total population size 
n   =  sample size 
kt,  =  ratio of total to  between PSU variance. 

 
The State design effect is based on the national design effect adjusted for State differences 
in non-interview rates.  The between PSU variance (incorporated in kt,) is computed directly 
from the latest Census data and adjusted to current labor force levels. 
 
Survey Error Autocorrelations  
 
The other key set of survey error parameters are the survey error autocorrelations (SEA).  
The SEA could be estimated from replicates but we do not have a very long time series of 
replicates.  To over come this problem we use a different approach to produce SEA 
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estimators.  This approach is based on a simple method for estimating the SEA from the 
separate panel (rotation group) estimates (see Zimmerman and Robison,1995 and 
Pfeffermann, Feder and Signorelli 1998,).  A panel is defined as the set of sampling units 
joining and leaving the sample at the same times.  The CPS sample consists of 8 such 
panels in every month, where each panel is a representative sample of the population. 
 
The “direct” sample estimator before compositing is an average of the panel estimates. 
Pseudo- errors may be computed as the deviation of each panel estimates around the mean 
of the panel estimates for each month (after correcting for time in sample bias).  SEA may be 
estimated directly from the pseudo errors.  For further details, see Pfeffermann, Tiller and 
Zimmerman (2000). 
 
Originally we fit an ARMA(2,17) model to the autocorrelations , but because it took up 
considerable computer time to estimate the parameters we approximated it with an AR(15). 
The AR coefficients were quickly computed using the Yule-Walker equations (Box and 
Jenkins, 1976).  We chose the order 15 because it reproduces the empirical SEA for the first 
15 lags, and because the partial autocorrelations beyond that lag computed from the 
empirical SEA were found to be very low (usually below 0.05). Having a model that produces 
the ‘correct’ first 15 SEA for the CPS series is useful because these are the more important 
correlations and hence the AR(15) structure is robust against possible departures from the 
true underlying model. 
 
Time Series Parameters 
 
The second step is to estimate the hyperparameters of the time series model.  Our complete 
model is represented in compact form as,  
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To simplify estimation, this model is put into the state-space form as described below.  Once 
in that form, the Kalman Filter (given below) computes the conditional density for a single 
observation, yt, which is normal with mean, yt/t-l and variance, ft/t-l .  The joint density of the T 
sample observations is the product of these individual densities.  Given estimates of the SE 
model parameters, 2

,
ˆˆ ,e t iσ φ , and initial values for the state vector, α0 , and its covariance 

matrix, P0 , the unknown hyperparameters of the time series components are estimated by 
maximum likelihood using the prediction error decomposition of the likelihood function, L 
(Harvey, 1989), 
 

( ) ( ) 2 1
1 1 , 0 0 / 1 / 1 / 1 / 1

1

ˆˆ, ,..., , ; , , , ln
T
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In the equation above, l is the number of non-stationary elements in the state vector which 
determines the number of observations required to form priors of these elements and υt/t-1 is 
the one-step ahead prediction error described below.  The estimators of the variance 
components are obtained by maximizing L with respect to Ω  using a quasi-Newton routine to 
search the parameter space. 
 
Estimation of Time Series Components 
 
The key to simplifying estimation of the unobserved components of the CPS series is to 
represent the model in state-space form.  The nice thing about this set up is that estimation of 
complex time series models is implemented with very simple algorithms while other 
estimation approaches, such as regression, are very difficult to implement.  The fundamental 
algorithm is the Kalman filter (KF) for estimation in real time as new observations become 
available each month and a smoother algorithm which updates the KF for estimation in 
historical time when the number of observations is fixed.   
 
Consider the multivariate case where yt is now a vector of the observed series at time t and et 
a corresponding vector of “measurement” errors.  Let the unobserved components be 
contained in the “state” vector, αt.  The standard state-space form consists of a transition 
equation and an observation equation.  The transition equation describes the dynamic 
behavior of the state vector as a first order vector autoregressive process, 
 

( ) ( )2
1 ; ~ 0, ,

jt t t t t tF G NIID Q Q Diag ηα α η η σ−= + =  (15) 

 
The observation equation represents the observed data as a linear combination of the state 
variables plus uncorrelated “measurement error”. 
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t t t t t t
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y Z e E e E e e
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τ
Σ =
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The observation matrix,  Zt, and transition matrix, Ft, and disturbance matrix Gt are known 
non-stochastic matrices, and ηt  is a vector containing the white noise disturbances of the 
component models  with a diagonal covariance matrix, Q. 
 
While the transition equation may appear to be restrictive, a surprisingly wide range of 
models can be transformed to an AR form by constructing artificial state variables.  For all 
processes that can be given a state-space representation, the KF algorithm provides a simple 
unified approach to prediction and estimation in real time.  The trend, seasonal, and irregular 
components easily fit into the state-space form since they are already expressed as first 
order AR processes. 
 
For our application, the restriction that measurement error (in our case survey error), et, be 
independent of its previous values with fixed variance requires modification of the observation 
and transition equations.  When measurement error is correlated, as is the case with CPS 
survey error, the usual practice is to remove it from the observation equation and add it to the 
state vector.  This is possible provided the measurement error can be represented by a 
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model that has a state-space form.  Our CPS survey error model is an ARMA process which 
is easily translated into a vector autoregressive form and, then, included in the state vector 
along with the other components.  This modification results in a transition equation that is 
augmented with the SE model and an observation equation with no measurement error. 
 

t t ty Z α=%  (17) 

 
The first row of the observation matrix contains mostly zeros and ones to select the relevant 
components that sum to the observed CPS values as well as outlier regression variables and 
the CPS variance inflation factors.  The second row selects out the components that sum to 
the covariate values. 
 
We are interested in the signal or its non-seasonal component which are linear combinations 
of the state vector, which we represent as, 
 

,Signalt t ty z α=  (18) 
 
The vector zt retrieves the signal from the state vector.  It is identical to Zt except that the 
components of the state vector not associated with the signal are zeroed out.   
 
Given the sample data (y1,…,yn), the problem is to predict the state vector.  Assuming the 
transition equation disturbances are normal, the predictor, /ˆt nα , is the conditional expectation 
given the data, which is the minimum variance unbiased predictor with covariance matrix /t nP  
 

( ) ( )2
/ / /ˆ ˆ/ , /t n t n t n t t n nE y P E yα α α α = = −   (19) 

 
E denotes the expectation operator and n indexes the latest period for which data are 
available.  The value we predict may refer to the present (t = n), past (n > t) or future (n < t). 
 
Without the normality assumptions, this predictor is only a linear projection rather than a 
conditional expectation and therefore is a best linear unbiased predictor (BLUP). 
 
Filtering 
 
The KF provides a recursive formula for calculating the conditional mean of the state vector 
at time t, /ˆt tα , and its covariance matrix by means of updating the estimator, / 1ˆt tα − .  It is 
constructed from two sets of equations derived from the state -space equations – the 
prediction equations and update equations.  The prediction equations compute  the mean 
vector and covariance matrix for the conditional density based on sample data prior to time t, 
given the variance parameters, and the initial state vector 0α̂ , 
 

/ 1 1/ 1 / 1 1/ 1ˆ ˆ ,t t t t t t t t t t t t tF P F P F GQGα α− − − − − − ′ ′= = +  (20) 
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the mean yt/t-l, and variance ft/t-l of the conditional density of the sample observation is given 
by 

/ 1 / 1 / 1 / 1ˆˆ ,t t t t t t t t t t ty Z f Z P Zα− − − − ′= =  (21) 

 
Once an additional observation, yt, becomes available, the update equation revises the 
conditional moments with the new information in the latest observation. 
 

( )/ / 1 / 1 | | 1ˆ ˆ , 1t t t t t t t t t t t t tk P k Z Pα α υ− − −= + = −  (22) 

where, 
1

/ 1 / 1 / 1 / 1ˆ,t t t t t t t t t t t tk f P Z y Zυ α−
− − − −′= = −  

 
The quantity, kt, is the gain of the KF and υt/t-1 is the one-step-ahead error in predicting yt with 
its conditional mean, / 1ˆt ty − .  The estimator of the signal and its covariance matrix are given by 

, / / , / /ˆˆ ,Signalt t t t t Signalt t t t t ty z P z P zα ′= =  (23) 

 
To initialize the KF, it is necessary to specify starting values for the conditional moments.  
Those elements of the state vector that are stationary, i.e., survey error and the irregular, are 
initialized with their unconditional moments.  The variances for the non-stationary and non-
stochastic state variables are initialized with diffuse priors. 
 
Filtering is tailored to real time processing of one observation at a time as it first becomes 
available.  Each period the KF makes a prediction, / 1ˆt ty −  of the next observed value, yt, using 
only the previous period estimates of the state vector, 1/ 1ˆt tα − − , and covariance matrix, 1| 1t tP− − , 

and calculates updated estimates from the prediction error, / 1t tυ −  , thereby incorporating 
information from the latest available data at time t.  Since the predicted values reflect all the 
past data up to time t -1, the corrected estimates for time t reflect all the available information 
from both the historical and current values of the series.  After each prediction and update 
step, the prediction update process is repeated.  The significant point is that the KF does no 
more work to process the last observation than it does for the first.  The net result is an 
algorithm tailored to real-time applications, where data are continually coming in and 
information about the current value of the unobserved components is needed immediately. 
 
Smoothing 
 
The KF, however, is not well suited for producing historical estimates for a fixed set of data 
observations since it is designed to produce a current period estimate only and not to revise 
any earlier estimates.  Observations  following time t, yt+1, yt+2,…, convey information about 
unobserved components at time t which can supplement the information available at time t.   
 
The retrospective improvement of the KF estimates using ex post information is achieved by 
a process conveniently described as “smoothing”.  This process revises each of the KF 
estimates for a period running from t = 1, to the last available observation at t = n.  These 
“retrospective” estimate  are obtained from the “Kalman Smoother,” which runs the KF 
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recursion backwards from t=n to t = 1 through the earlier data revising the estimates 
produced by filtering at each time point.  Smoothing is batch processing in the sense that it 
operates on all of the data at once in contrast to the KF which processes one observation at a 
time. 
 
A number of smoothing algorithms are available in the literature.  We use a fixed interval 
smoother developed by DeJong(1988), 
 

( )
/ / 1 / 1

/ / 1 /

ˆ ˆt n t t t t t

t n t t t t t

P r

P P I N P

α α − −

−

= +

= −
 (24) 

where 

( )

1
1 / 1 / 1

1
1 / 1

1

t t t t t t t t

t t t t t t t t

t t t t

r Z f L r

N Z f Z L N L

L F K Z

υ−
− − −

−
− −

′= +

′ ′= +

= −

 

for t = n,…,1 initialized with rn = 0 and Nn = 0. 
 
Not surprisingly, the estimates from the smoother typically look “smoother” than those from 
the filter.  This is because the variances of the smoothed estimates are never larger than the 
variances for the filtered estimates and usually much smaller towards the center of the series.  
But it is important to note that since these smoothed estimates use data from the entire 
sample, they do not correspond to estimates that would have been available to data users in 
real time.  In practice, smoothing is done once a year.  While smoothing could be performed 
each month, there is an obvious disadvantage to revising previous month estimates each 
month since it is likely to confuse data users.   
 
Our model involves a large number of estimated parameters, many of which are estimated 
outside the time series model.  This raises the question as to how errors in the parameters 
can be accounted for in the variances of the model estimates.  Pfeffermann and  Tiller, 
(2005a) develop a bootstrap method that is unbiased and computationally feasible for very 
complex models. 
 
DIAGNOSTIC TESTING 
 
A model should adequately represent the main features of movements in the CPS. An 
analysis of the model’s prediction errors is the primary tool for assessing goodness of fit. This 
is an indirect test of the model. The actual model error is the difference between the true 
value of the signal and the model’s estimate of that value. Since we do not observe the true 
values we cannot compute the actual model error.  The overall model, however, provides an 
estimate of the signal and survey error, which sum to an estimate of the  CPS. We may, 
therefore, use the model to predict new CPS observations. 
 
The prediction errors are computed as the difference between the current values of the CPS 
and the predictions  of the CPS made from the model, based on data prior to the current 
period.  Since these errors represent movements not explained by the model, they should not 
contain any systematic information about the behavior of the signal or noise component of 



 15 

the CPS.  Specifically, the prediction errors, when standardized, should approximate a 
randomly distributed normal variate with zero mean and constant variance. The models are 
subjected to a battery of diagnostic tests to check the prediction errors for departure from 
these properties. 
 
SEASONAL ADJUSTMENT 
 
Data users are primarily interested in the underlying trend movements in the labor force 
series.  The seasonal adjusted series is therefore an important target variable.  The model 
directly produces an estimate of the non-seasonal component of the CPS free of survey 
error.  To estimate the signal, the model in effect constructs a survey error filter, which 
attenuates the effect of survey error in the CPS and then removes seasonality with a 
conventional type of seasonal filter.   
 
Conventional non-model based approaches to seasonal adjustment, such as X-12, ignore 
survey error and produce a trend, seasonal, and irregular decomposition that is very different 
from the classical decomposition.  Much of the correlated survey error is absorbed into the 
trend, which produces spurious long run fluctuations. SE also tends to cause seasonal 
patterns to look less stable than they really are  (Tiller, 1996). 
 
BENCHMARKING 
 
While the use of models produces estimators with much smaller variances than the survey 
estimates, it raises the question of how to protect against model breakdowns.  The most 
dramatic type of breakdown occurs when there is an unexpected external shock occurring in 
real time that results in a  large shift in the level of the series.  Since this shift is unrelated to 
the historical past, the model will be slow to adapt to the new level.   Monitoring prediction 
errors in real time is a common practice for detecting model breakdowns of this sort, but even 
when large prediction errors are detected, prior information about the nature of the outlier is 
rarely available.  In these circumstances it is not possible to determine the appropriate outlier 
specification until additional data become available.  Therefore, it is desirable to have a "built-
in mechanism" to ensure the robustness of the estimators when the model fails to hold. 
 
To provide protection against nationwide shocks, we constrain the sum of the State model 
estimates to equal the national CPS values.  The justification for using the CPS national data 
is that the direct CPS estimators, which are unreliable in single States, can be trusted when 
aggregated over many States.  The basic idea behind the use of the constraints is that if 
there is a nationwide shock that affects most States, the benchmarked estimators will reflect 
this change much faster than the model dependent estimators. 
 
Benchmarking actually takes place in two stages.  First, States are grouped into the 9 
Census Divisions.  The aggregate CPS division employment and unemployment series are 
modeled and then constrained to add up to the monthly National CPS estimates.  These 
adjusted Division model estimates serve as benchmarks for constraining the sum of the State 
estimates to add to their respective adjusted Division estimates.  In this way all of the State 
model estimates are constrained to sum to the National CPS estimates. 
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An approach under research for taking into account the errors in the benchmarks is 
discussed in Pfeffermann and Tiller (2005b). 
 
METRO-AREA MODELS 
 
Time series models are also developed for the following metropolitan areas, 
 Chicago-Naperville -Joliet, IL metropolitan division  

 Cleveland-Elyria-Mentor, OH metropolitan area  

 Detroit-Warren-Livonia, MI metropolitan area  

 Miami-Miami Beach-Kendall, FL metropolitan division  

 Seattle-Belvue-Everett, WA metropolitan division.  

 
For each State with a metro model, a model is also developed for an aggregate balance of 
State area.  The sum of the metro area and balance of State models estimates are forced to 
equal the corresponding benchmarked State estimates. 
 
OPERATIONS OF THE SYSTEM 
 
As part of the Federal-State cooperative Local Area Unemployment Statistics program, staffs 
in the 50 State and District of Columbia Employment Security agencies prepare their 
respective official monthly estimates using the State Time Series Analysis and Review 
System (STARS) software developed by BLS.  A web-based interface allows State users to 
access this software on BLS servers to create, review, update and download labor force 
estimates. 
 
During monthly processing, State users are queried for their latest UI and CES data which is 
combined with CPS data to produce model based estimates using the Kalman filter.  At the 
end of the year, preliminary data are revised and the filtered estimates are revised with the 
smoothing algorithm and the smoothed State estimates are benchmarked to the monthly 
national CPS estimates. 
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