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1. Introduction 
 
This paper describes a simple, closed-form density 
estimator, derived solely from a single histogram, and 
explores its performance. The density estimator is defined 
primarily as a piecewise quadratic polynomial with 
adjustments made at the right and left extremes of the 
domain and is intended for use on proportions estimated 
from interval-censored data. For an intuitive feel of the 
performance, the density estimator is compared visually 
to kernel density estimates using corresponding point 
data. A simulation study is used to test the density 
estimator on two possible distribution shapes, and with 
two possible sample sizes. Performance is measured by 
the Mean Square Errors of the means and a few 
percentiles.  
 
Disclaimer: Any opinions expressed in this paper are 
those of the author and do not constitute the policy of the 
Bureau of Labor Statistics. 
 
1.1 Motivation 
 
To what extent can accurate estimates be derived from 
coarse, low-detail data? Due to cost constraints, survey 
designers are often faced with difficult decisions 
regarding the quality and quantity of data that can be 
collected within a set budget. Survey designers try to 
optimize the quality of estimates produced. One of the 
ways in which this is done is by choosing between a 
relatively small amount of detailed data, a relatively large 
amount of coarse data.  
 
The Occupational Employment Statistics Program 
conducted by the Bureau of Labor Statistics is an example 
of a survey that takes a fairly coarse, censored 
measurement for a very large sample. OES collects wage 
data from approximately 1.2 million business 
establishments every 3 years using, primarily, a form 
mailed to each establishment. Rather than collecting 
specific wage values, twelve intervals are given and the 
number of employees whose wages fall in each interval is 
recorded. From this data, OES estimates the mean wage 
and five percentile values. The mean is estimated by 
assuming a mean for each interval from an outside source 

and weighting the assumed means by the estimated 
proportion of employment within the interval.  
 
Compared to assumed mean methods, which are 
frequently used in practice, density estimation has several 
major advantages for this type of data. It can make a more 
full use of the information available by considering both 
the proportions in the intervals and their relationship to 
adjacent intervals. Density estimation can be done with 
relatively few assumptions about the distribution as a 
whole and the distributions within particular intervals. 
Once calculated, the density estimate can be used for a 
variety of different types of estimates. And furthermore, if 
desired, the functional format allows for simple 
alterations or extensions. For instance, for occupational 
wage distributions one might add spikes at $0.25 
increments for lower wages or one might move older data 
forward in time with higher wages rising somewhat faster 
than lower wages. 
 
1.2 Data Sources  
 
Three types of data were used for this study. Two types of 
data collected by the Bureau of Labor Statistics were used 
to test the density estimation methods described. Wage 
data collected as specific values through the National 
Compensation Survey was used to compare interval and 
point data density estimation methods and wage data 
collected in intervals by the Occupational Employment 
Statistics Program was used for studies of aggregation and 
other related issues which play a major role in the 
usability of a proposed method.  To allow more thorough 
analyses and more general, reproducible results and to 
avoid any possible unintended disclosure of confidential 
BLS data, synthetic data was generated and used to 
produce the figures and analyses included in this paper. 
The generating distributions are based on the lognormal 
distribution, selected to mimic certain features of the 
collected data. The generating distributions are defined on 
[ )!,15.5 , and OES intervals from 2006 are used to define 
bins: 5.15, 7.50, 9.50, 12.00, 15.25, 19.25, 24.50, 31, 
39.25, 49.75, 63.25, 80.00. Note that the interval 
boundaries are set so that the maximum relative errors of 
observations within each interval are approximately 
equal.  
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1.3 Available Density Estimation Methods 
 
Density estimation methods tend to focus on smoothing 
point data rather than extrapolating from censored data 
(i.e. B.W. Silverman 1986, W. Hardle 1991). Several 
interesting methods for density estimation from censored 
data have arisen in the biostatistics field such as Peto’s 
experimental survival curves, Turnbull’s CDF, and Braun 
et. al.’s kernel density estimate for interval censored data. 
This literature focuses on iterative methods used to 
estimate the cumulative distribution function. Three 
aspects of these methods make them difficult to apply to 
OES and similarly censored data: the nature of the data 
used, the requirements for automation, and the low order 
of resulting CDFs. 
 
Density estimation methods for interval censored data, 
including all three methods mentioned above, often make 
use of varying bounds for the intervals of each 
observation. When interval boundaries are well spread 
throughout the domain, there is substantial information 
about the shape of the CDF within any interval of the 
domain. However, when observations are restricted to a 
small set of possible intervals, although the estimated 
CDF may be more accurate at those boundaries, less 
information is available about the shape within intervals. 
 
Available density estimation methods for interval 
censored data can involve fairly sophisticated iterative 
methods. Even a quickly converging method may be 
problematic for a large-scale economic survey where 
several hundred thousand estimates may be made 
regularly. OES, for example, describes wage distributions 
of over 800 occupations in over 600 areas and over 400 
industries. Additionally, the quantity of estimates made 
requires a high degree of automation of the methods used; 
it is not reasonable to use a method which requires any 
non-programmable judgment. 
 
In addition to practical concerns arising from the nature of 
the data and automation of the methods, available density 
estimation methods for interval censored data give CDFs 
which are either low order polynomials or heavily 
parametric. Peto’s and Turnbull’s methods result in CDFs 
that are undefined in each interval and horizontal 
elsewhere and, when all observations are in collected 
under the same set of fixed intervals, Braun et. al.’s kernel 
density estimate for interval censored data strongly 
resembles a histogram. CDFs of low orders result in non-
intuitive PDFs, containing discontinuities, counter-
intuitive cusps at boundaries, or both.  
 
In light of these differences, it may be worth considering 
a density estimation method which can better 
accommodate this type and use of data, even at the 

expense of the elegant theoretical properties of the 
available methods for estimating.  
 
 

2. Density Estimation Method 
 

2.1 Methods Considered 
 
Modeling with polynomial methods is fairly simple, 
computationally inexpensive, and reasonably flexible in 
the shapes that could be matched. Piecewise linear, 
quadratic, and cubic polynomial methods were 
considered. Piecewise linear methods often proved 
superior to piecewise quadratic methods on synthetic data 
but inferior for collected data due to irregularities in 
shape. Additional constraints at interval boundaries give 
the piecewise quadratic density estimator an advantage 
over the piecewise linear density estimator on rough 
histograms. Piecewise cubic polynomials, although 
constrained at interval boundaries, involved burdensome 
algebra and often produced results with counter-intuitive 
dips and bulges. In both simplicity and performance, 
piecewise quadratic density estimation was the clear 
favorite. A more detailed description of this density 
estimator is given below. 
 
2.2 Piecewise Quadratic Density Estimation 
 
2.2.1 General Description 
 
The piecewise quadratic density estimator (PQDE) is 
formulated with two guiding principles. First, the area in 
each interval of the frequency histogram is preserved and, 
second, the curve should be somewhat smooth with no 
large spikes or jumps between intervals. Although neither 
of these guiding principles is necessary for a reasonable 
density estimator, and, in fact, a method which smoothes 
out areas across intervals may even be desirable for 
particularly small samples, these two guiding principles 
allow for a simple, intuitive, closed form density 
estimator which seems well suited to the large samples 
common to OES data and may be altered and improved 
later for other situations. A general description for how 
the polynomials are chosen follows: 
1) The weighted proportion in each interval is plotted as a 
histogram.  
2) The rightmost, half-open interval is set first. If non-
zero, a scaled and shifted exponential distribution is 
assumed with parameters determined using the prior 
interval (see Section 2.2.2). 
3) Connector points are set at the boundaries of each 
interval. The y-values are initialized at the average of the 
heights of the adjacent histogram bars. To maintain 
continuity, the y-values are set to zero if either adjacent 
interval is zero. 
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4) Connector points are algebraically adjusted to reduce 
differences between slopes of adjacent polynomials (see 
Section 2.2.4).  
5) If non-zero, the leftmost closed interval uses a linear 
polynomial with parameters determined using the right 
hand connector point and the area underneath the curve.  
6) Center intervals use quadratic polynomials with 
parameters determined using the right and left hand 
connector points and the area underneath the curve. 
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Figure 1: Histogram, adjusted connector points, and 
piecewise quadratic density estimate with corrections for 
negative values. From proportions (0.05, 0.06, 0.085, 
0.11, 0.12, 0.12, 0.07, 0.01, 0.175, 0.12, 0.05, 0.03).  
 
2.2.2 Handling Negative Regions 
 
Using the piecewise quadratic density estimator method 
described in 2.2.1, it is possible for the parabolas in 
certain intervals to go negative. This can happen when an 
interval with a small proportion is sandwiched between 
intervals with large proportions or simply when a small 
proportion is adjacent to a very large proportion. In these 
situations, the small degree of the polynomial does not 
allow the curve to rise or fall fast enough for the curve to 
meet both conditions and remain above the x-axis. 
Fortunately, since the connector points are always non-
negative, the negative region can be easily found by 
testing for a negative vertex located inside the interval. 
The parabola is then replaced by one or more lines which 
drop from the larger interval to zero in a way that 
preserves area. When one adjacent interval is zero, the 
line from the non-zero interval is fixed so that it covers 
the interval’s entire area. When two lines are employed, 
the area is allocated proportionately based on the heights 
of the connector points on each side of the interval. 
 

2.2.3 Handling Domain Endpoints 
 
The treatment of domain endpoints here is tailored 
specifically to OES data. The interval data collected by 
OES has a closed bound on the left hand side at the 
federal minimum wage and is open on the right hand side, 
as there is no maximum wage.  
 
The closed bound on the left hand side can be easily 
handled. For this interval, the only constraints are the area 
and a point on the right hand side of the interval. Either a 
connector point can be fixed for the left hand boundary or 
the parabola can be replaced by a line for the first interval. 
The latter was chosen here.  
 
The right hand interval is somewhat more difficult to 
handle. There is very little information about the location 
and spread of the data in this interval, but it can have a 
profound impact on the mean and higher percentiles. In 
order to make estimates from this type of censored data 
without relying on strong assumptions or an outside 
source, the extent of this problem must be limited by 
raising the lower bound of the last interval until it is large 
enough that only a small tail remains in the rightmost 
interval. An exponential distribution is used here with the 
parameter set using the bounds, 

1!nL and
n
L , of the second 

rightmost interval and the areas, 
1!nA and

n
A of the two 

rightmost intervals. The curve sets the connector point 
between the rightmost two intervals and is retained only 
for the rightmost interval.   
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Some problems arise with small sample sizes where the 
second rightmost interval is empty or nearly empty and 
the rightmost interval is non-empty. In these cases an 
exponential distribution might be assumed from the third 
interval from the right and the combined areas of the 
second and third intervals from the right might be used to 
set the parameter for exponential decay in the rightmost 
interval.  
 
2.2.4 Algebraic Improvements to Connector Points 
 
The following section 
describes the formula for 
altering connector points to 
increase the smoothness of 
the density estimator. 
Applying this procedure 
does not optimize 
smoothness at boundaries; 
however, a single 
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application gives a visible improvement in smoothness. 
Consider each connector point, ( )

mm yx , , beginning with 
the right hand boundary of the first interval. Lower (L) 
and upper (U) interval boundaries and quadratic curves 
are described in relation to ( )

mm yx , .  
 

The constraints for the lower polynomial can be written 
as:  
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And we can solve for the coefficients:  
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And, similarly, the constraints for the upper polynomial 
can be written as:  
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Temporarily consider Ly  and Uy to be fixed. For the 
leftmost adjusted point, since the leftmost interval is 
linear, Ly  is not necessary in the calculations. For other 
connector points, the adjusted My  from the prior 
calculation can be used as Ly  in the current calculation. 
In the first application of connector point adjustments, the 
upper connector point Uy  can be set at the average value 
of the histogram bars adjacent to it. For any subsequent 
iteration, the previously determined connector points can 
be used. The goal is to choose My  to minimize the 

difference between the slopes of the lower and upper 
polynomials.  
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{ }0,max MM yy = . 
 

3. Results 
 

3.1 Comparison with Kernel Density Estimates 
 
This section is intended to give an intuitive feel for the 
performance of the piecewise quadratic density estimator 
(PQDE). Two distributions were selected to mimic certain 
features of the data. Samples of 100 observations were 
drawn from each distribution. The kernel density estimate 
(KDE) was formed from the sample using R function 
density(). The smoothing parameters were calculated 
using R function bw.nrd(); this method is not optimal for 
all distribution shapes but is used throughout so that the 
comparison of methods is more fair. The proportion of the 
sample in each interval was then calculated and used to 
form the PQDE. The kernel density estimate and the 
PQDE are shown alongside the generating distribution for 
reference. Please keep in mind while reviewing the 
graphs, the difference in the precision of the data used for 
the KDE and that used for the PQDE. The KDE is formed 
using 100 specific values and the PQDE is formed using 
only the proportion of observations falling in each 
interval. 
 
3.1.1 Lognormal Distribution 
 
Since wage data generally takes a roughly lognormal 
shape (Aitchison and Brown 1957), this distribution is 
used to show the general behavior of the PQDE and the 
statistics derived from it. In OES and NCS data, with a 
few exceptions, most occupational series cover several 
intervals and have little or no data in the last, open-ended 
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interval. Parameters LN(3.5,0.3) were selected to reflect 
this situation.  
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Figure: Typical performance  
 
The graph above is intended to show the typical 
performance of the PQDE. For the most part, the 
performance of the PQDE and KDE appear comparable. 
In the sample shown above, the PQDE seems to have 
better captured the peak of the generating distribution but 
has distinct bumps on both tails. The bump on the right 
tail is due to sampling error in the interval just below 60 
which the PQDE does not smooth out as well as the KDE. 
The bump on the left tail has no apparent cause. 
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Figure: Good performance  
 

The graph above is intended to show especially good 
performance of the PQDE. The PQDE is almost 
everywhere closer to the generating distribution than the 
KDE.  
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Figure: Poor performance  
 
The graph above is intended to show especially poor 
performance of the PQDE. Here, there is substantial 
sampling error; the proportions of observations in several 
intervals are substantially different than expected. Both 
the PQDE and the KDE miss the location of the main 
peak and have heavier than expected tails. The KDE does 
a better job of smoothing the sampling errors in the tails 
than the PQDE. 
 
3.1.2 Bimodal Distribution 
 
Although the distributions for occupational wages usually 
appear fairly smooth and well behaved in OES and NCS 
data, some distributions have distinct bimodal shapes. 
Parameters 0.5*LN(3.1,0.2)+0.5*LN(3.8,0.2) were 
selected to reflect such a situation.  
 
Although bimodal shapes are often viewed as stemming 
from inadequate classification, bimodal shapes may be 
particularly important to capture because occupational 
distributions can be thought of as composed of several 
distinct distributions, defined, for instance, by area, 
industry, establishment size and skill level. Changes in 
distribution shape sometimes appear to be gradual shifts 
in underlying distributions.  
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Figure: Typical performance  
 
The sample graphed above has less observations than 
expected in the interval where the higher peak should be 
located and more than expected observations in the 
interval where the valley should be located, making the 
bimodal shape especially difficult to notice. Although the 
PQDE missed the location of both peaks, it did better a 
much better job of displaying the peaks as distinct than 
the KDE.  
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Figure: Good performance  
 
In the sample above, the observations in each interval 
were fairly close to what was expected. Here the PQDE is 
slightly off in the location of the peaks but captures the 

shape of the generating distribution remarkably well. The 
KDE, by the nature of the smoothing parameter, smoothes 
sharp rises and falls masking the bimodal shape of the 
distribution.  
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Figure: Poor performance  
 
In the graph above, the PQDE captures the abrupt start in 
the left tail and the valley between the peaks of the 
generating distribution better than the KDE but 
exaggerates the sampling errors in the left peak and the 
right tail to the extent that the PQDE suggests four peaks 
rather than two.  
 
3.2 Simulation Results 
 
For each distribution, 5,000 samples of sizes 50 and 500 
were drawn. The mean and the 10th, 25th, 50th, 75th, and 
90th percentiles were estimated directly from each sample. 
The proportion of the sample in each interval was then 
calculated and used to derive the piecewise quadratic 
density estimate (PQDE) described above. The mean and 
the 10th, 25th, 50th, 75th, and 90th percentiles were then 
estimated again from the PQDE. 
 
3.2.1 Lognormal Distribution 
 
For this distribution, the true mean is 34.640 and the true 
10th, 25th, 50th, 75th, and 90th percentiles are 22.545, 
27.049, 33.115, 40.542, and 48.641, respectively. 
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n=50

PQDE Samp

mean 20.8 19.3

10th 49.7 52

25th 33.2 32.9

50th 28.7 27.3

75th 32.8 33.5

90th 55.9 55.2

Rel. MSE (%)

    

n=500

PQDE Samp

mean 2.111 2.033

10th 5.544 6.136

25th 3.524 3.664

50th 3.183 3.298

75th 3.584 3.858

90th 5.169 5.337

Rel. MSE (%)

 
 
 
For the lognormal distribution with parameters 
LN(3.5,0.3), the relative mean square errors for the 
estimates from the piecewise quadratic density estimator 
are extremely similar to those calculated directly from the 
sample. This seems true for both sample sizes. In addition 
to calculating the mean square errors, the distribution of 
errors was plotted for each statistic. The distributions of 
the errors of the estimates directly from the sample and 
from the PQDE are virtually identical. Graphical results 
for the first quartile are shown below.  
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Figure: Kernel Density Estimate of the relative error of 
the first quartile from 5,000 samples of 50 and of 500 
observations. 
 
Several sample sizes in addition to 50 and 500, shown 
above, were also tested. As would be expected, below a 
certain threshold, the distributions of the relative error of 
the estimates from the PQDE become somewhat biased 
with most or all estimates resulting in a few possible 
values. This threshold seems to be around 25. I would 
also expect an upper limit beyond which estimates form 
the sample would outperform those from the PQDE. 
Sample sizes up to 5,000 were tested and the distributions 

of the relative error of the estimates directly from the 
sample and from the PQDE are virtually identical in each.  
 
3.2.2 Bimodal Distribution 
 
For this distribution, the true mean is 33.450 and the true 
10th, 25th, 50th, 75th, and 90th percentiles are 18.759, 
22.195, 31.500, 44.706, and 52.896, respectively. 
 
n=50

PQDE Samp

mean 35.6 32.5

10th 38.9 42.4

25th 42.9 45.7

50th 157.9 166.1

75th 43.2 41.7

90th 41.2 40.2

Rel. MSE

    

n=500

PQDE Samp

mean 2.822 2.72

10th 3.706 3.918

25th 3.058 3.614

50th 18.69 22.4

75th 2.915 3.628

90th 4.041 3.768

Rel. MSE

 
 
As with the lognormal distribution in 3.2.1, these 
distributions of the relative errors of estimates directly 
from the sample and from the PQDE were virtually 
identical. Several sample sizes in addition to 50 and 500, 
shown above, were also tested. Results from these sample 
sizes were similar to those of the lognormal in section 
3.2.1. 
 
4. Discussion 
 
The results above seem to suggest, for practical purposes, 
that is, for the distribution shapes and sample sizes which 
tend to occur for the occupational wage distributions in 
practice, the accuracy of the estimates made from the 
piecewise quadratic density estimator (PQDE) is 
essentially the same as the accuracy of estimates 
calculated directly from a sample using the point data.  
 
The PQDE has some exceedingly nice properties that may 
make it a powerful tool for large-scale surveys. It allows 
estimates to be made directly from interval data by 
incorporating information contained in relationships 
between adjacent intervals rather than relying on 
information from outside sources. It is simple both in 
concept and computation; it can be easily described, 
easily automated, and quickly run. Furthermore, the 
results above seem to suggest that, for distributions of 
practical interest for this survey, and possibly others, 
mean and percentile estimates from interval censored data 
using the PQDE are comparable in accuracy to those 
made directly from the non-censored samples. For 
surveys currently collection point data where this method 
could be applied, it could potentially translate to a very 
large reduction in collection costs with little to no loss in 
estimate accuracy.  
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I would be interested in generalizing this density 
estimator in a way in which consistency properties could 
be explored. I would also be interested in further 
exploring ways in which this density estimator could be 
altered to better smooth sample errors, possibly including 
bootstrapping.  
 
Additionally, a practical issue particularly important for 
working surveys which is not covered here is aggregation. 
If the proposed density estimation method is applied 
separately to several sub-domains and to the whole 
domain, a weighted sum of the means of the sub-domains 
will not necessarily give the mean for the whole domain. 
Preliminary results in aggregation were encouraging but I 
have not explored this topic in depth.  
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