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Abstract 
It sometimes happens that two separate samples from a population, having perhaps quite distinct designs 
and mode of sampling, contribute information on the same variable of interest, and it becomes an important 
question how to combine the data from the two samples.  An example is the Occupational Employment 
Statistics survey (OES) and the National Compensation Survey (NCS), carried out by the Bureau of Labor 
Statistics, both contributing information on occupational wages. We discuss some new options for 
combining data from two samples and achieving unified estimation.   
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1.  Introduction – The Question of Combining Two Samples 
 
Suppose two distinct surveys gather related information on a single population U.   How best to combine 
data from the two surveys to yield a single set of estimates?   
 
This situation is fairly common.  For example, the National health Interview Survey (NHIS) and the 
Behavioral Risk Factor Surveillance System (BRFSS) both collect data on risk factors for serious illness.  
The Occupation Employment Statistics program (OES) and the National Compensation Survey (NCS) both 
collect data on occupational employment and wages. 
 
The typical approach is to get separate estimates of the target parameter from the two surveys and weight 
them together with weights the inverse of their estimated variances.  For example, see (Merkouris 2004) 
and the references therein. 
 
Another possibility, however, is to combine the two data sets into a single data set and “weight up” 
appropriately.  This can be awkward in the standard design based framework, but nevertheless can pay 
dividends. 
 
In this paper we consider a simple example where this turns out to be the case.  This example is a 
simplified version of the OES/NCS situation, and was constructed in the hopes of shedding light on what 
might best work in unifying those two surveys. 
 

2.  Study Example 
 

  Consider a population U of N establishments e, each with O occupations o.  Two samples of 
establishments, s1 of size n1 and s2 of size n2, with data collected for all occupations in s1 but only for a sub-
sample of k occupations in s2.  Let Eoe be the employment in o in e, and e oeo

E E+ = ∑ the employment in  e.  
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In this context, it is natural to consider a Multinomial model, where{ } { }( )~ ,oe e oE Multinom E p+ .   Then 
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Thus, if we had data for whole population, we would set the score function to zero and solve, getting 
estimates  
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so that, not surprisingly, the estimates would equal the targets:, ˆo op p= .  But, of course, we do not have the 
population data, only what has been collected in the two samples, plus some possible population auxiliary 
information.  We shall assume that overall establishment employment Ee is available for all establishments, 
in and out of sample. 
 
2.1 Pseudo-likelihood 
One commonly accepted way to handle maximum likelihood problems in the survey context is to use 
Pseudo-likelihood . Replace population sums in the population score function by sample estimates of those 
sums, using the inverse of selection probabilities, the design weights we: 
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Setting these pseudo-likelihood score functions to zero and solving leads to 
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If, for example, on sample 1, units are selected pps(Ee),   we could get an estimate from that sample using     
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Solving gives  
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For combining the surveys we could, similarly, get an estimate from second sample, and then weight these 
together based on our estimate of the variances of the two estimates.  This would be in keeping with the 
approach usually suggested.   Can we use pseudo-likelihood on a combined version of the data from the 
two surveys? 
 
2.2 Dual sample pseudo-likelihood estimator   
Suppose the two samples are independent, with inclusion probabilities (1)

oeπ , (2)
oeπ  .  

Then the probability that oe gets into the combined sample is ( ) (1) (2) (1) (2)dual
oe oe oe oe oeπ π π π π= + − .  

Let ( ) ( )1 /dual dual
oe oew π= .  Then we can use these weights in (1)  to get a pseudo-likelihood estimator   
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This idea of using a combined inclusion probability underlies a lot of the work on the problem of dual 
frame estimation. 
 
 



  

2.3 Missing Information Principle 
Another approach, quite different from pseudo-likelihood, is the application of the Missing Information 
Principle (Breckling, et al. 1994).  This gives the actual maximum likelihood estimates of the targets, given 
all the data (from each sample and the auxiliary data) and the truth of the model, in this case the simple 
multinomial model.  Here is a sketch of the principles involved:   
 

Suppose 
( )log ;L x ω
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∂
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 is the score function if we have “full information” x, and let D represent the portion 

of x for which we actually have data, then the score function given that data can be written as the  
expectation of the original score function conditional on D, 
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This is a strict application of maximum likelihood and depends strongly on the truth of the (multinomial) 
model.  Note that there is no use of inclusion probabilities.  We spell out how this works in the present 
example:  
 
Units e fall into three categories, depending on what we know about them, as described in Table 1. 

 
Table 1:  Classification of units (“establishments”) in the Example 

 
                                                 o = 1 o = 2 ... o = O  
s1    E1e E2e  EOe E+e 
s2\1 *** or E1e *** or E2e  *** or EOe E+e 
r =U ( )1 2s s− ∪  *** ***  *** E+e 

 
In the table, “***” means “data is missing”.  Thus, the units that are in neither sample, are always missing 
employment on occupations, those in s1 always have occupational employment (whether or not they are 
also in s2), and those in s2 but not in s1 will, for a given occupation, possibly have the occupations 
employment, but possibly not. 
 
Thus the expectation of the population score function (1), conditional on the sample data, takes the form 
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The second term is messy: { }' '| | ,
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where se is the sample of occupation in establishment e . 
 



  

For example, if both o and O are in se then the term looks like terms in the s1 sum.  If o is not in se, then, 
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The net result is the sample score function 
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Setting this equal to zero to get estimates of the po leads to  
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≡ + +∑ ∑ ∑% .  This looks simple, but actually is not, since the po we 

are solving for are components of  the terms on the right side of (3).  However, we can solve by iteration, 
plugging in initial values for po into the expressions for the es

op , to calculate the right side of (3), giving to 
get new values ˆop .  These new values can in turn to be plugged in, and the process repeated.  
This works well. 
 
2.4 Iterated post-stratified estimator  
What if, in estimating, we do not wish to assume the multinomial model?  One approach involves the well 
known sampling technique of poststratification.  In post-stratification, the population is divided into strata 
after the sample data are collected.  Estimation proceeds as if these were original design strata. 
  
If the stratification variable x is continuous, then it often seems to be arbitrary where stratum boundaries 
are drawn. A way around this arbitrariness, is to do several poststratifications, using systematically 
different boundaries.  In the iterated post-stratified estimator several post-stratifications are constructed, 
each leading to a single estimate.  The final estimate is taken as a simple average of these. 
 
For the simplified NCS-OES like population with two samples, this would be accomplished by the 
following sequence: 
 
(1) we take the stratification variable to be Ee. 
 
(2) For each occupation o,  let s(o) be the set of e for which the combined sample data provide Eoe . 
(that is, all sample 1 e’s and sample 2 e’s, for which Eoe is sub-sampled)  Let no be the size of this set. 
 
(3) Let k be number of post-stratifications.  This is at the discretion of the analyst. 
How to choose a best k is an open question. 
 
(4) for the lower bound of lowest stratum of any of the poststratifications, we can take any E*  that is less 
than all  Ee in the population.  Likewise, the  upper bound of highest stratum is any E** greater than all Ee.  
 
(5) In first post-stratification take intermediate bounds of post-strata halfway between values of Ee  at jkth 
and  jkth + 1 sample points in s(o), for j = 1,…,[no/k].  
 
For the second post-stratification, take intermediate bounds between the jkth +1 and  jkth + 2 sample points 
in s(o), etc.  
 



  

This puts ( ),h o in k= sample units in each post-strata h(o,i) of ith poststratification, except possibly in the 
boundary strata 
 
The number of population units  ( ),h o iN  with Ee within the stratum boundaries will in general vary from 
stratum to stratum.  The following Figure depicts schematically the choice of stratum boundaries for the 
several poststrata for a given occupation. 
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(7)  Repeat for the other occupations o’.   
 
(8)  Take ''
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p E E= ∑  as the iterated post-stratified estimator of po.   

 
 
 



  

3. Simulation Studies 
 
3.1 Simulation Study 1  
 
3.1.1 Population 1 - Description 
Using a lognormal random generator, we created 500 “establishments” with sizes Ee ranging from 12 to 
385.   Their median size  was 97.   
Each establishment’s employment was divided among 5 “occupations” using a multinomial distribution.  In 
particular, occupational employments in e were generated by  
   Multinom(Ee, =p (.05,.1,.23,.27,.35)) 
The corresponding proportion of employment in the population turned out to be    
                                U =p (.051 0.098 0.230 0.271 0.350) 
The goal is to estimate Up , based on data from two samples. 
 
3.1.2 Sampling Methodology and Estimators 
500 pairs of samples were taken:  
 
Sample 1 pps(Ee) n1 = 50 – with a census of e’s Occupations 
Sample 2 pps(Ee) n2 = 30 – in this case a sub-sample se of 2 occupations was sampled                                              
ppswr(Eoe).  
 
We calculated the following estimators: 

(i) the pseudo-likelihood estimator { }1
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 (ii) the pwr estimator on sample 2,  
based on with replacement sampling of occupations:       
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and ( )ekI o  = 0, otherwise. 
(iii) A weighted combination of the above estimators: 
Let { }( )1 ˆvar i

i ow p−=  , estimated empirically over the 500 samples (actually used median of these across the 

5 occupations) 
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(iv) { }ˆ mip
op , the MIP max’m likelihood estimator 

(v) { }1ˆ ml
op , the MIP max’m likelihood estimator, using only data from sample 1 

(vi) { }ˆ dual
op  the dual  estimator, i.e. the pseudo-likelihood estimator, using two-sample π ’s 

(vii) { }.ˆ iter ps
op  the iterated post-stratified estimator  

 
3.1.3 Results 
Relative biases and root mean square errors are given in Table 2.  There is not too much to distinguish 
among the estimators with respect to Bias. 
 
With respect to root mean square error:  There is little difference between pseudo -1 (the pseudo-likelihood 
estimator based on just sample 1) and the combined estimator. In other words, combining the results of 
estimation from the two surveys does not improve on just using the big survey.  The mip is distinctly best, 
and does improve on mip -1.  That is, using this estimator—which combines the data from the two surveys 



  

      Table 2:  Simulation Results – Population 1 
 
                                     Relative Bias X 1000            Root Mean Square Error X 1000
 Occ1 Occ2 Occ3 Occ4 Occ5 Occ1 Occ2 Occ3 Occ4 Occ5 
pseudo -1   -2.5    1.4  0.7 -0.3 -0.2  2.7  3.7  5.5  5.6  6.2 
pwr -2 -11.8    8.8  4.2  3.7 -6.4 30.0 38.2 56.2 56.4 63.4 
combined   -2.5    1.6  0.7 -0.3 -0.3  2.7  3.7  5.5  5.6  6.2 
mip    7.5 -11.2  1.1  4.2 -1.9  2.4  3.1  3.9  4.2  4.7 
mip - 1    7.9 -11.2  1.4  3.6 -1.7  2.4  3.3  4.7  4.9  5.5 
dual   -1.9    3.1 -0.8  1.2 -1.0  3.3  5.1 10.8 11.5 13.5 
iterated ps    2.0    5.0  1.7 -0.9 -2.1  2.9  3.8  5.2  5.1  5.8 
 
 
-- does capitalize on the extra bit of information in sample 2.   The iterated post-stratified estimator is here 
sometimes better, sometimes marginally worse than the pseudo-likelihood estimator.  The dual estimator 
based on overall inclusion probabilities is considerably worse than the other estimators relying on both 
samples. 
 
3.2 Simulation Study 2 
 
3.2.1 The Question: What if the Multinomial Model is Wrong? 
Consider the following Population:  Workers in e with large Ee have probability L

op   of being in o. 
Workers in e with small Ee , have probability S

op  of being in o.  Suppose L S
o op p<  and we aim to estimate 
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, respectively.  On the one hand, { }1ˆop  is design-unbiased for po .  But in the mip { }1;ˆ MIP
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large Eoe dominate sums in numerator and denominator.  Under the assumptions above, one can anticipate 
that { }1;ˆ MIP L

o o op p p≈ < , so that the mip will be seriously biased down.  Thus the success of the mip depends 
on getting the model right. 
 
 3.2.2 Population 2 - Description 
 For Population 2 we use the same establishment employments Ee as Pop 1, and same first stage samples.  
But Eoe has distinct model for 250 smallest and 250 largest Ee, as in Table 3.  Second stage sampling is 
carried out as it was in Simulation Study 1. 
 
            Table 3:  Probabilties in Population 2 of Allocation of Employment to Different occupations 
 

Size\occupation 1 2 3 4 5 

Small 
Establishments 

0.05 0.10 0.23 0.27 0.35 

Large 
Establishments 

0.35 0.27 0.23 0.10 0.05 

For occupation 4 and 5, MIP based on overall multinomial model should be biased low and for 1 and 2, 
high.   



  

   Table 4: Overall Population 2 Proportions to be Estimated  

Occupation 1 2 3 4 5 

Over all  0.25 0.21 0.23 0.16 0.15 
 
3.2.3Simulation Study 2 Results 
Relative biases and root mean square errors are given in Table 5.  The relative biases do show a striking 
differences between the mip and the other estimators, as was predicted:                          
 
                   Table 5: Simulation  Results for Population 2 
 
                                     Relative Bias X 1000            Root Mean Square Error X 1000
 Occ1 Occ2 Occ3 Occ4 Occ5 Occ1 Occ2 Occ3 Occ4 Occ5 
pseudo -1    5.2     2.6   -1.1     -2.7     -7.8 20.7 11.7   5.7 12.2 20.9 
pwr -2 -11.0   24.3 -10.5    21.6   -22.4 61.5 54.8 54.4 49.7 47.2 
combined     3.5     3.8   -1.2     -0.8   -10.3 19.6 11.3   5.7 11.4 19.0 
mip 193.9 106.4 -29.7 -166.0 -259.9 50.4 24.0   8.3 26.9 41.1 
dual   -0.1     7.8   -2.4      2.8   -10.3 19.1 13.2 10.9 11.6 17.9 
iterated ps   -4.1    -4.5   -3.3      5.9    12.3   6.1   4.8   5.2   5.2   6.5 
 
 
Its bias leads to the mip having large rmse. Indeed, the pseudo-likelihood estimator based just on sample 1 
does much better than mip based on both samples.  The combined estimator is marginally better than 
sample 1 pseudo-likelihood .  The dual estimator is sometimes better than sample 1 pseudo - likelihood 
estimator.  But the clear winner is the iterated post-stratified estimator. 
 

4. Discussion 
 

Success of mip depends on model being correct.  However, it may be that Population 2 is an extreme case.  
We might be able in practice to  use prior knowledge or diagnostics to handle this problem – this is 
something to investigate.  In neither population, did the design based ways of combining estimates or data 
yield best results.  The iterated post-stratified estimator looks to be a very promising non-parametric way to 
combine data from two sources.   
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