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Abstract  
Most official seasonal adjustments are based on the X-11 method and its extensions. An 
important problem with the use of this method is how to estimate the mean square error (MSE) of 
the estimators of the seasonal effects and other components. Wolter and Monsour (1981) assumed 
that the estimators are unbiased and proposed an approach for variance estimation that uses the 
linear approximation to X-11 and accounts for the variability of the sampling errors. Pfeffermann 
(1994) and Bell and Kramer (1999) extend this approach (see below).  

In this paper we show that the seasonal and trend components can be defined in such a way that 
the X-11 estimators of these components are almost unbiased at the center of the series and 
consequently, Pfeffermann (1994) method produces unbiased estimators for the MSE of the X-11 
estimators at the center of the series but not at the two ends. We propose, therefore, bias 
corrections for the MSE estimates at the ends of the series. Similar bias corrections are proposed 
for Bell and Kramer (1999) method.  
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1. Outline

We define the seasonal and trend components under which the X-11 (X-12ARIMA, X-13) 
estimators of the trend and the seasonal components are almost unbiased in the central part of the 
series. 

The mean square error (MSE) of the X-11 estimators are then defined with respect to the 
estimation of these components over all possible realizations of the sampling errors and the 
irregular terms. 

We investigate the behavior of the X-11 estimators of the newly defined trend and seasonal 
components at the two ends of the series where they are biased, and propose bias correction 
procedures (parametric and non-parametric).  

We investigate the Bell and Kramer (1999) decomposition and propose bias correction 
procedures for their estimators with respect to this decomposition.    

The results are illustrated by a small simulation study based on the series “Education and Health 
Services employment” (EDHS), obtained as part of the Current Employment Statistics program 
managed by the Bureau of Labor Statistics (BLS). 



2. Bias, Variance and MSE of X-11 estimators and their estimation

We begin with the usual notion that an economic time series can be decomposed into a trend or 
trend-cycle component , a seasonal component , and an irregular term, ; . 
Here we consider for simplicity the additive decomposition but the results can be generalized to 
the multiplicative decomposition,  

tT tS tI t t tY T S I= + + t

tt t tY T S I= × × , using similar considerations as in Pfeffermann 
et al. (1995). Typically, the data are obtained from a sample survey, such that the observed series, 

, can be expressed as the sum of the  population series, , plus a sampling error, ty tY tε . Define 

t te I tε= +  to be the combined error. Without loss of generality we assume that the series started 
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Assumptions: We assume, in addition, that 
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The X-11 program applies a sequence of moving averages or linear filters to the observed series. 
Thus, the X-11 estimators of the trend and the seasonal components can be approximated as, 
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where the filters  and  are defined  by the X-11 program options for the given time interval 
.  Moreover, at the central part of the series the filters are symmetric and time-

invariant, , , for 
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Remark 1. X-11 and its extensions, like X-12ARIMA and X-13 include also “non-linear” 
operations such as the identification and estimation of ARIMA models and the identification and 
gradual replacement of extreme observations. We assume that the time series under consideration 
is already corrected for outliers. The effects of the identification and non-linear estimation of 
ARIMA models are generally minor, see, e.g., Pfeffermann et al. (1995) and Pfeffermann et al. 
(2000). 
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tT  are the outputs when applying the symmetric filters to the signal of the 
infinite series at time point t, 1,..., .t N=  Note that (1) and the assumptions imply that 
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the following result.  



Result 1. Let 11 11 11x x x
t t t te y T S= − −  . Then, X-11 decomposes the observed series into the ‘X-11-

trend’ 11x
tT , the ‘X-11-seasonal component’ 11x

tS , and the ‘X-11 error’, 11x
te ; 
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At the center part of the series, max( , ) max( , )S T S Ta a t N a a≤ ≤ − ,  the X-11 estimators of the 
trend and the seasonal components are almost unbiased with respect to the decomposition (3). 

Remark 2. The decomposition defined by (3) into a seasonal component, a trend component and 
an error term is clearly not unique; see, for example, the discussion in Hilmer and Tiao (1982). 
Bell and Kramer (1999) use a similar decomposition: they define the “target” of the seasonal 
adjustment as the adjusted series that would be obtained if there is no sampling error and there are 
sufficient data before and after the time points of interest for the application of the symmetric 
filter (Bell and Kramer 1999, page 15). Thus, the Bell and Cramer seasonal and trend components 
are defined as, , ( )B K S
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between (3) and the Bell and Kramer (1999) decomposition is therefore that the latter 
decomposition considers the irregular term as a part of the signal. As a result, the MSE of the X-
11 estimators of the components defined by the decomposition (3) is generally higher than the 
MSE of the X-11 estimators of the components defined by the Bell and Kramer decomposition.  

The bias, variance and MSE of the X-11 estimators with respect to decomposition (3), conditional 
on the true components S, T are obtained as follows:  
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Similar expressions are obtained for the trend estimator. 

By  (5),  the variance of the X-11 estimator of the seasonal component is a linear combination of 
the covariances, , ( , | )t kCov e e T,S , 1,...,t k N= . Following Pfeffermann (1994), let 
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It follows from (7) that , ( , | , )tm t mv Cov e e= S T , 1,...,t m N= , and , 
, are related by the system of linear equations,  
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where the matrix D  is defined by the weights , , 1,...,kta t k N=  through (7), see Pfeffermann 
(1994) for details. Since the X-11 irregulars, tR , are observed for 1,...,t N= ,  (and, by the 
assumptions  is independent of the true trend and the seasonal components),   
can be estimated from the observed irregulars, at least at the central part of the series, 

 for some . In theory, substituting the estimates in the matrix in (8) would 
then allow estimating  by solving the equations (D is known). However, the number of 
equations in (8) for  is smaller than the number of unknown covariates 

, and therefore (8) can not be solved directly and the solution is very 
unstable. A possible way to overcome this problem is by assuming that the covariances  are 
negligible (and hence set to zero) for |
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the reduced set of equations obtained from (8). See Pfeffermann (1994), Pfeffermann and Scott 
(1997) and Chen et al. (2003), for different approaches to estimation of  and .   U V

Remark 3. Pfeffermann (1994) developed his variance estimators under the Postulate: 
 at the center of the series. Although this assumption seems to hold 

approximately in practice, it is essentially impossible to test it. Note that this Postulate implies 
that   at the center of the series, which is not generally true, see the results of 
the simulation study below. On the other hand, as shown above, Pfeffermann (1994) method 
produces consistent estimators for the variance defined by (5). 
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Estimation of the MSE of the X-11 estimators is complicated. The error term, , can usually be 
assumed to be independent of the true trend and the seasonal components, and therefore the 
variance in (5) does not depend on the signal. On the other hand, by (4), the bias of the estimator 
is a function of and its value depends on the particular realization of the signal. Estimating 
the bias requires strict model assumptions that could be hard to validate. Thus, instead of 
estimating the MSE given the trend and the seasonal components, we propose to estimate instead 
the expected MSE,  

te
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Note that ˆ{ [ ]tE MSE S  can be considered as the best predictor of ˆ[ ]tMSE S  under a square loss 
function. Assuming that the error term,  is independent of the true trend and the seasonal 
components, the first term in (9) does not depend on the signal and therefore it can be estimated 
by use of Pfeffermann (1994) method. Denote this estimate by 

te

11ˆ xV . In what follows we consider 
four estimators of ˆ{ [ ]t }E MSE S , two parametric estimators and two non-parametric estimators.  

1st parametric bootstrap estimator of  ˆ{ [ ]t }E MSE S .  
(a) Fit a parametric model to the original series and estimate the parameters of the separate
models identified for the trend, the seasonal component, the irregular term and the sampling
errors (see Scott 2009 and Step 1 – Step 3 of the following simulation study for the details).
(b) Generate B series, , each of sufficient length for applying the symmetric filters 
to the central N time points by independently generating the four component series, and store the 
generated series together with the trend and the seasonal components. For each of the generated 
series compute the difference between X-11 estimate and X-11 signal, 
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This procedure can also be used for estimating the expected MSE when estimating the original 
component defined by (1), . In the latter case the difference 2ˆ ˆ{ [ ]} { [( ) | ]t t tE MSE S E E S S= − S,T }
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The major disadvantage of this procedure is that it requires the identification and estimation of a 
four components model (trend, seasonal, irregular and sample error) which, as it shown by Scott 
(2009), is a very challenging task unless the series is very long. Another disadvantage of this 
procedure is that it is “model-dependent”, when the X-11 estimator is not necessarily based on 
models. Some protection against possible model misspecification can be achieved by the 
following modification of this procedure: 

(a) Fit a parametric model to the original series and estimate the parameters of the separate
models identified for the trend, the seasonal component, the irregular term and the sampling
errors.
(b) Generate B series, , each of sufficient length for applying the symmetric filters 
to the central N  time points by independently generating the four component series, and store the 
trend and the seasonal components. For each of the generated series compute the bias, 
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The next three estimators do not require estimation of the four component decomposition model. 

1st non-parametric estimator of  ˆ{ [ ]t }E MSE S .  
By the previous assumptions, 
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Define the MSE estimator obtained this way as, 11ˆˆ ˆ{ [ ]} x
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2nd non-parametric estimator of  ˆ{ [ ]tE MSE S .  
Another way of estimating *

tE  is based on a result of Wildi (2005, Section 5): Under suitable 
regularity assumptions,   
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where 2 /k k Nω π= , ( )N kI ωY  denotes the periodogram of  the input series computed at kω , 
( )kωΓ denotes the transfer function of the symmetric filter , S

kw ,...,k = −∞ ∞ , and * ( )t kωΓ denotes 
the transfer function of the asymmetric filter , S

ktw ,...,k = −∞ ∞ , see Wildi (2005) for the detailed 
definitions and the order of the approximation in (11). Note that the right-hand side of (11) is a 
function of the observed data and known filters and therefore can be calculated empirically.  

2nd parametric bootstrap estimator of ˆ{ [ ]t }E MSE S .  
Finally, (10) can be estimated parametrically as follows: 

(a) Fit a time series model to the original series ( , 1,..., )ty t N= =y , for example, an  ARIMA 
model, and estimate the unknown model parameters. 
(b) Generate B series,  from the estimated model in (a), each of sufficient length for 
applying the symmetric filters to the central N  time points. For each generated series compute 
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The clear advantage of this procedure over the 1st parametric method is that it is based on a 
simpler model that does not necessarily require the identification and estimation of component 
models and in particular, a model for the sampling error.  

Remark 4. Bell and Kramer (1999) estimate  instead of estimating 

. Note that our bias estimation procedures can be equally applied for 
estimating the MSE when estimating the Bell and Kramer targets. The bias, variance and MSE of 
the X-11 estimators under Bell and Kramer decomposition, conditional on the true components S, 
T are as follows:  
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Similar expressions are obtained for the trend. The sampling error term, tε , can be usually 
assumed to be independent of the trend, seasonal and irregular components, and therefore the 
variance in (13) does not depend on the signal. Estimates of the autocovariances of the sampling 
error can often be calculated from the survey data.  Therefore, the MSE of the X-11 estimator 
with respect to the Bell and Kramer (1999) decomposition can be obtained either by the 1st 
parametric bootstrap procedure, with ( )t
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3. Simulation study

We illustrate the results of Section 2 by use of simulations. The simulations use the models fitted 
to the series “Education and Health Services employment” (EDHS), with observations from 
January, 1996 through December, 2005, (N=120). Our interest in this series is in the month-to-
month change in employment. As explained in Scott, et al. (2004), we consider the log ratios of 
the EDHS series, corrected for outliers as the original series (see Remark 1).  

We consider as the main objectives of the study the estimation of the trend and the seasonally 
adjusted (SA) series. Hence, by the decomposition (3), the “X-11 SA series” is, 11 11x x

t t tA Y S= − . 

The X-11 estimate of the SA series is defined as ˆ
tA = ˆ A
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Our study consists of the following steps:  

Step 1. Fit an ARIMA model to the observed series using X-12-ARIMA. 

Step 2. Apply signal extraction to estimate parameters of a model for the signal by use of the 
REGCMPNT program (Bell, 2003), accounting for the presence of the sampling error 
component. (We model this component using the autocovariance estimates of the sampling errors 
as computed by the Bureau of Labor Statistics.)  

Step 3. Decompose the signal model into component models employing the experimental 
software X-12-SEATS. 

The models and parameter estimates used in the simulation study are as follows: 



Trend- ; ARIMA(1,1,2) with parameters -.90, .06, -.94 and disturbance variance 0.5;  tT
Seasonal component- ; ARIMA(11,0,11) model with AR-coefficients equal to 1,  MA-
coefficients equal to, .70, .42, .17, -.04, -.20, -.30, -.37, -.39, -.38, -.34, -.28, and disturbance 
variance 4.5;  

tS

Irregular component- ; white noise with disturbance variance 18.0;  tI
Sampling error-  tε ; MA(1) with MA-coefficient -.15 and disturbance variance 58.68. 

Step 4. Generate independently 3,000 series from the component models developed in Step 3 and 
add them up to form new original series . Each generated series has length 
N+96, , so that the application of X-11 to the whole series produces values that are 
approximately equal to the “final” X-11 values for the central N points. Store the series   and 
their components, .  

, 1,...,3000b
ty b =

120N =
b
ty

1,...,3,000b =

Step 5. Fix the form of the X-11-ARIMA model fitted to the original series. Re-estimate the 
parameters of the ARIMA models for each series generated in Step 4 and compute the filter 
weights  and , reflecting also the backcasts and forecasts produced by the estimated 
ARIMA model identified for the series. 
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Step 7. Compute the Empirical Root MSE of the X-11 estimators with respect to the ‘true 
components’   and with respect to the ‘X-11 components’ ,b bA T 11, 11,,x b x bA T , and the Empirical 
Standard Deviation (SD) of the X-11 estimators.  
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Step 8. For each generated series estimate the square bias, , by use of the 12 ˆ{ [ |tE Bias A S,T st 
non-parametric estimator, and the variances of the X-11 estimators by the method developed in 
Pfeffermann (1994). Denote the estimates by 2 ˆˆ ( )b

tB A , 2ˆ ˆ( )b
tB T ; , , and define, ˆˆ( )b

tV A ˆ ˆ( )b
tV T
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In addition, we computed also the RMSEs and SDs when estimating the Bell and Kramer (1999) 
targets: For this, Step 6 is replaced by,  
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Steps 7 and 8 remain the same.     

The results of the study are summarized in Figures 1–4.  

Figure 1. Empirical RMSEs, SDs along with their estimates: ˆ( )tRMSE AT,S is drawn in dashed 

black, 11
ˆ( )x tRMSE A  is in solid black, is in red, ˆ( )tSD A ˆ( )tRMSE A

∧

 is in green, and  is in 
blue.   

ˆ( )tSD A
∧



Figure 2. Empirical RMSEs, SDs along with their estimates: ˆ( )tRMSE TT,S is drawn in dashed 

black, 11
ˆ( )x tRMSE T  is in solid black, is in red, ˆ( )tSD T ˆ( )tRMSE T

∧

 is in green, and  is in 
blue. 

ˆ( )tSD T
∧

Figure 3. Empirical RMSEs along with their estimates: ˆ( )tRMSE AT,S is drawn in dashed black, 
ˆ( )B K tRMSE A−  is in solid black, and ˆˆ ( )B K tRMSE A− is in green.



Figure 4. Empirical RMSEs along with their estimates: ˆ( )tRMSE TT,S is drawn in dashed black, 
ˆ( )B K tRMSE T−  is in solid black, and ˆ ( )ˆ

B K tRMSE T−  is in green.

Conclusions from simulation study  

1) The Empirical RMSEs of the X-11 estimators when estimating the hypothetical components in
(1) are higher than the Empirical RMSEs when estimating the “X-11 components”, illustrating
that the X-11 decomposition is different from the ‘model-dependent’ decomposition used in the
simulations.

2) For the 5 years in the center of the series, the X-11 estimators are almost unbiased when
estimating the newly defined  X-11 components, but at the beginning and at the end of the series
there are non-negligible biases.

3) Pfeffermann (1994) variance estimates approximates closely the empirical variances of the X-
11 seasonally adjusted estimators  when estimating the X-11 SA component, and overestimates
slightly the empirical variance of the X-11 Trend estimator when estimating the X-11 trend.

4) The proposed RMSE estimator approximates closely the empirical RMSE when estimating the
newly defined components, except for SA component at the very ends of the series. Note that in
our study we extend the length of original series only by 96 time points (see Step 4) so that the
application of X-11 to the whole series produces values that are only approximately equal to the
“final” X-11 values for the central N points, the latter probably implies some underestimation at
the very ends.

5) Conclusions 1, 2 and 4 remain correct for the Bell and Kramer decomposition.
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