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In the past several years a wide range of methods for the construction of regression trees and other estimators based on the recursive
partitioning of samples have appeared in the statistics literature. Many applications involve data collected through a complex sample design.
At present, however, relatively little is known regarding the properties of these methods under complex designs. This article proposes
a method for incorporating information about the complex sample design when building a regression tree using a recursive partitioning
algorithm. Sufficient conditions are established for asymptotic design L2 consistency of these regression trees as estimators for an arbitrary
regression function. The proposed method is illustrated with Occupational Employment Statistics establishment survey data linked to
Quarterly Census of Employment and Wage payroll data of the Bureau of Labor Statistics. Performance of the nonparametric estimator is
investigated through a simulation study based on this example.
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1. INTRODUCTION

A central problem in analyzing survey data is using available
auxiliary information to estimate finite population parameters
of interest. The functional relationship between the auxiliary
variables and a finite population parameter is often quite com-
plex, involving a number of interaction effects. One generally
prefers to use nonparametric models which provide good ap-
proximations for a larger class of functions than a given para-
metric model and are usually more robust under general sam-
pling designs. Work with such models is now an emerging area
of importance for analyzing survey data (Dorfman and Hall
1993; Breidt and Opsomer 2000, 2009; Zheng and Little 2004;
Breidt, Claeskens, and Opsomer 2005).

One important type of nonparametric model is the binary
tree built from a recursive partitioning algorithm applied to
the dataset. Since Morgan and Sonquist (1963) suggested using
these simple nonparametric models for analyzing survey data,
they have grown in importance (Göksel, Judkins, and Mosher
1992; De’ath and Fabricius 2000; De’ath 2002; Lobell et al.
2005; Benedetti, Espa, and Lafratta 2008; Mendez et al. 2008).
The use of this method in survey analysis has largely ignored
design information such as the selection probabilities of indi-
vidual observations and has been done in the absence of any
theoretical justification (Simpson et al. 2003); this can lead to
biased and misleading results (Holt, Smith, and Winter 1980;
Nathan and Holt 1980). In addition, Edwards et al. (2006) con-
sidered the impact of purposive designs on regression tree anal-
ysis.

The aim of this article is to provide some theoretical justifi-
cation for use of these procedures on survey data. We provide
a set of sufficient conditions on the population, the sample de-
sign, and on the partitioning algorithm for the proposed estima-

Daniell Toth is Mathematical Statistician, Office of Survey Methods Re-
search, Bureau of Labor Statistics, Suite 1950, Washington, DC 20212 (E-mail:
toth.daniell@bls.gov). John L. Eltinge is Associate Commissioner, Office of
Survey Methods Research, Bureau of Labor Statistics, Suite 1950, Washing-
ton, DC 20212 (E-mail: eltinge.john@bls.gov). The views expressed on statis-
tical, methodological, technical, and operational issues are those of the authors
and not necessarily those of the U.S. Bureau of Labor Statistics. The authors
thank the editors and referees for their very helpful comments that substantially
improved this article. We also thank our colleague Michail Sverchkov for his
helpful comments.

tor to be asymptotically design unbiased (ADU) and asymptot-
ically design consistent (ADC) with respect to the superpop-
ulation model (Isaki and Fuller 1982; Robinson and Särndal
1983). More specifically, for each value x we define an esti-
mator h̃(x) based on a class of recursive partitioning algorithms
that is ADU and ADC for the superpopulation value h(x).

One important complication in working with recursive par-
titioning algorithms is that the estimator is based on a sample
driven partition. Given a partition, the proofs that follow are in
line with the standard estimating equation approach. That is, the
function is written as a function of population totals and then a
design consistent estimator for the totals is used to derive an
estimator for the function. However, the fact that the partition
is dependent on the sample drawn requires that the arguments
account for this source of randomness.

This is done by extending the work in a series of articles
by Stone (1977) and Gordon and Olshen (1978, 1980). Those
articles present conditions for a recursive partitioning algo-
rithm to produce an Lp consistent estimator of a regression
model when the observations are independent and identically
distributed (iid) from a general distribution. This article pro-
vides conditions on the sampling design and the recursive par-
titioning algorithm such that: (1) the recursive partition applied
to the sample data satisfies the conditions of Gordon and Olshen
(1978, 1980) for the population estimator based on this partition
to be Lp consistent with respect to the superpopulation model;
and (2) the estimator based on the sample data is L2 consistent
with respect to the design as an estimator for the finite popula-
tion quantity defined using the same partition. Therefore, after
arguing that the finite population quantity defined for the sam-
ple based partition satisfies the conditions for asymptotic con-
sistency, the arguments follow those of the estimating equation
approach.

The next section reviews some of the primary results of Gor-
don and Olshen (1978, 1980) restated in terms of an iid fi-
nite population Uν generated from a superpopulation model ξ.

Section 3 establishes the asymptotic design unbiasedness and
consistency of the sample based estimator. Section 4 provides
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an example using a recursive partitioning algorithm to ana-
lyze Occupational Employment Statistics (OES) Survey estab-
lishment data linked to Quarterly Census of Employment and
Wage (QCEW) payroll data of the Bureau of Labor Statistics
(BLS). This example demonstrates the effect of complex sam-
ple designs on regression tree models. Simulation results for the
method applied to repeated samples of these data using the orig-
inal probability of selection and using probability proportional
to size (pps) are also given in this section. Section 5 summarizes
the results of the article, discusses other findings, and consid-
ers several possible directions for future research. Appendix A
contains some proofs.

2. RECURSIVE PARTITIONING

Consider a population {(Y1,X1), . . . , (YNν ,XNν )}, indexed
by the set Uν = {1, . . . ,Nν}. The elements of the set are in-
dependently and identically distributed according to the model
ξ with distribution function F(y,x). Here y is univariate and x
is a d-dimensional vector. We use FY(y) and Fl(xl) to denote
the univariate marginal distributions of Y and Xl, respectively.
The notation F−(x) is used to represent limε→0− F(x + ε) for
any univariate cdf F(·). Gordon and Olshen (1978, 1980) noted
that the arguments that follow can be proved without loss of
generality for X ∈ (0,1)d. The same is true for the algorithms
and proofs that follow, so we also assume X is of this form.

Let Eξ denote the expectation evaluated with respect to ξ.

Now, consider estimation of a superpopulation regression func-
tion h(x) = Eξ [Y|X = x]. For a set A that intersects the sup-
port of the auxiliary variable X, define the function h(A) =
Eξ [Y|X ∈ A]. Gordon and Olshen (1978, 1980) considered an
estimator ĥNν (x) constructed from a recursive partitioning al-
gorithm. They gave sufficient conditions for these algorithms
to satisfy

lim
Nν→∞ Eξ

[∣∣h(X) − ĥNν (X)
∣∣p] = 0 (1)

for a fixed p > 1. The remainder of this section reviews results
from those articles.

A recursive partitioning algorithm begins by splitting the en-
tire sample into two subsets according to the value of one of
the auxiliary variables Xl for l = 1, . . . ,d. For example, the
sample could be divided into the two sets {i ∈ Uν |xil ≤ c} and
{i ∈ Uν |xil > c} for some constant c. The mean estimator is cal-
culated on each subset separately. This procedure is repeated
on each subset until the entire dataset is partitioned into boxes
such that each box contains less than a predefined number of el-
ements. At each step, the split that results in the largest decrease
in the estimated mean squared error for the estimator applied to
the given dataset is chosen from among all possible splits on
the auxiliary variables.

Let QNν be the set of partitioning boxes resulting from the
algorithm. Let supp(X) be the support of the random vector X.

Then BNν denotes an arbitrary box in QNν and BNν (x) repre-
sents the box in the partition containing the value x ∈ supp(X).

A box BNν in a given partition QNν has two corresponding
index vectors a(BNν ) = (a1(BNν ), . . . ,ad(BNν )) and b(BNν ) =
(b1(BNν ), . . . ,bd(BNν )). These vectors define the contents of
the box to the extent that every x ∈ BNν satisfies al(BNν ) ≤ xl ≤
bl(BNν ) for l = 1, . . . ,d.

Next we describe a norm on a given partition of the auxiliary
variable space. If F is the given distribution of X, let P denote
the corresponding probability measure and Fl the correspond-
ing marginal distribution of component xl. Define the l-norm of
partition QNν relative to F

‖QNν ‖F
l =

∑
BNν ∈QNν

{[
Fl(bl(B

Nν ))−Fl(al(B
Nν ))

]
P(BNν )

}
(2)

and the l-norm of partition QNν relative to F−

‖QNν ‖F−
l =

∑
B(Nν )∈QNν

{[
F−

l (bl(B
Nν )) − F−

l (al(B
Nν ))

]
P(BNν )

}
.

(3)

These measures are roughly the expected probability mass
assigned to a box in QNν with respect to the distributions Fl
or F−

l . For example, a partition QNν that includes many splits

on Xl will tend to have a smaller ‖QNν ‖F
l and ‖QNν ‖F−

l than
a partition with fewer splits on Xl. See Appendix B for some
related comments on the ‖QNν‖F

l and ‖QNν ‖F−
l measures.

Next we define some final notation used in the statement of
the main result of Gordon and Olshen (1980) that we will be
extending. For a given value of Y = y and a set A ⊂ supp(X)

define the empirical conditional distribution function

F̂Nν (y|A) =
(∑

i∈Uν

1{xi∈A}
)−1 ∑

i∈Uν

1{yi<y}1{xi∈A}

and the empirical probability

P̂Nν (A) = N−1
ν

∑
i∈Uν

1{xi∈A}

each defined with respect to the finite population Uν .
Last we will define two functions of Nν that will be used as

rates of convergence. Let γ (Nν) and k(Nν) be given functions
bounded above 0 for all Nν > 0 satisfying:

Rate Condition 1: γ (Nν) → ∞,

Rate Condition 2: N−1
ν k(Nν) → 0,

Rate Condition 3: k(Nν)
−1γ (Nν)N

1/2
ν → 0.

Note that Rate Conditions 1–3 require

N−1/2
ν γ (Nν) → 0. (4)

It is easy to find functions k(Nν) and γ (Nν) that satisfy Rate
Conditions 1–3. For example, let α ∈ (1/2,1) and ε ∈ (0, α −
1/2). Then let k(Nν) = Nα

ν and γ (Nν) = ln (Nν) or Nα−ε−1/2
ν .

For a given set A ⊂ supp(X) the notation #Nν (A) =∑
i∈Uν

1{xi∈A} will also be used throughout this article. The
function #Nν (A) represents the number of population elements
that are contained in the set A.

To define the estimator of the function h(x) = Eξ [Y|X = x]
we will use the identity

Eξ [Y|X = x] =
∫ ∞

0
{1 − F(y|X = x)}dy

for Y ≥ 0. The finite population estimator is given by

ĥNν (x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ γ (Nν )

0

{
1 − F̂Nν (y|B(Nν )(x))

}
dy,

if #Nν (B
Nν (x)) > k(Nν)

0, otherwise.

(5)
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By using the decomposition Y = Y+ − Y− the definition of
hNν (x) can be made general.

The above estimator is a mean of values below the trimming
cutoff of γ (Nν) within a box containing at least k(Nν) points.
For sparse boxes [boxes containing fewer than k(Nν) points] the
estimator is set to zero.

Theorem 1 (Gordon–Olshen 1980). Suppose the iid data
{(Y1,X1), . . . , (YNν ,XNν )} are from the superpopulation model
ξ with the properties that X ∈ R

d, and Eξ |Y|p < ∞. In addi-
tion assume, k(Nν) and γ (Nν) are two functions satisfying Rate
Conditions 1–3. If

P̂Nν

{
x|#(BNν (x)) > k(Nν)

} → 1 with ξ -probability 1, (6)

and

‖QNν ‖F̂Nν

l → 0 and
(7)

‖QNν ‖F̂−
Nν

l →ξ 0 with ξ -probability 1,

then

lim
N→∞ Eξ

[∣∣h(X) − ĥNν (x)
∣∣p] = 0. (8)

Notice the trimming of this estimator vanishes if γ (Nν) is
sufficiently large compared to observed values of Y. However,
Rate Condition 3 dictates that the faster γ (Nν) grows the faster
k(Nν) must grow. This could cause more boxes to be too sparse,
resulting in failing condition (6). Condition (6) requires that the
proportion of boxes that are sufficiently dense as estimated from
the empirical distribution has to go to 1. Condition (7) requires
that the width of those boxes as measured by the empirical ver-
sion of (2) and (3) shrink to zero. Note that these conditions are
stated in terms of the finite population proportion P̂Nν and the

empirical norms ‖QNν ‖F̂Nν

l and ‖QNν ‖F̂−
Nν

l .

3. COMPLEX SAMPLE DATA

Section 2 reviewed results contained in the work of Gordon
and Olshen (1978, 1980) for the estimator ĥNν (x) using an iid
sample of size Nν from a superpopulation. These results estab-
lished sufficient conditions for Lp consistency of an estimator of
h(x) as Nν grows without bound. This section considers an esti-
mator of h(x) based on recursive partitioning algorithms when
the data are collected via a random sample with unequal proba-
bilities of selection with replacement. For this end, we consider
the performance of an estimator determined by the data from
the sample of size nν in estimating ĥNν (x) as both nν,Nν → ∞.

Consider a population of elements indexed by the set Uν =
{1,2, . . . ,Nν} where for every i ∈ Uν there is a corresponding
unit in the population (Yi,Xi,Zi). We will again assume that
the finite population is generated iid from a superpopulation
model ξ. Here Yi and the vector Xi are the variables of interest.
The vector Zi represents known characteristics of the popula-
tion elements that are used in the sample design but are not of
direct interest to the analyst. For example, Zi might contain a
measure of size used to establish selection probabilities.

In contrast to the iid situation, in survey sampling it is often
the case that some or all of the auxiliary variables are known for
all units i in the finite population and that this information could
be used in designing the survey. In this article we examine the

case in which (Yi,Xi) is known only for the sampled elements
i ∈ Sν, and only Zi is known for each population unit, i ∈ Uν.

To examine asymptotic properties of an estimator we fol-
low the framework of Isaki and Fuller (1982) and Robinson
and Särndal (1983). Define a sequence of finite populations
{Uν}∞ν=1, where Uν ⊂ Uν+1. The set Sν ⊂ Uν represents a sam-
ple of size nν drawn from Uν. The probability of a particu-
lar sample Sν being drawn among all possible samples from
Uν is called the sample design and is assumed known. Define
δνi = 1 if i ∈ Sν and 0 otherwise. The probability of a particu-
lar unit i being selected in the sample, P(i ∈ Sν) = Ep(δνi), is
denoted πνi. The joint probability of two elements i and j be-
ing included in the sample, P(i ∈ Sν ∩ j ∈ Sν), is denoted πνij.

Define Ñν = ∑
i∈Sν

π−1
νi as a weighted sample estimator of the

population size.
In parallel with the definitions of BNν

ν (x) and QNν
ν in Sec-

tion 2, we define below the partition Qnν and boxes Bnν (x) re-
sulting from a partitioning of the X-space using only the ob-
served sample data. First we will need a few definitions.

Given a population of size Nν and a box Bnν from a given par-
tition Qnν , denote the number of population units in box Bnν as
#Nν (B

nν ), and the number of units from sample Sν contained in
box Bnν as #nν (B

nν ). We also define the sample based predictor

#̃Nν (B
nν ) =

∑
i∈Sν

π−1
νi 1{xi∈Bnν (x)}

of the number of population units in box Bnν .

The partitioning algorithm we will use is based on one used
by Gordon and Olshen (1978, 1980). The algorithm is first ap-
plied to the entire sample dataset and then recursively applied
to each split subset.

Step 1. If the set contains more than 2k(nν) sample elements
go to Step 2; else stop.

Step 2. Among the auxiliary variables Xj, j = 1, . . . ,d de-
termine the split resulting in the largest decrease in the
estimated mean squared error.

Step 3. If the minimizing split reduces the estimated mean
squared error by at least p%, then split the datasets ac-
cording to this minimizing split. For each of the two re-
sulting subsets, return to Step 1.

Step 4. Otherwise, split the set at the median value of the
auxiliary variable Xj that was least recently used by the
algorithm to split. For each of the two resulting subsets,
return to Step 1.

As was done for the finite population, define estimators of the
empirical conditional distribution and the empirical probability
function for Y based on the sampled data. For a given box in
the partition Bnν (x) define the probability-weighted empirical
conditional distribution estimator

F̃nν (y|Bnν (x)) = (
#̃Nν (B

nν )
)−1 ∑

i∈Sν

π−1
νi 1{yi≤y}1{xi∈Bnν (x)}

and the empirical probability estimator

P̃nν (B
nν (x)) = (Ñν)

−1
∑
i∈Sν

π−1
νi 1{xi∈Bnν (x)}.
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3.1 Conditions

To prove consistency of an estimator based on the recursive
partitioning of a sample with unequal probabilities of selection,
we put some conditions on the sample design as well as the
underlying population. The conditions are:

Condition 1

lim
ν→∞ N−1

ν

Nν∑
i=1

Y2
i = μ2 < ∞ with ξ -probability 1;

Condition 2

lim sup
ν→∞

(
Nν min

i∈Uν

πνi

)−1 = O(n−1
ν ) with ξ -probability 1;

Condition 3

lim sup
ν→∞

max
i,j∈Uν i
=j

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ = O(n−1
ν ) with ξ -probability 1;

Condition 4

Ep[δνiδνj|Qnν ] = πνij + Op
(
n1/2
ν γ (nν)

−1k(nν)
−1)

∀i, j ∈ Uν with ξ -probability 1.

Condition 1 is a standard condition on the superpopulation
while Conditions 2 and 3 are well-known conditions on the
sample design that are easily satisfied by a survey design that is
not highly clustered (see Robinson and Särndal 1983). Condi-
tion 4 is a condition concerning the finite population, the sample
design, and the recursive partitioning algorithm. This condition
requires that extreme values in the finite population selected
into the sample have a diminishing effect on the recursive par-
titioning algorithm as the sample size contained in each box,
k(nν), increases. See the article by John (1995) for a discussion
of recursive partitioning methods that remove outliers. Notice
that the factor n1/2

ν γ (nν)
−1 acts to slow the required rate for

this condition. The concept of diminishing effects here involves
trade-offs among the rate functions γ and k.

If we define the random variable

rνij = Ep[δνiδνj|Qnν ] − πνij,

then Condition 4 requires maxi,j |rνij| = Op(n
1/2
ν γ (nν)

−1 ×
k(nν)

−1). Notice that every rνij also satisfies −1 ≤ −πνij ≤
rνij ≤ 1 − πνij < 1, with ξ -probability 1, so

Ep

[
max

i,j
|rνij|

]
= O

(
n1/2
ν γ (nν)

−1k(nν)
−1). (9)

3.2 Preliminary Results on Box Properties

Define Yν = ∑
i∈Uν

Yi. The Hájek estimator of a population

mean Ȳν = N−1
ν

∑
i∈Uν

Yi = N−1
ν Ŷν is defined as the ratio esti-

mator

ˆ̄Yν =
(∑

i∈Uν

π−1
νi δνi

)−1 ∑
i∈Uν

π−1
νi δνiyi = Ñν

−1
Ŷν.

Rather than prove that an estimator defined on a recursive
partitioning created from the algorithm applied to sample data
converges to a partitioning created from the algorithm applied
to the population data, we proceed by showing the following.

• The partition Qnν , created by applying the algorithm to
the sample data, satisfies the conditions corresponding to
expressions (6) and (7).

• Consequently, the estimator ĥ∗
Nν

(x), defined using the fi-
nite population data on the sample based partition Qnν , is
consistent as an estimator of the superpopulation quantity
h(x).

• The estimator defined using the sample is ADU and ADC
as an estimator for ĥ∗

Nν
(x) defined using the population

values on the partition.

This will prove that the estimator defined using the sample is
ADU and ADC as an estimator of the superpopulation quantity
h(x).

Lemma 1. Assume the sample design satisfies Conditions 1
through 4, and k and γ are two functions satisfying Rate Con-
ditions 1 through 3. If with ξ -probability 1,

lim
ν→∞ P̃nν

[
x|k(nν)

−1#nν (B
nν (x)) ≥ 1

] = 1,

then

lim
ν→∞ P̂Nν

[
x|k(nν)

−1#nν (B
nν (x)) ≥ 1

] = 1

with ξ -probability 1.
See Appendix A for proof.
Next we define a sample based estimator for the l-norm of

partition Qnν relative to F̂Nν . This is done by using F̂Nν and
F̃Nν , respectively, and their corresponding empirical probability
measures in place of F and P in Equation (2).

Lemma 2. Under Conditions 1 through 4, given two func-
tions k and γ satisfying Rate Conditions 1 through 3, then for
all l = 1, . . . ,d

‖Qnν ‖F̃nν

l →p ‖Qnν ‖F̂Nν

l and ‖Qnν ‖F̃−
nν

l →p ‖Qnν ‖F̂−
Nν

l ,

with ξ -probability 1 as ν → ∞.

See Appendix A for proof.

3.3 The Mean Estimator

Next is the main result of this article. In addition to the pre-
vious conditions on the sample design, this result requires the
added condition on the sampling fraction:

Condition 5

f −1 = Nν/nν = O
(
n1/2
ν γ (nν)

−1).
This condition allows for designs with a finite sampling fraction
f > 0, as well as a sampling fraction that shrinks asymptotically
to zero.

Proposition 1. Given a finite population {(Y1,X1), . . . ,

(YNν ,XNν )} generated iid from the superpopulation model ξ

and a sample Sν, selected from this population satisfying Con-
ditions 1 through 5. Let Qnν be the collection of boxes created
from the algorithm, which partition the finite population and
define

h̃nν (x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ γ (nν )

0

{
1 − F̃nν (y|Bnν (x))

}
dy,

if #nν (B
nν ) > k(nν)

0, otherwise.

(10)
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Assume the two functions k and γ satisfy Rate Conditions 1
through 3.

If with ξ -probability 1,

P̃
(
x|k(nν)

−1#nν (B
nν (x)) ≥ 1

) →p 1 (11)

and

‖Qnν ‖F̃nν

l →p 0 and
(12)

‖Qnν ‖F̃−
nν

l →p 0 for all l = 1, . . . ,d,

then

lim
ν→∞ Eξp

[∣∣h̃nν (x) − h(x)
∣∣2] = 0.

Proof. Define the finite population estimator of h(x) using
the resulting partition from the recursive partitioning algorithm
used on the sample data as

ĥ∗
Nν

(x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ γ (nν )

0

{
1 − F̂Nν (y|Bnν (x))

}
dy,

if #Nν (B
nν (x)) > k(nν)

0, otherwise.

(13)

Notice that ĥ∗
Nν

(x) is a finite population quantity defined on the
sample based partition. Since the analyst only observes the sam-
ple, this is a hypothetical quantity used here as a device to prove
consistency of the sample estimator h̃nν (x).

We will show that the quantity

Eξp
[∣∣h̃nν (x) − h(x)

∣∣2]
= Eξp

[∣∣h̃nν (x) − ĥ∗
Nν

(x)
∣∣2]

+ 2Eξp
[∣∣h̃nν (x) − ĥ∗

Nν
(x)

∣∣∣∣ĥ∗
Nν

(x) − h(x)
∣∣]

+ Eξp
[∣∣ĥ∗

Nν
(x) − h(x)

∣∣2]
goes to zero as nν increases.

Let A be the event that the samples are chosen such that the
assumptions (11) and (12) imply that

lim
ν→∞ P̂

[
x|k(nν)

−1#nν (B
nν (x)) ≥ 1

] = 1

and

lim
ν→∞‖Qnν ‖F̂Nν

l = 0 and lim
ν→∞‖Qnν ‖F̂−

Nν

l = 0

with ξ -probability 1. Then

Eξp
[∣∣ĥ∗

Nν
(x) − h(x)

∣∣2] = Eξ

[∣∣ĥ∗
Nν

(x) − h(x)
∣∣2|A

]
Pp(A)

+ Eξ

[∣∣ĥ∗
Nν

(x) − h(x)
∣∣2|A′]Pp(A′)

where A′ is the complement of event A.

The quantity Eξ [|ĥ∗
Nν

(x) − h(x)|2|A′] ≤ Eξ [|ĥ∗
Nν

(x)|2|A′] +
Eξ [|h(x)|2|A′], where the estimator ĥ∗

Nν
(x) is a mean of Yi’s

and h(x) = Yi + εi. By Condition 1 Eξ [Y2
i ] < ∞ with ξ -

probability 1; therefore the quantity Eξ [Y2
i |A′] is bounded be-

cause A′ is a event determined by the sample. This implies that
the expectation Eξ [|ĥ∗

Nν
(x) − h(x)|2|A′] is bounded.

On the other hand, if the event A occurs, Eξ [|ĥ∗
Nν

(x) −
h(x)|2|A) converges to zero by Theorem 1. Since we have

shown in Lemma 1 and Lemma 2 that Pp(A) → 1, it follows
that

lim
ν→∞ Eξ

[∣∣ĥ∗
Nν

(x) − h(x)
∣∣2] = 0.

We proceed to show that

lim
ν→∞ Ep

[∣∣h̃nν (x) − ĥ∗
Nν

(x)
∣∣2] = 0

with ξ -probability 1.
The set of x such that #Nν (B

nν (x)) > k(nν) is a set with ξ -
measure that converges to 1 as nν increases. Thus, we will only
consider x satisfying this condition. For such an x, the differ-
ence h̃nν (x) − ĥ∗

Nν
(x) can be written D1 + D2, where

D1 =
∫ γ (nν )

0
#Nν (B

nν (x))−1

×
∑
i∈Uν

1{yi≤y}1{xi∈B(nν )(x)}(1 − π−1
νi δνi)dy

and

D2 = [
#Nν (B

nν (x))−1 − #̃Nν (B
nν (x))−1]

×
∫ γ (nν )

0

∑
i∈Uν

π−1
νi δνi1{yi≤y}1{xi∈Bnν (x)} dy.

In addition,

|D1| ≤ γ (nν)#Nν (B
nν (x))−1

∣∣∣∣
∑
i∈Uν

(1 − π−1
νi δνi)1{xi∈B(nν )(x)}

∣∣∣∣
and

|D2| ≤ #Nν (B
nν (x))−1

∣∣#Nν (B
nν (x)) − #̃Nν (B

nν (x))
∣∣

×
∫ γ (nν )

0
F̃nν (y|Bnν (x))dy.

Each of |D1| and |D2| is

≤ γ (nν)#Nν (B
nν (x))−1

∣∣∣∣
∑
i∈Uν

(1 − π−1
νi δνi)1{xi∈B(nν )(x)}

∣∣∣∣
with ξ -probability 1.

Therefore,

Ep
[{

h̃nν (x) − ĥ∗
Nν

(x)
}2]

≤ 4γ 2(nν)Ep

[
#Nν (B

nν (x))−2
∑ ∑

i,j∈Uν

(1 − π−1
νi δνi)

× (1 − π−1
νj δνj)1{xi,xj∈B(nν )(x)}

]

= 4γ 2(nν)Ep

[
Ep

{
#Nν (B

nν (x))−2
∑ ∑

i,j∈Uν

(1 − π−1
νi δνi)

× (1 − π−1
νj δνj)1{xi,xj∈B(nν )(x)}

∣∣Qnν

}]

= 4γ 2(nν)Ep

[
#Nν (B

nν (x))−2
∑ ∑

i,j∈Uν

1{xi,xj∈B(nν )(x)}

× Ep{(1 − π−1
νi δνi)(1 − π−1

νj δνj)|Qnν }
]
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= 4γ 2(nν)Ep

[
#Nν (B

nν (x))−2
∑
i∈Uν

1{xi∈B(nν )(x)}

× {π−1
νi − 1 + rνij}

]

+ 4γ 2(nν)Ep

[
#Nν (B

nν (x))−2
∑ ∑

i
=j∈Uν

1{xi,xj∈B(nν )(x)}

×
{

πνij

πνiπνj
− 1 + rνij

}]
.

Since #Nν (B
nν (x)) ≥ k(nν), the first term is

≤ 4γ 2(nν)k(nν)
−1

×
{
Nν

(
Nν min

i∈Uν

πνi

)−1 + Ep

[
max

i,j
|rνij|

]}
. (14)

By Condition 2 and Equation (9), Equation (14) is O((Nν/

nν)γ
2(nν)k(nν)

−1), with ξ -probability 1. By Condition 5, this
quantity is O(n1/2

ν γ (nν)k(nν)
−1).

Likewise, the second term is

≤ 4γ 2(nν)

{
max

i,j∈Uν ,i
=j

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ + Ep

[
max

i,j
|rνij|

]}

which, by Condition 2 and Equation (9), is O(n1/2
ν γ (nν) ×

k(nν)
−1) with ξ -probability 1.

Therefore, Ep[{h̃nν (x) − ĥ∗
Nν

(x)}2] = O(n1/2
ν γ (nν)k(nν)

−1)

with ξ -probability 1, which, by Rate Condition 3, goes to zero.

4. APPLICATION: ESTABLISHMENT PAYROLL DATA

The average wage per employee paid by an establishment
depends a great deal on location of the establishment and the
type of industry in which the establishment is engaged. Among
the 11 different North American Industry Classification System
(NAICS) super sectors one of the lowest paying is the leisure
and hospitality industry class (2-digit NAICS codes 71 and 72).
In fact, the average total wage per employee paid by an estab-
lishment with the leisure and hospitality classification in the
second quarter of 2005 is $8827. Excluding the establishments
in the largest metropolitan statistical area (MSA), the MSA cat-
egory with the largest average wage per employee, this aver-
age is $7685. Among these establishments the average is only
$3596 for establishments in the leisure and hospitality industry
class while $8207 for the rest. Even among establishments in
this industry classification the average wage per employee can
vary greatly depending on the characteristics of an establish-
ment.

The OES is a semi-annual establishment survey which mea-
sures a number of establishment level characteristic variables.
In this study, we use four establishment characteristics to model
the average wage per employee. The four characteristics of in-
terest are: (1) size, the size of the establishment measured by the
number of employees employed at the establishment, (2) age,
the age of the establishment’s parent firm measured in years
since it has been open, (3) msa, the size class of the MSA,
and (4) count, the number of other establishments owned by
the parent firm in different states. The last characteristic is of-
ten used as a proxy for the complexity of the corporate structure
of the establishment’s parent company firm.

The measure of average wages paid per employee for an es-
tablishment is derived by taking the reported payroll for the sec-
ond quarter of 2005 according to the Quarterly Census of Em-
ployment and Wages (QCEW) divided by the reported number
of employees for the selected establishment. The average wage
per employee of small establishments can have extreme behav-
ior. For example, some family owned and operated establish-
ments may not pay anything to some or all of their employees.
Consequently we limit our analysis only to establishments with
reported wages above zero and at least 20 employees. We also
exclude establishments in the largest MSA class (those with
more than one million people). Figure 1 shows the resulting
regression trees based on the 7112 sample units from the May
2006 OES linked with their payroll data. The goal was to model
the association between an establishment’s characteristics and
the average wage per employee paid by that establishment for
both the unadjusted and weight-adjusted algorithm.

Concentrating on only the first two splits of the tree models
(Figure 2), we see a qualitative similarity between the two mod-
els. Using just these two splits, the establishments are divided
into three categories by both algorithms: large firms; old small
firms; and young small firms. Differences between the weighted
and unweighted model results include the definitional bound-
aries for these categories, as well as the estimate of the average
wages paid for each category. For example, establishments are
singled out by the unadjusted algorithm as large if they have
at least 148 employees, whereas the weight-adjusted algorithm
defines large as having at least 83 employees. The difference in
cutting-point in this case can be attributed to the difference be-
tween the weighted and unweighted versions of the empirical
distribution functions (edf). For the unweighted edf the point
148 employees is the 95% quantile while the point 83 employ-
ees represents only the 84% quantile. For the weighted version
83 employees is close to the 95% quantile (93%).

Cut-points on the variable age were relatively close: 34.41
years for the unadjusted algorithm and 33.75 years for the
weight-adjusted algorithm. In addition, the two methods pro-
duced different estimates of average wage per employee for
each category. The unadjusted model estimates an average wage
which is higher than that of the weight-adjusted model for all
three categories of establishments.

4.1 Simulation

To explore potential effects of ignoring the weights when ap-
plying a recursive partitioning algorithm we provide a simu-
lation that uses this dataset to compare the two options. The
dataset is now considered the finite population of size Nν =
7112 that we intend to model. We will compare the accuracy
of the regression tree model ignoring the weights to the model
that incorporates the sampling weights using the finite popula-
tion estimator ĥNν as a proxy for h(x). For this end, we draw
1000 repeated samples from this finite population of size nν

according to one of two sample designs and compare the mod-
els obtained by the two recursive partitioning methods on each
sample to the true finite population. The first design uses the
relative probabilities of selection for each sampled unit used to
draw the original OES sample. How this was done is explained
in detail below.

Both sample designs are single stage probability proportional
to size (pps) designs. For the first design (denoted OES Design)



1632 Journal of the American Statistical Association, December 2011

Figure 1. Shows both trees modeling average wage per employee (in 000’s) paid by an establishment with at least 20 employees in the Leisure
and Hospitality category located outside of a large metropolitan area. The algorithm used the 7112 units from the May 2006 OES sample of
establishments linked with reported wages for the second quarter of 2005.

we use the inverses of the original OES sampling weights as the
measure of size variables. In the second design (denoted PPS
Design) we use the number of employees at an establishment.

Under each of the two designs every element i in the population
has a positive probability πi of being selected in the sample.
Table 1 provides characteristics of the two designs used in the

Figure 2. Shows both trees modeling average wage per employee (in 000’s) paid by an establishment with at least 20 employees in the Leisure
and Hospitality category located outside of a large metropolitan area. These trees resulted from pruning the full trees to include only the first
two splits. The tree on the left results from ignoring the complex sample design and the sample weights while the tree on the right is the result
of the procedure incorporating the sample weights. The recursive partitioning algorithm identifies size of the establishment and age of the firm
as among the most influential characteristics in determining average wage per employee paid by an establishment. The tree splits the smaller
values to the left. For instance, the algorithm identifies the small and young establishments as paying the lowest average wage per employee
among these types of establishments.
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Table 1. This table displays key characteristics of the two sample designs used to select the repeated samples in the simulations. The
characteristics displayed are sample size, the number of certainty units (CUs), the minimum probability of selection for a single element,

the maximum probability of selection for a single element, the coefficient of variation CV of the probabilities of selection, and the
correlation of the probabilities of selection with the variable of interest, yi, the average wage per employee

Design nν CUs minπν maxπν CV(πν) Cor(yi,πνi)

OES Design 100 0 0.001736 0.106153 1.103350 0.226363
200 0 0.003471 0.212306 1.103350 0.226363
400 0 0.006943 0.424611 1.103350 0.226363
800 0 0.013885 0.849222 1.103350 0.226363

1600 158 0.029821 1.000000 0.799255 0.248926

PPS Design 100 2 0.004286 1.000000 2.178212 0.163341
200 5 0.008694 1.000000 1.865246 0.177456
400 23 0.017931 1.000000 1.482854 0.200450
800 64 0.037626 1.000000 1.123322 0.223481

1600 172 0.080510 1.000000 0.817056 0.225856

simulation. From this table we see that the sampling schemes
are very similar with the exception of the presence of certainty
units in every sample in the second design.

In order to compare the two methods we define some statis-
tics that we calculate for each sample. Let U be the set of in-
tegers {1, . . . ,7112} and let T be the regression tree model ob-
tained by applying the recursive partitioning algorithm on the
population elements. Denote the regression tree T estimated
value of average wage per employee paid y(xi) by establish-
ment i ∈ U given the establishment’s characteristic variables
xi by T(xi). For each sample S of population elements we
build two regression trees using the recursive partitioning al-
gorithms. The estimator t̃ uses the method proposed above to
account for the sampling weights and the other t̂ ignores the
sampling weights. To compare the two resulting regression tree
models we consider the mean error and the mean squared er-
ror with respect to the population model T . For each sample S
the mean error N−1 ∑

i∈U{t̃(xi) − T(xi)} and the mean squared
error N−1 ∑

i∈U{t̃(xi) − T(xi)}2 for the regression model t̃ are
calculated. The analogous quantities are produced for t̂ as well.

Figure 3 demonstrates the behavior of the mean error and the
square root of mean squared error for t̃ and t̂ as the sample size
increases. From this set of graphs it is clear that the weighted
estimator performs much better than the estimator which ig-
nores the design in terms of overall efficiency. More impor-
tantly, the weight-adjusted method appears to remove a sub-
stantial amount of bias from the estimate that would be present
if an unadjusted method were used.

5. DISCUSSION

This article establishes sufficient conditions on the popula-
tion distribution, survey design, and recursive partitioning al-
gorithm that guarantee asymptotic design consistency of regres-
sion trees as an estimator for the conditional mean of the pop-
ulation. Consistency of the weighted estimator is demonstrated
through an empirical investigation and simulation study of the
methods applied to data based on the 2006 OES establishment
data linked with 2005 second quarter QCEW payroll data. This
investigation gives strong evidence that ignoring the complex
design of the sample when using recursive partitioning tech-
niques may have severe negative consequences. It may be of

interest to note that empirical investigation of the techniques on
other simulated models, not discussed in this article, showed
similar results.

The algorithms described above are based completely on ob-
served values from the sample as are the conditions needed to
establish consistency. It may be possible to incorporate known
totals for auxiliary variables into the algorithm to gain improved
efficiency. This is an area we hope to investigate further in the
future.

Further, all the results in this article are asymptotic under a
superpopulation model; nothing in this article discusses proper-
ties for a single finite population. In particular, it would be de-
sirable to have diagnostics to detect an extreme sample or finite
population that would lead to misleading results. Alternatively,
a procedure and conditions under which the estimator has al-
most sure convergence under the superpopulation model may
be useful. In addition, determining sample designs that opti-
mize recursive partition algorithms for a given finite population
is an area for future study.

The asymptotic results in this article, like those of Gordon
and Olshen (1978, 1980), deal only with building a tree model.
When practitioners use this methodology they usually incorpo-
rate a pruning algorithm to complete the model selection pro-
cess; see the book by Breiman et al. (1984). Pruning algorithms
on data from a complex sample are therefore another possible
area for future research. This article offers a beginning to pro-
viding theoretical justification for using recursive partitioning
algorithms on survey data. However, there is clearly much re-
search to be done in this area.

APPENDIX A: PROOFS AND ADDITIONAL LEMMAS

Lemma A.1. Assume Conditions 1, 2, and 3. Then the Hájek es-

timator, ˆ̄Yν , of a population mean is asymptotically design unbiased
(ADU)

lim
ν→∞Ep[ ˆ̄Yν − Ȳν ] = 0

with ξ -probability 1, and asymptotically design consistent (ADC)

lim
ν→∞Pp(| ˆ̄Yν − Ȳν | > ε) = 0

with ξ -probability 1, for any ε > 0, where Ep and Pp denote expecta-
tion and probability, respectively, with respect to the sample design.
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Figure 3. The solid lines represent the empirical bias (the average of
the mean error calculations) and the square root of the empirical mean
squared error (RMSE) based on 1000 simulations for the unweighted
estimator (red—top) and the weighted estimator (blue—bottom). The
dotted lines are ±1.96 the standard errors of the 1000 calculations for
each sample size nν . The online version of this figure is in color.

Proof. The Horvitz–Thompson estimator of a population mean is
defined N−1

ν Ŷν . This estimator (Horvitz and Thompson 1952) is ADC
as an estimator of the population mean Ȳ under the above condi-
tions (see Robinson and Särndal 1983, thm. 1). In fact N−1

ν Ŷν =
Ȳν + Op(n−1/2

ν ) (see Robinson 1982; Mukhopadhyay 2006). This is

also true for the special case Yi = 1 for all i, N−1
ν Ñν = 1+Op(n−1/2

ν ).

The Hájek estimator can be expressed as the function of these

two Horvitz–Thompson estimators ˆ̄Yν = f (ŶνN−1
ν , ÑνN−1

ν ) where
f (y, x) = y/x. Since f has a continuous derivative at x = Nν > 0 and

Ñν ≥ 1 for all ν, ˆ̄Yν = Ȳν/1 + Op(n−1/2
ν ) by the vector form of corol-

lary 5.1.5 in the book by Fuller (1976).

Lemma A.2. Let Rnν i ≥ 0 be a random variable that depends on
the sample, but is conditionally independent of the sample given Qnν

and N−1
ν

∑
i∈Uν

R2
nν i ≤ M < ∞ for every ν. Assume Conditions 1

through 4; then

lim
ν→∞Ep

[{
N−1

ν

∑
i∈Uν

(δνiπ
−1
νi − 1)Rnν i

}2]
= 0 (A.1)

with ξ -probability 1, where Ep denotes expectation with respect to the
sample design.

For example, Rnν i can be a deterministic function of the sample
driven partition such as Rnν i = 1{xi∈Bnν (x)}, for a predetermined x.

Proof of Lemma A.2. The quantity

Ep

[{
N−1

ν

∑
i∈Uν

(δνiπ
−1
νi − 1)Rnν i

}2]

= Ep

[
Ep

[{
N−1

ν

∑
i∈Uν

(δνiπ
−1
νi − 1)Rnν i

}2∣∣Qnν

]]

= Ep

[
N−2

ν

∑
i∈Uν

{π−1
νi − 1 + rνij}R2

nν i

]

+ Ep

[
N−2

ν

∑ ∑
i
=j∈Uν

{
πνij

πνiπνj
− 1 + rνij

}
Rnν iRnν j

]

≤ Ep

[{(
Nν min

i∈Uν

πνi

)−1 + max
i,j

|rνij|
}
N−1

ν

∑
i∈Uν

R2
nν i

]

+ Ep

[{
max

i,j∈Uν ,i
=j

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ + max
i,j

|rνij|
}

× N−2
ν

∑ ∑
i
=j∈Uν

Rnν iRnν j

]
.

Since

N−2
ν

∑ ∑
i
=j∈Uν

Rnν iRnν j ≤ N−1
ν

∑
i∈Uν

R2
nν i < M

uniformly, the quantity

≤
{(

Nν min
i∈Uν

πνi

)−1 + Ep

[
max

i,j
|rνij|

]}
M

+
{

max
i,j∈Uν ,i
=j

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ + Ep

[
max

i,j
|rνij|

]}
M,

which is O(n1/2
ν γ (nν)−1k(nν)−1) by Condition 2, Condition 3, and

Equation (9).

Proof of Lemma 1

Let Aν = {x|k(nν)−1#nν (B
nν (x)) ≥ 1}. The difference

|P̃(x|x ∈ Aν) − P̂(x|x ∈ Aν)|

=
∣∣∣∣Ñν

−1 ∑
i∈Uν

π−1
νi δνi1{xi∈Aν } − N−1

ν

∑
i∈Uν

1{xi∈Aν }
∣∣∣∣

≤
∣∣∣∣Ñν

−1 ∑
i∈Uν

π−1
νi δνi1{xi∈Aν } − N−1

ν

∑
i∈Uν

π−1
νi δνi1{xi∈Aν }

∣∣∣∣

+ N−1
ν

∣∣∣∣
∑
i∈Uν

π−1
νi δνi1{xi∈Aν } −

∑
i∈Uν

1{xi∈Aν }
∣∣∣∣.

The first term on the right side of the inequality is bounded by
N−1

ν |Ñν − Nν |, which goes to zero in sample probability with ξ -
probability 1, by Lemma A.1.
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The second term on the right side also goes to zero in sample prob-
ability with ξ -probability 1. This follows from Lemma A.2 because
1{xi∈Aν } is conditionally independent of the sample given Qnν .

Proof of Lemma 2

Without loss of generality we will show the result for the l-norm of
partition created from the observed sample data Qnν relative to F̃nν .

The proof is the same for F̃−
nν

.

Define 	̃i = {F̃nν l(b(Bnν (xi))) − F̃nν l(a(Bnν (xi)))} and 	̂i =
{F̂Nν l(b(Bnν (xi))) − F̂Nν l(a(Bnν (xi)))}, so that the l-norms with re-
spect to F̃nν and F̂Nν

can be written as

‖Qnν ‖F̃nν

l = Ñ−1
ν

∑
i∈Uν

	̃iδiπ
−1
νi

and

‖Qnν ‖F̂Nν

l = N−1
ν

∑
i∈Uν

	̂i,

respectively.
The difference

∣∣‖Qnν ‖F̃nν

l − ‖Qnν ‖F̂Nν

l

∣∣
=

∣∣∣∣Ñ−1
ν

∑
i∈Uν

	̃iδiπ
−1
νi − N−1

ν

∑
i∈Uν

	̂i

∣∣∣∣

≤
∣∣∣∣(Ñ−1

ν − N−1
ν )

∑
i∈Uν

	̃iδiπ
−1
νi

∣∣∣∣

+
∣∣∣∣N−1

ν

∑
i∈Uν

{	̃iδiπ
−1
νi − 	̂i}

∣∣∣∣

= |1 − (Ñν/Nν)|‖Qnν ‖F̃nν

l

+
∣∣∣∣N−1

ν

∑
i∈Uν

{	̃iδiπ
−1
νi − 	̂i}

∣∣∣∣.

Now |1 − (Ñν/Nν)|‖Qnν ‖F̃nν

l ≤ |1 − (Ñν/Nν)| which goes to zero

in probability by Lemma A.1. The quantity |N−1
ν

∑
i∈Uν

{	̃iδiπ
−1
νi −

	̂i}| is

≤
∣∣∣∣N−1

ν

∑
i∈Uν

(	̃i − 	̂i)δνiπ
−1
νi

∣∣∣∣ +
∣∣∣∣N−1

ν

∑
i∈Uν

(δνiπ
−1
νi − 1)	̂i

∣∣∣∣,

where N−1
ν

∑
i∈Uν

(δνiπ
−1
νi − 1)	̂i goes to zero in probability by

Lemma A.2, since 	̂i is conditionally independent of the sample given
Qnν .

The quantity |N−1
ν

∑
i∈Uν

(	̃i − 	̂i)δνiπ
−1
νi | is

≤
(
Nν min

i∈Uν

πνi

)−1
nν max

i∈Uν

|	̃i − 	̂i| = max
i∈Uν

|	̃i − 	̂i|Op(1)

because of Condition 2. Next we show that maxi∈Uν
(	̃i − 	̂i) goes to

zero in probability which will prove the lemma.
For a given i ∈ Uν the quantity |	̃i − 	̂i| = Op(n−1/2) as a direct

result of Lemma A.1. Note that |	̃i − 	̂i| only depends on the box cre-
ated from the algorithm containing xi. Thus we can write the quantity

max
i∈Uν

(	̃i − 	̂i) = max
Bnν (xi)∈Qnν

(
	̃Bnν (xi) − 	̂Bnν (xi)

)

≤
∑

Bnν (xi)∈Qnν

∣∣	̃Bnν (xi) − 	̂Bnν (xi)

∣∣.

Since the recursive partitioning algorithm requires that there be at
least k(nν) sample elements in each box, there are at most nν/k(nν)

boxes, so ∑
Bnν (xi)∈Qnν

∣∣	̃Bnν (xi) − 	̂Bnν (xi)

∣∣ = Op
(
n−1/2
ν {k(nν)−1}).

The definition of the function k requires that n1/2
ν {k(nν)−1} go to zero.

APPENDIX B: ILLUSTRATION OF DIFFERENCES
BETWEEN TWO NORMS

The following simple example illustrates the difference between the
measures ‖QNν ‖F

l and ‖QNν ‖F−
l . This gives motivation for using both

measures in the conditions of the main result.

Example B.1. Let Xl be a random variable that takes one of the
following three values with given probabilities:

Xl =
⎧⎨
⎩

1, with probability 0.5

2, with probability 0.25

3, with probability 0.25.

Suppose QNν consists of two boxes BNν

1 and BNν

2 defined by a single
split on only one Xl,

BNν

1 = {i ∈ Uν |xil ≤ 2.5} and BNν

2 = {i ∈ Uν |xil > 2.5}.
Then

‖QNν ‖F
l =

∑
k=1,2

[
Fl(bl(B

Nν

k )) − Fl(al(B
Nν

k ))
]
P(BNν

k )

= [Fl(2) − Fl(1)]P(BNν

1 ) + [Fl(3) − Fl(2)]P(BNν

2 )

= [3/4 − 1/2]3

4
+ [1 − 3/4]1

4
= 1

4
and

‖QNν ‖F−
l = [F−

l (2) − F−
l (1)]P(BNν

1 ) + [F−
l (3) − F−

l (2)]P(BNν

2 )

= [1/2 − 0]3

4
= 1

4
+ [3/4 − 1/2]1

4
= 7

16
.

[Received June 2010. Revised July 2011.]
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