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1. Introduction

Building from the work of Wolter and Monsour  (1981), Pfeffermann (1994) and Bell and 
Kramer (1999) develop variance measures for X-11 seasonal adj ustment which account  
for both time series features and sam pling erro r.  Scott, Pfefferm ann, and  Sverchkov  
(2011) summarize methods and a bod y of em pirical work.  This  paper investigates a 
puzzling, u nsatisfying pr operty that someti mes oc curs in time  series of v ariance or 
standard deviation esti mates stemming from the measures.  Figure 1 contains graphs of 
standard deviations for error in seasona l adjustment from  t wo methods for three 
economic time series.  Bef ore explaining these graphs in detail, we focus sim ply on the  
shapes.  Figure 1a shows values in blue in creasing from the center to the ends of the  
series.  In Figure 1b, bot h methods show a dip during the last y ear, with one stay ing 
below central values throughout the last y ear and the other increasing to values at th e 
ends exceeding the central valu es.  For the series in Figure 1c, the methods have similar 
shapes, with dips toward the ends and e nd values well below the central values.  The 
natural view of seasonal adjustment is that th ere is m ore uncerta inty at the ends of the  
series than in the center, that is, 

( ) ( )SDA end SDA center . (1) 
This paper explores when and why deviations from this property occur, as in Figure 1c. 

We begin by  considering the conventional decomposition of an econom ic time series Y  
into a trend or trend-c ycle, a sea sonal effect, a nd an irregular or noise  ter m, or, 
alternatively, into a seasonally adjusted series and a seasonal component, 

Y T S I A S     . 
Typically, the population or signal values Y  are unknown and the data are obtained from 
a sa mple sur vey, im plying that the observed serie s is y Y   ,   representing the  
sampling error.  Seasonal adjustment is usually carried out  by augmenting the series with 
ARIMA model extrapolations.  Let  

1 0 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , , , , , , , ] [ , , ]m n n n m b o fy y y y y y y y y y             
define the ( 2 ) 1n m   vector consisting of m  backc asts, n  observed values, and m  
forecasts.  T he sea sonally adjusted esti mator is  ˆ ˆA y  , where   is the ( 2 )n n m   
matrix of the X-11 seasonal adjustm ent filter.  Bell and Kramer (1999) define the target 
seasonally adjusted series to be *A Y  , the seasonally  adjusted series th at would be  
obtained if Y  were observed for all 2n m  time points, and the variance  measure t o 
come from the error in estimating this target, 

ˆ ˆ ˆ( * ) ( ) ( )Var A A Var Y y Var Y y        .  
Application of the method requires modeling the signal series Y  with an ARIMA model 
and the sampling error   with a (stationary ) ARMA model.  This measure accounts for 
variability of the sam pling errors and  for b ackcast and forecast error.  The authors 
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for the combined error t t te I  ,  
( , )k t t kCov e e   ( , ) ( , )t t k t t kCov Cov I I     k kv  , 0,1,...k  .  

The following approximation is developed in the paper: 
( ) ( ) ( )

01
ˆ( ) ( ) (1 2 ) 2n S S S

t t tk k tt tk t kk k t
Var A A Var w e w w   

      ,  

where the coefficients ( ){ }S
tkw are the weights of the X-11 seasonal filter for time t .  This 

measure accounts for the variabilit y of  the sam pling error and the irregular com ponent. 
Assuming the availability of t he variance a nd autocovariances of the sam pling errors , 
estimation of the variance mea sure requires estimating the vector   of autocova riances 

k .  Pfefferm ann develops  these estimate s based on a sy stem of linear equations  
involving empirical m oments of the es timated irreg ular from  ap plication of  t he X-11 
method. 

Each graph in Figure 1 contains , , and ,MB MMSDA SDA SDSE  square roots of the 
respective va riance measures and the s ampling error (SE) standard deviation,  assu med 
constant.  In Figure 1a, MMSDA  is larger than MBSDA  in the center of the series,  which 
illustrates the extra error term  which the MM method includes.  In all three graphs, we 
see MB MMSDA SDA  at the ends of the series, showing that the MB method captures 
more fully forecast-b ackcast error.  As alr eady m entioned, for the series in Figure 1c, 
both measures fall below the central values at the end. 

Section 2 presents empirical results for employment series from the U.S. Bureau of Labor 
Statistics (BLS), which help e xplain the behavior seen in Figure 1 .  Section 3 goes into  
some details of calculations for the m odel-based method.  Section 4  characterizes end-
behavior for a typical example and a final section summarizes results. 

2. Empirical End-behavior of Variance Measures for Employment Series

The results in Figure 1 come fro m three of abou t 145 i ndustry em ployment series 
appearing in BLS’s monthly Employment Situation press release.  A large-scale empirical 
test of the MB and MM methods has been carried out on monthly change for these series. 
The data come fro m BLS’s Current Employment Statistics (CES) program , a monthly 
survey of over 300,000 establishments.   In a ddition to its large size, the survey  has the 
advantage of annual pop ulation figur es fro m an external source, the Unemployment 
Insurance (UI) program.  Employers report monthly employment on quarterly tax forms. 
With a 10-month lag,  survey estimates are benchmarked to population UI values.  If t  is 
the current month, the employment estimate ty  comes from a “link-relative” estimator, 

0 1 2t ty Y r r r    ,

provide all the neces sary details for cal culating Var Y  −ŷ( ) .  Hereaft er we r efer to this 
method as the model-based method (MB). 

Pfeffermann (1994) proposes a moments-matching (MM) method for variance estimation 

and defines the target series to be =A Y −S , where = S Y−Ω( )I Ω=(T +S)  and 
Ω 

S S 

S is the X-11 seasonal filter matrix. Pfeffe rmann (1994) assumes that the irregular 
component and the sampling error are stationary and mutually independent, implying that 



where 0Y  is the latest  avail able bench mark, subsequent subscripts denote num ber of 
months away from the benchmark, and  

, 1 , 1
j j

j ij ij i j i ji M i M
r w y w y  
 

is the ratio of weighted em ployment in m onths j  and 1j  , with ijy  representing the 
number of em ployees in establish ment i  in m onth j  and jM  the set of establish ments 
reporting in both  months j  and 1j  .  M ost national employment series are seasonally 
adjusted multiplicatively, which fits wi th modeling the series on the log scale.  Monthly 
change takes the simple form 

1 1log( ) log( ) log( / ) log( )t t t t ty y y y r    . 
Sampling error standard deviations and auto correlations are co mputed each month using 
the BRR method for various statistics, including these log ratios.  Figure 2 is a scatterplot 
of a set of absolute log ratios (m ultiplied by  10 4) and the sam pling error standard  
deviations for the Durable Manufactu ring se ries (MD00).  The two largest standard 
deviations occur for large log ratios, but, overall, t here is ve ry little pattern.  T his holds 
for most of t he series examined, which has le d us to  assume a constant variance for th e 
sampling error.  Lag 1 SE autocorrelation es timates vary  consi derably but t end to be  
negative.  Autocorrelations at other lags are also variable, with m edians close to 0.  This 
leads us to adopt an MA(1) model for all series.  We compute median lag 1 
autocorrelation and roun d to the nearest . 05, except for roundi ng all magnitudes below 
.075 to 0 and allowing a maximum magnitude of .20. 

Table 1b shows that property  (1) holds for the MB method for Manufacturing, Durable 
Goods (MD00) and for Manufacturing, N ondurable Goods (MN00), but not for  
Petroleum & Coal Product s (MN10), in  agreement with Fig ure 1.  For the  MM method,  
(1) holds only for MD00 and then only by 0.7%.  Table 1a shows modeling information
used for seas onal adjustment and calculation of the two variance measures.  For MD00,
estimates of the disturb ance variance fo r both t he signal model and the  irregular 
component exceed the SE disturbance variance.   Sam pling error is more prominent for
MN00, with the irregular co mponent estima ted to be quite small, and dominant for
MN10, for which no irregular is identified.  It a ppears that ( 1) is influenced by  the
amount of sampling error.

To obtain a measure of SE size, it is fr uitful to difference the observed series.  Let ( )B  
be the differencing operator in the ARIMA model for the signal.  Then, 

( )t t t tw B y u v   , (2) 
where ( ) , ( )t t t tu B a v B    , and ( )B  represents the ARMA model for the 
differenced signal.  An im portant point in the derivations of Bell and Kramer (1999) is 
that error in forecasting the series is a  f unction of error in forecasting the differenced 
series, 

ˆ ˆ( )f f f fy y C w w   ,
for some matrix C .  The differenced seri es is stationar y and we can justifiably  consider 
variances.  A natural measure of the SE contribution is the “differenced variance ratio,” 

 ( ) ( )t tDVR Var B Var w  . (3) 



Table 1.  Results for MD00, MN00, and MN10 
a. Modeling Information

Series Sam pling Error Irregular Signal 

1̂  2ˆ
2ˆ I 2ˆa Model 

MD00 -.10  71.5 126.1 294.7 (101)(011) 
MN00 -.10  123.1 3.6 180.7 (101)(011) 
MN10     0 2807.7 0 145.9 (101)(011) 

b. Key SDA Statistics from the MB and MM Methods

Series SDSE
MBSDA MBSDA SDSE

(%) 
MMSDA MMSDA SDSE

(%) 
End-Ctr 

(%) 
MB    MM 

MD00  
Center 8.46  7.47 -11.6 8.53 +0.8 19.4 0.7 

End 8.46  8.92 +5.5 8.58 +1.5
MN00  
Center 11.09   9.80 -11.6 10.06 -9.3 6.7 -11.7

End 11.09 10.46 -5.8   8.89 -19.9
MN10  
Center 52.9 9 46.94 -11.4 46.94 -11.4 -4.4 -5.6

End 52.9 9 44.86 -15.3 44.30 -16.4

Table 2.  Frequency Table for End Behavior, by Relative Size of Sampling Error 

SDA(end) > SDA(center) SDA(end) > SDSE     SDA(end) 
 Total MB MM MB MM MB>MM 

DVR  
 1/2 38 (30%) 38 (100%) 11 (29%) 12 (32%) 12 (32%) 26 (68%) 
>1/2 90 (70%) 2(    2%) 0 ( 0%) 0 ( 0%) 0 ( 0%) 80 (89%) 

Total 128 40 ( 31%) 11 ( 9%) 12 ( 9%) 12 ( 9%) 106 (83%) 

Table 2 shows results for property (1) for 128 series, overall and by DVR size category. 
Overall, only 31% of the series satisfy (1) with the MB method and a scant 9% with MM. 
However, with 1 / 2DVR  , the condition is satisfied for 100%  of series with MB an d 
29% with MM.  With 1 / 2DVR  , only two series satisfy the condition and only with the 
MB method;  these series both have .51DVR  .  Significantly, MBSDA  exceeds MMSDA

at the ends 68% of the time when DVR 1/2 and 83% overall.  The exceptions are ca ses 
where a large irregular is estimated.  The characteristics observed here are inherent in the 
measures, not the result of estimation.  Previously conducted simulation experiments with 
the MM method confirm the kinds of sh apes noted here; the MB measure comes entirely 
from models and the X-11 filters. 

Busin



Figure 2.  Scatterplot of Observed Series vs. SE Standard Deviations, MD00
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( ) ( ) 0 ( 0 , ) ( , 0 )
b b b

Var Y y Var Var Cov Cov
f f f

  
     

         
          

  

where ˆb bb y y   and  ˆf ff y y  , so that  t he covarianc e matrix of  the s easonal 

adjustment error ˆ*A A  is 

 
ˆ[ ( )] ( ) ` ( ) `VARA Var Y y Var Y y Var VFA CVA           .

In this last equation, VFA  denotes the contribution of fo recast and backcast errors  and 
CVA  the contribut ion of the covariance term  be tween t hese error s and sampling error.  
Let’s focus on the diagonal elements.  With a stationary model for the sampling error, the 
first term  i s constant.  Thus, m ovement in 2 ( ) [ , ]MBSDA t VARA t t  acros s ti me co mes 
entirely from NET VFA CVA  .  If the obs erved series i s sufficiently long, the central 
seasonally adjusted values don’ t depend on forecasts or backcasts, so the contribution of 
NET  in the center is 0.  In particular, this means 
 ( ) ( ) ( ) 0MB MBSDA end SDA center NET end   . 

X-11 seasonal adjustment filter matrix 

Figure 3 graphs the weights of the X-11 seasonal adjustment filter using the 13-point 
Henderson trend filter and the “X-11 default” seasonal filter.  The latter refers to use of 
the 3x3 and 3x5 filters in successive iterations of the basic X-11 calculations.  The overall 
filter is symmetric and has length 169.  The key weights are 0.82 at the center and -.18, -
.12, and -.06 at distances 12, 24, and 36 from the center.  For the example in the next 
section, we take n=169 and m=84.  This means that (1)  the central time point t=85 
doesn’t depend on backcasts and forecasts and (2)  forecasts do not depend on backcasts 
and vice versa.  The matrix   is ( 2 )n n m  ; it is convenient to break it down as 

 1 2 3     , 
where 1  and 3  are n m  and 2  is n n .  It is useful to pin point where the key 
weights fall in these matrices.  Each row contains a full set of filter weights.  The last row 
of   is 0 thr ough col umn 168,  has the left part of t he filter in c olumns 169- 252, the 
central weight .82 in col umn 253, and the right part in colu mns 254-33 7.  Table 3  
contains the columns where the key weights fall for this last row in  , 2 , and 3 . 

The main finding in Table 2 is disappointing.  Property (1) fails most of the time.  Yet the 
breakdown by DVR size suggests that when th e sampling error is not too large, one or 
both measures may indeed satisfy (1).  Among the 128 press release series are 17 h ighly 
aggregated series, including 1 3 “supe rsectors” defined un der t he current i ndustry 
classification system and Total Private (Sect or) Employment, the most highly aggregated 
series for wh ich SE information is available.  Eleven of these ser ies satisfy property (1) 
with the MB method and 5 with MM.  Overall, the empirical results suggest that the MB 
method is likely to satisfy the intuitive property SDA(end )  >SDA(center) , as long as the 
SE contribution is less than half. 

3. Key Calculations for the Model-based (MB) Method

This section examines in some detail the matrix calculations for the MB method, in order 
to put the em pirical results of the previ ous section on  a stronger fo oting.  Foll owing 
the notation and formulas of Bell and Kram er (1999), the equation for the covariance 
matrix of −Y ŷ  is 



Table 3.  Large Filter Weights:  Column Locations in Row 169 (last row) 

Wt. -.06 -.12 -.18 .82 -.18 -.12 -.06 
Dimension 

  169x337 217 229  241  253  265  277  289  
2 169x169 133 145  157  169  - - -

3 169x84 - - - - 12  24 36 

Formulas for variance and covariance terms 

We present som e key  formulas, which  are i ngredients to unders tanding behavior of the 
MB measure.  A technical report (Scott, 2010) contains details. 

Proposition 1 (Brockwell and Davis, 1991).   
Asymptotically, the forecast error covariance matrix is given by 

2( ) `VF Var f    , 
where   is lower triangular and, starting from  the d iagonal, colu mns contain 
coefficients from ( ) ( ) / ( )z z z   . 

Proposition 2. 
(i)    ˆ ˆ( )f f f ff y y C w w   

 (ii)  1
32 22 32 33ˆ , where ( , ), ( )f o f o ow w Cov w w Var w        

 (iii)   2( , ) 0 mCov f H I 

Remarks. 
1. The matrix C  is basically the inverse to a differencing matrix.
2. The m atrix H include s a contributi on ˆ( , )f oCCov w  .  From  ii), H clearly 
       depends on bot h the signal and the sam pling error, but we claim  th at  
       ( , )Cov f   is primarily a function of the sampling error. 

Proposition 3. 
(i).    The forecast error contribution to VARA is 3 3`VFA VF    
(ii).   The diagonal terms of VFA are [ , ] 1( ) 2( )VFA t t VA t VA t  , where 

         2
3 3 3

1
1( ) , , , 2( ) , , ,

m

i i k

VA t t i VF i i VA t t i t k VF i k
 

     
(iii).  A simple approximation at the last time point for the second term is 

      
   

2
3 3 3

3 3

2(169) 2 169,12 169,24 169,36 [12,24]
2 169,24 169,36 [24,36]

VA VF
VF

     
  

 

Proposition 4. 
(i).   The contribution of the covariance ter m i n the forecast period is  

( 1 2)CVA CVA CVA   , with 

3 2 3 21 ` ( `)`CVA H H      , 2 2 2
3 3 31

2 2 ` 2 [ , ]m

h
CVA t h  


     . (4) 

(ii).  For / 2t n , 



3 3
3 2 3 21 0

`[ , ] [ , 12 ] [ , 12 ] [ 12 , 12 ]
j k

H t t t t n j t t k H t n j t k
 

              (5) 

In this last form ula, we adopt the conventi on 3[ , 12 ] 0t t n j     w henever 
12 1t n j   .  As t  moves backward from 169, the large weights m ove left in the rows 

of  , which means that f ewer ter ms are nonzero.  For 134t  , the approxim ation 
becomes 0. 

4. Characterization of End-behavior – an Example

Using form ulas in Section 3, our str ategy is t o approximate variances or standard  
deviations of the MB m easure in term s of separate contributions of signal and  sampling 
error.  We carry out the analysis for an 

EXAMPLE.  The observed series is y Y    and the models for the signal Y and the 
sampling error   are 

12 12 2
1 12(1 ) (1 )(1 ) , (0, )t t t t au B Y B B a a WN         

2(0, )t WN   .  
Parameter values are 2 2

1 12.2, .5, 100, 64a         ; in agreement wi th Section 3,  
the series length and forec ast period length are n=169 and m=84, respectively.  The se 
models are close to those select ed for EH00, Education & Healt h Services, one of the  
supersectors treated in Section 2.  The signal model is like an airline model, except that it 
lacks a first difference.  Since the em ployment data in Section 2 are monthly change in 
logs, the above m odel fits when log employ ment follows an airline model  This example 
does satisfy (1).  For the last time point, our variance measure is 

 

2 (169) SE contribution(169) (169) (169)
50.232 18.635 17.482 51.386

MBSDA VFA CVA  
   

. 

and at the  end 18.635 17.481 1.153 0NET      as might be expected, since  
128 / 258 .496DVR   .  The MBSDA  values are 7.09, and 7. 17 for t he center an d end  

time points, both below the SE standard deviation 8  .   

We now proceed to seek an explanation more directly in terms of the signal and sampling 
error co mponents, as described in (2).   The differenced signal u  and the diffe renced 
sampling error v  have variances 130 and 128, respectively.  Autocovariances for u, v and 
w appear in Table 4 and forecast error variances (or MSE’s) in Table 5.  As expected, the 
forecast error variance for w  increases with forecast lead.  The ‘Sum’ column in Table 5 
provides an approxim ation for ( )fVar w  b y su mming values of the co mponents.  Th e 
values increa se, like the e xact values i n th e last colum n, but miss a contribution from 

ˆ( , )Cov w   which is affected by the signal component.  The approximation does have two 
advantages: 

(1) it is a simple way to separate component contributions,
(2)  it show s us that as the forecast lead increas es the varianc e is increa singly

dominated by the signal contribution. 
We see that 60% of the total comes from the signal at lead 1, increasing gradually to 80% 
at lead 84.  We now compute NET at any time point past the center of the series as  
 ( ) ( )NET VFA signal VFA SE CVA   . (6) 



Table 4.  Autocovariances for  Table 5.  Forecast Error MSE’s 
           w  and Its Components for Selected Leads 

  Lag         u            v          w      Lead        u v      Sum        w  
   0    130    128    258    1    100   64   164    183 
   1     25 0     25   12    104   64   168    185 
   2 0 0 0   13    129   64   193    211 

   25    155   64   219    237 
  10 0 0 0   37    181   64   245    263 
  11    -10 0    -10   49    207   64   271    288 
  12    -52 -64 -116   61    233   64   297    314 
  13    -10 0 -10   73    259   64   323    340 
  14 0 0 0   84    260   64   324    341 

Since ( )VFA signal  is th e dom inant forecast vari ance ter m a nd ( , )Cov f   depends 
primarily on sampling error, it now beco mes apparent that shape  can vary  considerably 
according to the relative size of the components. 

For the covariance ter m CVA , we apply  Pr oposition 4.  From  (5), u sing the weights 
information from Table 3 and properties of H,  

21(169) / (2 )
( .18 .12 .06)(.82 [12,169] .18 [12,157] .12 [12,145] .06 [12,133])

.36 (.82( .372) .18( .232) .12( .146) .06( .092)) .0869

CVA
H H H H

 
         
          

Based on this approxim ation the total contribut ion of 1CVA  to covariance is 2.174   , 
fairly close to the true value 2.159   . The terms 1-11 and 13-23 contribute 2.014   .  
With this  correction, the approxim ation beco mes 2.160   .  Also,  

22[169,169] .114CVA   .  Thus, from  Proposition 4 the total covariance contribut ion 
for 169t  , even using the rough approximation, is 

2 2(169) (2 1 2) (.114 .174) .288CVA CVA CVA             ,  
compared to the true value -.273 2

 .  What is significant is  that the weight 
 2 169,169 .82  , by far the la rgest magnitude weight in the filter (cf. Figure 3), occurs 

in the 1CVA   part of the calculation and nowhere else.  In fact, it occurs in 1( )CVA t  only 
for the last 12 points in the series.  Since th e covariance ter m is negative, this  explains 
why a dip is liable to occur over the last 12 points. 

We can further pin down these findings.  By factoring out the differenced variance from 
each term in (6), 

2 2 2( ) ( ) u v vNET VFA signal VFA SE CVA a b c        , 
for some coefficients a, b, and c.  A little algebra y ields a criteri on for pr operty (1) in 
terms of DVR, as defined in (3): 

 

2 20 / / ( )v wNET DVR a a c b        (7) 
For our example, we have .1107, .0332,  and .1366a b c    , so  

 
( ) ( ) .1107 / (.1107 .1366 .0332) .517SDA end SDA center DVR      . 

This is satisf ied for our exa mple, since DVR=128/258=0.496.  As a further check, we 
carry out the analysis with 2 2(8.5) 72.25    and other p arameters unchanged, so t hat 
DVR=.526.  We find .029NET  , positive but very  close to 0.  We see the criterion 
doesn’t quite work.  There are approximations involved.  We’ve adjusted the two forecast 



variance ter ms to add to the exact va lue and th e last term is n ot strictly  a f unction of  
sampling error.  Also, a, b, and c change with the disturbance variances.  Usi ng values 

.1118, .0336, and .1340a b c    from the calculations with 8.5  , the criterion 
becomes 

 
(169) 0 .1118 / (.1118 .1340 .0336) .527NET DVR      , 

which appears very  close to being co rrect.  This gives us the sense that (7) works 
approximately (and maybe iteratively) in identifying when ( ) ( )SDA end SDA center . 

Our machinery allows us to analy ze the dip at t=169-11=158 as well.  At t=158, the  
signal represents 76% of the forecast variance.  Exact calculations yield  

NET(158) = 12.929 + 4.084 – 17.622 = -.609. 
We also have the approximation 

2 2 2(158) .0995 .0319 .1377u v vNET      . 
From this equation for NET, we find 

 
(158) 0 .0995 / (.0995 .1377 .0319) .485NET DVR      . 

Computing variances with 2 27.75 60.0625    (and DVR=.480), we find 
(158) 12.856 3.811 16.710 .043NET      . 

From calculations for this case, the refined criterion becomes 

 
(158) 0 .0989 / (.0989 .1391 .0317) .479NET DVR      , 

which appears about right.   Given the signal m odel, ( )MBSDA t  can be expe cted to stay 
above MBSDA  at the center as long as DVR is below .479, which corresponds closel y to 

2 60  . 

We have treated onl y a pa rticular model form and set of MA param eters.  However, the 
example seems strong enough to make the following characterization of SDA for change,  
at least when  the airline model fits the original series.  In moving from the center of the 
series to the end, the forecast error varian ce makes an increasing positive contribution to 
SDA and its size depends increasingly  o n th e signal near the  end of the s eries.  The  
covariance term in 2

MBSDA  is neg ative and depends mostly on the sam pling error.  Both 
variance and covariance effects are strongest during the last 12 months.  The covariance  
term CVA jumps sharply at n-11 and is relatively stable up to the end, while the variance 
term grows slowly but steadily right up to the last time point n.  Th us, their  net has a 
minimum at n-11 and tends to increase from there to n.  Given signal and SE models, we 
can find a cutoff value for  
 (1)  MBSDA  staying entirely above its central value or nearly so, 
 (2)  ( ) ( )MB MBSDA end SDA center  
in terms of the relative size of the SE.  DVR, the relative contribution of sampling error to 
total variance on the differenced sc ale, is inform ative.  ( ) ( )MB MBSDA end SDA center  
corresponds fairly closely to DVR<0.5. 



seasonal adjust ment. In Economic Time Series: Modeling and Seasonality", Bell,  
William R., Scott H. Holan, and Tucker  S. McElro y eds., Chapman & Hall/ CRC 
Press. 

Wolter, K. M. and N. J.  Monsour (1 981). On the problem  of variance estimation for a 
deseasonalized series. In Current Topics in Survey Sampling, D. Krewski, R. Platek, 
and J. N. K. Rao eds. Academic Press: New York. 367-403. 

5. Summary

The model-based (MB) and m oments-matching (MM) m ethods bot h provide 
conceptually reasonable variance me asures for error in seasonal adjustment which 
account for sampling error.  The main advantage of the MB method over the MM method 
is that it capt ures more ful ly the uncertainty at the end of the series, which is t he most 
important point in time.  Both methods tend to have unnatural d ips in t he first and last 
years of the series.  These dips are partic ularly pronounced when the sam pling error is 
dominant.  The model-based (MB) method is likely to provide satisfactory  measures of 
variance, including  havin g end values great er than central values, when the  relative 
contribution of the sampling error is less than half the variance of the differenced serie s, 
as measured by the “DVR” statistic, defined in  Section 2.  Both the large-scale  empirical 
study and the theoretical findings for a typical example support this conclusion. 

For the em ployment chan ge application presented in Section 2, we feel that we hav e 
established that the model-based (MB) method is tenable for use in assessing significance 
of monthly change, as long as the SE contribution is not too large.  This is in fact the case 
for a majority of the highly aggregated series. 
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