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Abstract:  In evaluating the prospective integration of survey data with administrative 
record data, one generally needs to balance several factors related to cost and data 
quality. In practical applications, however, these factors are not known with perfect 
precision, and measurement of them often requires a substantial effort by the statistical 
organization. This paper evaluates some ways in which the balance between data quality 
and cost can be affected by errors in estimation of these quality and cost factors. 
Principal emphasis centers on a simulation study involving sample allocation in the 
presence of uncertainty regarding stratum-level variances and per-unit costs. 
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1. Introduction 

The previous paper in this session provided a broad overview of potential approaches to 
the comparison and use of multiple sources of survey and administrative record data.  
This paper extends those ideas by exploring the impact of uncertainty in design 
parameters related to data quality and cost factors. We will cover these ideas through four 
main steps. First, we will present a general approach to the optimal allocation of 
resources for collection of survey and administrative data. Second, we highlight some 
ways in which the optimal allocation work becomes more complex when some important 
parameters of the cost-quality balance are estimated with error. Third, we will describe 
the general design of a simulation study to evaluate the ways in which the performance of 
optimal-allocation methods may be sensitive to errors in estimated cost or quality 
parameters. Fourth, we will review the simulation results and suggest some areas for 
future study.   

1.1.   Multivariate Cost and Quality Functions 

Optimal allocation of resources for collection of sample survey and administrative record 
data generally requires us to balance several cost and quality factors. For example, we 
can consider functions ( , , , )CC D X Z γ and ( , , , )QQ D X Z γ where D is a vector of 
design factors that we can control – for example, sample size;  X is a vector of population 
characteristics that we observe but cannot control – for example, the proportion of 
households covered by a given set of administrative records; and  Z  is a second vector of 
population characteristics that we cannot control and also cannot observe before data 
collection – for example, recent changes in purchasing behaviour. In addition, we can 



think of these cost and quality functions as depending on parameters and , 
respectively. For example, may include per-unit costs of observation within each 
stratum, and  may include stratum-level variances and design effects. 

1.2.   Example:  Optimal Allocation of Sample Sizes Across Strata 

In a classical sampling example of this optimal-allocation work, we seek to 
minimize our cost for a given fixed quality measure – in this case, the variance  A 
standard derivation (e.g., Cochran, 1977, Chapter 5) leads us to compute stratum-level 
sample sizes  as a function 

of the overall sample size , the prespecified , the population size , and stratum-level 
weights , standard deviations , and unit costs .  Similar approaches can be used 
in allocating resources in collection of data from both sample surveys and administrative 
record sources. 

2. Uncertainty in Measurement of Data Quality and Cost Factors

With some exceptions (for example, Isaki, 1983), formal optimization methods for 
sample designs generally use the assumption that the cost and quality parameters – the 

  and  terms in our development – are known and fixed. However, in practical 
applications with both surveys and administrative record systems, our cost and quality 
parameters often are unknown, and may vary over time.   

For example, in the sample-allocation case considered earlier, the stratum-level 
variances and per-unit sampling costs often are estimated with a substantial amount of 
error. In addition, these quantities may be subject to change over time due to changes in 
population conditions.   

Similarly, in work with administrative records, there are often nontrivial errors, 
and we often have limited information regarding the mean and covariance structure of 
those errors. In addition, statistical work with administrative records generally will 
involve substantial costs, and we often have limited information regarding variable-cost 
components related to specific steps in our statistical work. Examples include the costs of 
data management, record linkage, or edit and imputation.   

3. Design of the Simulation Study

To study the ways in which errors in cost and quality parameters can affect the 
performance of nominally optimal procedures, we carried out a simulation study.This 
study focused on methods to combine sample survey and administrative records to 
produce an efficient estimator of an overall population mean  
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In estimation of each subpopulation-level mean    we combined data from surveys and 
administrative records, respectively.   
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Stratum Population Mean Std Dev Cost 
1 394 5.4 8.3 1 
2 461 16.3 13.3 2 
3 391 24.3 15.1 3 
4 334 34.5 19.8 4 
5 169 42.1 24.5 5 
6 113 50.1 26.0 6 
7 148 63.8 35.2 7 

To study the effects of error in our design parameters, we considered true 
stratum-level variances  2 2

,nominalh hS d Sς= and costs ,nominal(1 )h c hc d c= + . 

The variance-disturbance term  SD d   followed a chi-square distribution on  D degrees of 

freedom, and in addition, the cost-disturbance term 2~ (0, )Cd N s Also, the 
measurement errors in the administrative records were treated as following a 

2(0, )hN ARxS  distribution, where AR is a scale parameter equal to the ratio of the 
variance of administrative record measurement error, divided by the stratum-level 
variance 2

hS . that describes the variability in the administrative-error distribution, relative 
to the variability of the true values within each stratum.  

For the survey component, our estimators contain sampling error. We used data 
from a standard without-replacement stratified random sample. The allocation of sample 
size was based on the standard approach described earlier, with the goal of minimizing 
the cost, subject to the constraint that the variance for the sample survey estimator would 
be equal to one. For the administrative-record component, we assumed that we obtained 
data for each unit in each stratum, but that the administrative data had substantial 
measurement errors.     

The final estimator of each stratum mean was a weighted least squares average of 
the survey- and administrative-based elementary estimators, where the weights were 
proportional to the estimated variances for these respective elementary estimators. We 
produced different results for two design approaches. Under design “C” sample allocation 
and estimation were constrained to use only the nominal stratum-level cost and variance 
estimation.  On the other hand, design “D” adjusted its allocation to use the true cost and 
variance information.  

In addition, we used a total of seven strata, with population sizes and nominal 
variances based on an example from Cochran (1977, p. 111). Table D below presents 
these from the Cochran example, as well as the per-unit costs that we have added for each 
stratum. Note especially that the stratum-level variances displayed moderate variability, 
while the unit costs (added for purposes of this analysis) display more substantial 
variability across strata.   

Table 0: Stratum-level properties used in the simulation study. 
(Adapted from Cochran, 1977, p. 111) 



We developed simulation results separately for each combination of the values s 
= 0.1, 0.2; D = 2, 4, 8; and AR = 0.25, 1.0.  For each of these combinations, we ran the 
simulation with 1000 replications; results for selected combinations of s, D and AR are 
presented in the tables.  In addition, to reduce visual clutter, results from only the first 
100 replications are displayed in each of the graphs. 

4. Simulation Results

Figures 1 through 5 present plots of variance against cost for various combinations of s,  
D  and AR.  In each of these plots, the blue squares represent cases in which the sample 
allocation was not adjusted for the new (correct) unit-level cost and variance estimation. 
Thus, the blue squares represent the performance of a design and estimation procedure 
that one would have to use if one did not obtain improved information on the true values 
of the unit-level costs and variances for each stratum. Also, the green triangles represent 
the cases in which the sample allocation was adjusted for the updated information on 
unit-level costs and variances.   

Recall that for the current study the sample allocation was based on the goal of 
minimizing total cost, conditional on the constraint that the sample-based estimator 
would have a variance less than or equal to one. Under ideal conditions, incorporating the 
administrative record data should lead to further reduction of the variance to a value 
below one, at some additional cost. This is the approach one would use when the top 
priority is the precision of the estimator, with cost as an important but secondary 
consideration.   

Figure 1 presents results for the case in which our design information contained 
errors, but was relatively good, with 8 degrees of freedom for the stratum-level variances, 
a standard deviation on costs equal to 0.1, and an administrative-record variance ratio 
equal to 0.25. In this case of relatively mild degradation of design information, the 
unadjusted design (blue squares) led to some inflation in variance for the overall 
estimator, including some realizations that had an overall variance exceeding the nominal 
constraint of one.  On the other hand, the adjusted design (green triangles) had 
consistently low and stable variances across the 100 replications displayed here, but had 
much higher dispersion of the true costs.  In essence, the constrained-optimization 
approach used the improved design information to maintain tight control over the 
variance, but at the price of increased uncertainty on costs.   

Figure 2 covers a similar scenario, but with the administrative-record variance 
ratio equal to one. Figure 3 displays results for the same conditions, except that the 
variability in cost information increases from s=0.1 to s=0.2.   

Figures 4 and 5 display results obtained when D=2, i.e., the stratum-level 
variance information had a high degree of uncertainty. For these cases, note especially 
the substantial proportion of unadjusted-design cases that had an estimator variance 
greater than one.   

To explore further the case with the most uncertainty in design information (D=2, 
s=0.2, AR = 1.0) represented by Figure 5, Figure 6 presents a plot of cost for the 
unadjusted design (on the vertical axis) against cost for the adjusted design (on the 
horizontal axis). In keeping with comments above, the improved design infor mation, in 
conjunction with the sample-design variance constraint, has led to a substantial increase 
in the dispersion of cost for the adjusted procedure. This figure indicates relatively little 
association between the costs for the adjusted and unadjusted cases.   

Finally, for the same extreme case of design conditions, Figure 7 plots the 
variance for the unadjusted design (on the vertical axis) against variance for the adjusted 
design (on the horizontal axis).   Since the allocation procedure was based on a variance 



5. Closing Remarks
In summary, this paper considered the ways in which uncertainty in the data-quality and
cost information may affect the performance of optimization methods for surveys and
administrative record systems. The numerical work centered on the variance and cost of
weighted least squares estimators that combined data from, respectively, a stratified
random sample and an administrative record source subject to measurement error. For the
cases studied, the results indicated that standard optimization methods are relatively
sensitive to uncertainty in unit-level cost and variance information.

One could consider several potential extensions of this work. First, the current 
work focused on allocation intended to minimize cost, subject to a constraint on the 
variance of the sample-based estimator. In future work, we will also evaluate allocation 
methods that minimize variance, subject to a cost constraint. In addition, the current 
numerical work restricted attention to cases in which the estimators of cost and variance 
parameters are unbiased.  In practice, some cost and variance information is biased, and 
one could extend our simulation work to include the bias cases. In addition, 
administrative record sources often incorporate data only from subpopulations, and not 
from the full population of interest. For these partial-population cases, methods for 
integration of survey and administrative records has similarities to methods developed 
previously in the multiple frame literature, for example Lohr and Rao (2000, 2006).  
Extension of our simulation work to the partial-population case would also be of interest.   
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constraint, this final plot is of special interest. Note especially that substantial proportion 
of unconstrained-design realizations that produce a variance greater than one, and the 
relatively strong association between variances for the unconstrained and constrained 
cases, respectively.   

Tables 1 through 6 explore in additional detail the ways in which variance and cost 
results may be sensitive to changes in values of  D  and s. Table 1 displays the mean and 
selected quantiles of cost for the unadjusted design with s=0.2 and D=8, 4 and 2. Note 
that these values are quite stable over changing values of D. Table 2 displays 
corresponding results for variances for the unadjusted design. Note that as D decreases 
from 8 to 2, the average variance stays about he same, but the tail quantiles become more 
dispersed. Tables 3 and 4 present parallel results for the adjusted design. Note especially 
in Table 3 for D=2 the mean cost is 1472, or about 10 percent less than the mean cost for 
the unadjusted design in Table 1. Also, in Table 4 for D=2, the mean variance is about 5 
percent less than for the unadjusted design in Table 2. These results give an indication of 
the value provided by adjusting the design to account for uncertainty in cost and variance 
information. Finally, for the unadjusted-design case, Table 5 displays the sensitivity of 
cost to changes in s when D=2, and Table 6 displays the corresponding variance results. 
Thus, adjustment for the true cost and variance information produces some improvements 
in both cost and variance overall.    
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Table 1: Sensitivity of Cost *
CC  to Changes in D, (“degrees of 

freedom” for variance estimator) when s=0.2 and AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

D=8 1527.46 1601.54 1648.73 1696.69 1763.47 
D=4 1528.75 1600.41 1648.56 1694.76 1762.30 
D=2 1528.14 1601.87 1648.61 1695.15 1764.35 

Table 2: Sensitivity of Estimator Variance *
CV to Changes in D, 

(“degrees of freedom” for variance estimator) when s=0.2 and 
AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

D=8 0.6151 0.7492 0.8824 0.9970 1.2113 
D=4 0.4941 0.6783 0.8581 1.0048 1.2949 
D=2 0.4127 0.6261 0.8874 1.0857 1.5024 

Table 3: Sensitivity of Cost *
DC to Changes in D, (“degrees of 

freedom” for variance estimator) when s=0.2 and AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

D=8 1347.92 1473.08 1595.65 1715.09 1872.24 
D=4 1214.11 1377.32 1529.43 1661.63 1888.28 
D=2 1092.51 1280.72 1472.45 1630.21 1935.30 



Table 4: Sensitivity of Estimator Variance *
DV to Changes in D, 

(“degrees of freedom” for variance estimator) when s=0.2 and 
AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

D=8 0.8267 0.8544 0.8679 0.8840 0.9003 
D=4 0.7982 0.8371 0.8565 0.8801 0.9011 
D=2 0.7533 0.8205 0.8456 0.8787 0.9062 

Table 5: Sensitivity of Cost *
CC to Changes in s, (standard deviation of 

error in per-unit cost) when D=2.0 and AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

S=0.1 1589.29 1622.64 1648.41 1672.83 1711.53 

S=0.2 1528.14 1601.87 1648.61 1695.15 1764.35 

Table 6: Sensitivity of Estimator Variance *
CV to Changes in s, 

(standard deviation of error in per-unit cost) when D=2.0 and 
AR=1.00 

Q Q0.05 Mean 0.25 Q Q0.75 0.95 

S=0.1 0.3966 0.6222 0.8787 1.0711 1.5554 
S=0.2 0.4127 0.6261 0.8874 1.0857 1.5024 
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