A Graphical Interface for Weekly Seasonal Adjustment¹ October 2010 Thomas D. Evans and David E. Byun, Bureau of Labor Statistics Contact: Tom Evans, Bureau of Labor Statistics, Statistical Methods Staff 2 Massachusetts Ave. NE, Room 4985, Washington, DC 20212

Seasonal adjustment of monthly and quarterly data is quite prevalent in many statistical agencies. Weekly adjustment, however, is not as widespread. One reason is that weekly series are less common. Other reasons relate to the complexity of the adjustments and lack of software. Cleveland and Scott (2007) describe a seasonal adjustment method for weekly data, and Evans, Fields, and Scott (2006) present a program containing a number of diagnostics and output ta bles. The p urpose of th is p aper is to illu strate the d iagnostics and introduce a graphical interface that simplifies the execution of the program. Numerous tables and graphs can be viewed in the interface and stored in pdf files. The p rogram with e nhanced documentation will be available from the authors.

Key Words: Spectral Analysis; Outliers; Diagnostics

Methods for performing weekly seasonal adjustment with time-varying seasonal factors have been developed and made available in FORTRAN programs by William P. Cleveland (formerly of the Federal Reserve Board). These programs, although advanced in many ways, had limited documentation and were not so easy to use. Growing interest and issues in the modeling and adjustment of weekly data have encouraged statisticians at the Bureau of Labor Statistics (BLS) to enhance Cleveland's software and improve the documentation. Stuart Scott of BLS modified C leveland's p rograms and a dded d ocumentation. This w ork w as later extended by Evans, Fields, and Scott (2006). The purpose of this paper is to describe the recent addition of a graphical interface to facilitate the execution of the program and to produce diagnostic graphs and tables. The layout of this paper is as follows: 1) a brief history of the program; and 2) a description of the interface and its output.

History

The Federal Reserve Board originally used the X-11 approach to obtain seasonal factors for weekly series (e.g., see Simpson and Williams 1981). Since seasonal adjustment programs such as X-12-ARIMA, TRAMO/SEATS, and STAMP assume constant periodicities, it was likely clear that another method was required. The first rigorous attempt at weekly seasonal adjustment is probably by Pierce, Grupe, and Cleveland (1984) that proposes a model-based approach with deterministic seasonality. From this work, Cleveland created a FORTRAN program designed to handle weekly seasonal adjustment (Cleveland 1986). A problem with this method is that it does not allow for stochastic seasonality. Cleveland (1993) addressed this issue by adding locally weighted regressions. Examples for this approach are shown in Cleveland and Scott (2007). BLS adopted the new moving seasonality approach with much success in 2002 for weekly Unemployment Insurance (UI) Claims data. The UI data are published b the E mployment a nd T raining A dministration (s v ee http://workforcesecurity.doleta.gov/unemploy/claims arch.asp). Changes were later made to the FORTRAN code by Evans, Fields, and Scott (2006) to add diagnostics and improve the machine readability of the output files. The revised program is titled "MoveReg" which is short for "Moving Regressions." The next obvious step was to expand the documentation and

¹Disclaimer: Opinions expressed in this paper are those of the authors and do not constitute policy of the Bureau of Labor Statistics.

to make the program easier to set up and execute.

The SAS Interface

This section gives an illustration of screenshots of the SAS interface. The input control and data files are automatically created by the SAS code which can significantly reduce the possibility of errors. Note that the interface is available for both UNIX and Windows, but the FORTRAN program can also be executed without the interface at the command line. If one chooses to execute the program from the command line without the interface, control and data files need to be created with a programming language like SAS or with a text editor. Requirements and examples for setting up these files are in the MoveReg documentation.

Before starting the interface, some settings can be specified in text files. These include additive outliers and weights for the ten U.S. holidays that are built into the FORTRAN code. User-defined events can be added to the data input file by providing SAS code to create dummy variables in a text file. Once the SAS program is started, the user selects "Start" from the Program menu. This will bring up a window to specify program options that are seen in the second graphic below.

Start	×
Enter the date for the beginning week to use for seasonal adjustment	
using the following numerical format: MM/DD/YYYY (2 digits each for month	
and day and 4 digits for the year)	
Enter the date for the last week to use for seasonal adjustment	
using the following numerical format: MM/DD/YYYY	
NOTE: When entering dates, use the date for Saturday.	
Check box if output desired: 📃 Graphs	
Type in a title for graphs:	
Enter the name of the input variable (max 8 chars):	
If you want to change any of the parameter values, fill in the blanks below.	
If left blank, the default values shown will be used.	
	Default User-Specified
Num of Seasonal Periods (52 or 12):	52
Num of Additive Outliers (70 max):	0
Total Num of Holidays (including user events):	0
Width of Detrending Filter:	2
AR Parameter:	0.4
Variance Ratio:	16
Num of Seasonal Frequencies:	60
Num of Forecasts for Seasonal Factors:	104
Is your input data file a SAS file or text?	SAS Text
Enter input data file name:	
Did specify any user-defined effects?	⊙ Yes O No
Select factor for scaling in graphs:	● 1000 ○ 100 ○ 10 ○ None
ОК	Cancel

The "Start" window shown above allows the user to specify required program parameters. All available settings can be specified with this window except for holiday weights and userdefined events as explained above.

The beginning and ending dates are entered at the top of the window. In the following section, one can indicate if graphs are desired, type in the title, and specify the variable of interest. The eight small boxes that follow are for settings in the control file. The "Width of Detrending F ilter" is to specify differencing; the "AR p arameter" controls how fast the seasonal factors move; the "Variance Ratio" is a noise-to-signal ratio that works in a similar way t o t he m oving a verages in X-11 for the seasonal filters; the "Num of Seasonal Frequencies" indicates how many sine and cosine pairs are needed for the trig se asonal component; and the "Num of Forecasts for Seasonal Factors" is simply the number of desired

projected seasonal factors. The input data can be in either a SAS database or a text file (check the appropriate radio box), and the name of the data file is entered in the next box. Then, if user-defined events are needed for the input data file, one selects the "Yes" radio button in the next line. Finally, scaling choices are provided through radio buttons in the last line for the graphs that are output to a pdf.

A SAS macro is provided to change the default options for the "Start" window. This macro also allows the user to select graphs for the pdf. The choices include time series plots for 1) the unadjusted series, the seasonally adjusted series, and outliers; 2) revisions for the last year; 3) average seasonal factors by week; 4) seasonal factors over time; 5) projected seasonal factors; 6) seasonal sub-plots by week, 7) trig coefficient sub-plots; and 8) a spectral plot. Two examples of graphs are below.

Initial Claims

Text files with results and diagnostics are produced by the FORTRAN program (with or without the SAS interface). One of the seven text files is shown below as an example.

MoveReg Version 2.02 Execution at 12:21, 04-AUG-2010 series: ic series begins: 1988 week: 05 series ends: 2010 week: 05 output file: anova.out COMPONENT SS DOF MSS F P-Value Holiday 13 7.2276 0.5560 256.9495 0.0000 Outliers 23 0.8726 0.0379 17.5339 0.0000 8.1690 0.1361 62.9231 0.0000 Seasonal 60 Linear trend 2 0.0002 0.0001 0.0495 0.9517 16.6844 0.1702 78.6826 0.0000 Model 98 Error 1050 2.2719 0.0022 Total 1148 18.9563 0.0165 R-Square= 88.01% Box-Ljung statistic (approx. chi-square) DOF P-Value Q 53 294.6149 0.0000 106 491.7771 0.0000 Outlier estimates T-Value P-Value WK YEAR FACTOR STD ERR 40 1989 1.1886 0.0341 5.0638 0.0000 30 1992 1.4044 0.0340 9.9809 0.0000 30 1993 1.3442 8.6841 0.0000 0.0341 0.0346 52 1993 0.8753 -3.8534 0.0001 5 1994 1.1238 0.0340 3.4297 0.0003 3 1996 0.0348 4.4663 0.0000 1.1684 38 2001 0.0443 1.1247 2.6518 0.0041 39 2001 1.2756 0.0571 4.2683 0.0000 40 2001 1.1685 0.0626 2.4908 0.0064 41 2001 1.1574 0.0627 2.3326 0.0099 42 2001 1.1254 0.0575 2.0544 0.0201 43 2001 1.1065 0.0443 2.2843 0.0113 47 2001 1.1656 0.0392 3.9061 0.0000 0.0001 48 2001 3.7541 1.1626 0.0401 37 2005 1.2907 0.0437 5.8382 0.0000 38 2005 1.2486 0.0551 4.0328 0.0000 39 2005 1.0690 0.0585 1.1413 0.1270 40 2005 0.0551 1.1274 2.1767 0.0149 41 2005 2.4433 1.1129 0.0438 0.0074 1 2006 0.0348 3.0918 0.0010 1.1135 2 2007 0.8656 0.0348 -4.1481 0.0000 4 2008 1.1107 0.0352 2.9796 0.0015 52 2008 0.9327 0.0345 -2.0186 0.0219 Holiday estimates HOLIDAY FACTOR STD ERR T-Value P-Value User 1.1179 0.0210 5.3137 0.0000 1.0517 0.0197 2.5545 0.0054 Ilser User 0.8998 0.0219 -4.8240 0.0000 8.1904 New Years 1.0835 0.0098 0.0000 MLK Day 0.8364 0.0153 -11.6711 0.0000 Presidential 0.9430 0.0148 -3.9562 0.0000 0.9519 0.0072 -6.8450 Easter 0.0000 Memorial Day 0.8895 0.0146 -7.9957 0.0000 4th of July 0.9614 0.0147 -2.6756 0.0038 -7.6049 Labor Day 0.8931 0.0149 0.0000 Columbus Day 0.9629 0.0155 -2.44710.0073 0.0000 Veterans Day 0.8713 0.0144 -9.5525 Thanksgiving 0.7996 0.0155 -14.4212 0.0000 Seasonal estimates TERM FACTOR STD ERR T-Value P-Value 0.3240 0.1619 2.0015 0.0228 1

2	1.6780	0.1620	10.3602	0.0000
3 ∕I	-0.0234	0.0818	-0.2854	0.3877
т 5	-0 2326	0.0558	_4 1709	0.0000
6	0 0322	0.0558	0 5768	0 2821
7	0.4229	0.0428	9.8729	0.0000
8	0.5483	0.0430	12.7384	0.0000
9	0.0114	0.0348	0.3284	0.3714
10	-0.1131	0.0357	-3.1736	0.0008
11	0.3553	0.0299	11.8764	0.0000
12	0.1250	0.0303	4.1300	0.0000
13	0.0401	0.0261	1.5338	0.0627
14	0.0950	0.0273	3.4741	0.0003
15	0.4968	0.0245	20.3092	0.0000
16	-0.0020	0.0241	-0.0812	0.4677
17	-0.0440	0.0233	-1.8877	0.0297
18	0.0547	0.0212	2.5846	0.0049
19	0.1392	0.0212	6.5573	0.0000
20	0.0432	0.0207	2.0933	0.0183
21	-0.1061	0.0203	-5.2294	0.0000
22	0.0899	0.0197	4.5537	0.0000
23	0.4046	0.0199	20.3641	0.0000
24	-0.0119	0.0184	-0.6469	0.2590
25	-0.0746	0.0194	-3.8503	0.0001
20	0.1201	0.0108	7.4808	0.0000
27	-0.0628	0.0171	-3.5390	0.0002
20	-0.0846	0.0171	-1 9860	0.3791
30	-0.0040	0.0167	2 7054	0.0000
30	-0 0460	0.0155	-2 9603	0.0035
32	-0 1118	0.0155	-6 5482	0.0010
33	-0 0844	0 0150	-5 6288	0 0000
34	0.0601	0.0164	3.6609	0.0001
35	-0.1201	0.0153	-7.8670	0.0000
36	-0.0105	0.0154	-0.6859	0.2465
37	-0.0119	0.0143	-0.8330	0.2026
38	0.0006	0.0154	0.0378	0.4849
39	0.0360	0.0145	2.4807	0.0066
40	-0.0963	0.0141	-6.8192	0.0000
41	0.0262	0.0142	1.8536	0.0320
42	-0.0239	0.0150	-1.5892	0.0562
43	-0.0087	0.0148	-0.5859	0.2791
44	-0.0139	0.0135	-1.0244	0.1530
45	0.0104	0.0137	0.7599	0.2238
46	-0.0257	0.0134	-1.9202	0.0276
4/	0.0919	0.0125	/.3646	0.0000
48	-0.1/94	0.0140	-12.8131	0.0000
49 50	-0.0339	0.0138	-2.4042	0.0009
51	-0.0454	0.0121	-3 6072	0.2378
52	0.0454	0.0120	4 3495	0.0002
52	-0.0382	0.0127	-3 0156	0.0000
54	0.0208	0.0128	1.6222	0.0526
55	-0.0839	0.0137	-6.1481	0.0000
56	-0.0383	0.0114	-3.3458	0.0004
57	-0.0308	0.0135	-2.2729	0.0116
58	-0.0154	0.0118	-1.3008	0.0968
59	0.0365	0.0130	2.8062	0.0026
60	0.0295	0.0120	2.4653	0.0069
Trend	estimates	-		

Trend estim	mates			
DEGREE	FACTOR	STD ERR	T-Value	P-Value
intercept	0.0003	0.0014	0.1909	0.4243
slope	0.0000	0.0000	0.2496	0.4015

The MoveReg FORTRAN program, SAS interface, and documentation will be available from the authors by e-mail: evans.thomas@bls.gov or byun.david@bls.gov.

References

- Cleveland, W.P. (1986), "Calendar Adjustment and Time Series," Special Studies Paper, no 198, Division of Research and Statistics, Federal Reserve Board, Washington, DC.
- Cleveland, W.P. (1993), "A Time-Varying Least Squares Approach to Seasonal Adjustment of Weekly Time Series," unpublished paper.
- Cleveland, W.P., and Scott, S. (2007), "Seasonal Adjustment of Weekly Time Series with Application to Unemployment Insurance C laims and Steel P roduction," *Journal of Official Statistics*, 23, 209-221.
- Evans, T.D., Fields, J.L., and Scott, S. (2006), "Developing and Improving a M oving Regression Weekly Seasonal A djustment P rogram," p resented a t E UROSTAT conference on seasonal adjustment in Luxembourg.
- Pierce, D.A., Grupe, M.R., and Cleveland, W.P. (1984), "Seasonal Adjustment of Weekly Monetary Aggregates: A Model-Based Approach," *Journal of Business & Economics Statistics*, 2, 260-270.
- Simpson, T.D., and Williams, J.R. (1981), "Recent Revisions in the Money Stock," *Federal Reserve Bulletin*, 67, 539-542.