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Abstract 
Wayne Fuller is known for his outstanding contributions to three main areas in statistics: 
Sample surveys, Time series and Measurements errors. This paper will focus on time 
series analysis and more specifically, on estimation of seasonally adjusted and trend 
components and the mean square error (MSE) of the estimators. We shall compare the 
component estimators obtained by application of the X-11 ARIMA method with 
estimators obtained by fitting state-space models that account more directly for correlated 
sampling errors. The component estimators and MSE estimators are obtained under a 
different definition of the target components, which conforms to an original proposition 
by Wayne Fuller. By this definition the unknown components are defined to be the X-11 
estimates of them in the absence of sampling errors and with sufficiently long series for 
application of the symmetric filters imbedded in this procedure. We propose new MSE 
estimators with respect to this definition. The performance of the estimators is assessed 
by using simulated series that approximate a real series produced by the Bureau of Labor 
Statistics in the U.S.A. 
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1. Preface 

 
We consider X-11 ARIMA estimators of the trend and seasonally adjusted series (SA) 
and estimators obtained by fitting state-space models. We define the target seasonal and 
trend components to be the hypothetical X-11 estimates of them in the absence of 
sampling errors, assuming that the time series under consideration is sufficiently long for 
application of the symmetric filters imbedded in the original X-11 procedure. The mean 
square error (MSE) of the X-11 ARIMA and state-space model estimators are defined 
with respect to this definition. We estimate the MSE by conditioning on the target 
components, thus accounting for possible conditional bias in estimating them. The results 
are illustrated by use of simulated series that approximate a real series produced by the 
Bureau of Labor Statistics (BLS) in the U.S.A. 
 

2. Target Components, Bias and MSE of X-11 ARIMA Estimators 

 

2.1 Target components 

We begin with the usual notion that an economic time series, , 1,2,...tY t  can be 
decomposed into a trend or trend-cycle component tT , a seasonal component tS , and an 
irregular component, tI ; t t t tY T S I . Here we consider for simplicity the additive 
decomposition but the results can be generalized to the multiplicative decomposition  
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t t t tY T S I  by applying the log transformation and employing similar considerations 
as in Pfeffermann et al. (1995). Very often, the series tY  is unobserved and the actual 
available series consists of sample estimates, 

ty , obtained from repeated sample surveys, 
and we assume that ty  can be expressed as the sum of the true population series, tY , and 
a sampling error, t . More generally, the observed series can be viewed as the sum of a 
signal,

tG , and an error; 
te ; t t ty G e , where the signal and the error may be defined in 

two ways:  
 
GE1. t t tG T S , t t te I ; in this case 

te  is the combined error of the time series 
irregular and the sampling error (Pfeffermann, 1994); 
 
GE2. t t t tG T S I , t te ; in this case the irregular term is part of the signal and te  is 
the sampling error (Bell and Kramer 1999). 
 
We assume without loss of generality that the series started at time 1startt  but ty  
is only observed for the time points 1,...,t N , such that 
  

,t t ty G e    ,...,0, 1,..., , 1,...,
t

start

y observed unobservedunobserved

t t N N .                                                               (1) 

Here we assume that te  is independent of { , ,..., }t startG t tG  for all t  with 
( ) 0tE e , ( )tVar e  although in practice, the sampling error, and in particular the 

variance of the sampling error sometimes depends on the magnitude of the signal.   
 
In order to estimate the unknown components, the X-11 ARIMA program applies a 
sequence of moving averages (linear filters) to the observed series. Thus, the X-11 
ARIMA estimators of the trend and the seasonal components are approximately, 
 

( 1)

ˆ
N t

T

t kt t k

k t

T w y , 
( 1)

ˆ
N t

S

t kt t k

k t

S w y ,                                                                              (2)                                                               

where the filter coefficients { }T

ktw , { }S

ktw  are defined in general by the program options 
for the given time interval 1,...,t N , by the ARIMA model used to forecast and 
backcast the series and by the number of backcasts and forecasts. However, at the central 
part of the series the filters in (2) are time-invariant and symmetric; T T

kt kw w , T T

k kw w  
for T Ta t N a ; S S

kt kw w , S S

k kw w  for S Sa t N a , where ,T Sa a  are defined by 
the X-11 program options. The length of the symmetric filters is 2 1Ta  ( 2 1Sa ) such 
that 0T T

kt kw w  if [ , ]T Tk a a , 0S S

kt kw w  if [ , ]S Sk a a . For example, with the 
default X-11 option 84Sa , but it may be as low as 70 or as high as 149.  Note that in 
the central part of the series the X-11 and X-11 ARIMA estimators are the same, such 
that the symmetric filters depend only on the X-11 program options and not on the 
ARIMA extrapolations.  
 
Remark 1. The use of X-11 ARIMA involves also ‘non-linear’ operations such as the 
identification and estimation of ARIMA models used for the forecasting and backcasting 
of the original series, and the identification and gradual replacement of extreme 
observations. We assume that the time series under consideration is already corrected for 
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extreme values. The effects of the identification and non-linear estimation of ARIMA 
models are generally minor, see Pfeffermann et al. (1995) and Pfeffermann et al. (2000).  
 
Definition 1. Assuming min( , )start T St a a  and following Bell and Kramer (1999), we 

define the trend component at time t  to be 11
T

T

a
X T

t k t k

k a

T w G . Analogously, the 

seasonal component is defined as 11
S

S

a
X S

t k t k

k a

S w G . The target components 11X

tT  and 

11X

tS  are thus the hypothetical estimates that would be obtained when applying the X-11 
symmetric filters to the signal G  at time point t , 1,..., .t N  It follows therefore that the 
observed series may be decomposed as the sum of the ‘X-11-trend’, 11X

tT , the ‘X-11-
seasonal component’, 11X

tS , and the ‘X-11 error’,  11 11 11X X X

t t t te y T S ; 
 

11 11 11X X X

t t t ty T S e .                                                                                                     (3) 
 
Result 1. For T Ta t N a , 11 ˆ[ | ]X

t tT E T G  and for S Sa t N a , 11 ˆ[ | ]X

t tS E S G , 
where ˆˆ ,t tT S  are the X-11 estimators defined in (2) and the expectation is taken over the 
distribution of the errors { , 1,..., }te t N . It follows therefore that in the central part of the 
series, max( , ) max( , )T S T Sa a t N a a ,  the X-11 ARIMA estimators of the trend and 
the seasonal components are almost unbiased with respect to the decomposition (3). They 
are not exactly unbiased because of the ‘nonlinear’ operations applied by the procedure, 
mentioned above. 
 

Remark 2. The decomposition defined by (3) refines a saying by Wayne Fuller many 
years ago in a private conversation, stating that the seasonal and trend components can be 
defined by the X-11 output. The refinement is in three aspects: First, we remove the 
sampling error from the definition (computation) and only consider the signal. Second, 
noting that the filters at the non-central sections of the series are asymmetric and depend 
on the time points with data, we define the trend and seasonal components to be the 
(hypothetical) outputs that would be obtained when applying the symmetric filters to the 
signal. These hypothetical outputs do not depend on the length of the observed series and 
for a given signal they are fixed parameters. As mentioned before, the decomposition (3) 
has been used by Bell and Kramer (1999) with the error defined solely by the sampling 
error, such that the time series irregular, tI , is part of the signal; t t t tG T S I  
(Definition GE2 of the signal). See Remark 3 below for details of their approach.  
 
2.2 Bias and MSE of X-11 ARIMA estimators 
The bias, variance and MSE of the X-11 ARIMA estimators with respect to the 
decomposition (3), conditional on the signal, are as follows:  

 
11

( 1)

ˆ ˆ( | ) [( ) | ]
T

T

aN t
X T T

t t t kt t k k t k

k t k a

Bias T E T T w G w GG G .                                       (4) 

  ˆ[ | ]tVar T G 2

( 1) ( 1)
{[ ( | )] | }

N t N t
T T

kt t k kt t k

k t k t

E w y E w y G G  
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                   2

( 1)
[ ( )]

N t
T

kt t k t k

k t

E w y G 2

( 1)
( )

N t
T

kt t k

k t

E w e .                                          (5)                                   

11 2ˆ ˆ( | ) [( ) | ]X

t t tMSE T E T TG G
2ˆ ˆ( | ) ( | )t tVar T Bias TG G .                                       (6)                            

Similar expressions hold for the seasonal and seasonally adjusted estimators.  
 
The expressions in (4)-(6) are general and apply to any linear filter with arbitrary 
coefficients { }T

ktw  as defined by the X-11 ARIMA options, the ARIMA model used for 
extrapolations and the number of forecasts and backcasts. The same holds for other 
component estimators such as the seasonally adjusted series. In fact, as emphasized in 
Section 3, the expressions in (4)-(6) hold equally for other linear filters, not necessarily 
imbedded in the X-11 ARIMA program. In the next sections we discuss ways of 
estimating the MSE in (6).   
 
Remark 3. As noted before, Bell and Kramer (1999) use a similar definition of the target 
components. The authors estimate these components by augmenting the series with 

( , )T Sm max a a  minimum mean squared error forecasts and backcasts under an 
appropriate model, such that the symmetric filters can be applied to the augmented series 
at every time point t  with observation. The trend estimator, for example, can be written 

then as  *ˆ
T

T

a
BK T

t k t k

k a

T w y , where *
t k t ky y  if t ky  is observed (1 t k N ), and 

*
t ky  is the forecasted or backcasted value otherwise. The authors focus on the variance 

11ˆ( )BK X

t tVar T T  under the GE2 definition of the signal as the measure of error, with the 
variance taken over the distributions of the sampling errors and the forecast and backcast 
prediction errors. Notice that for unbiased predictions,  

11 * *ˆ( ) [ ] [ ] 0
T T T T

T T T T

a a a a
BK X T T T T

t k t k k t k k t k k t k

k a k a k a k a

E T T E w y w G E w y w y ,  

such that the estimators of the trend are unbiased unconditionally. However, when 
conditioning on the signal { , ,..., }t startG t tG , in general 11ˆ[( ) | ] 0BK X

t tE T T G . As 
is evident from (4), a bias may exist also when forecasting and backcasting less than m  
observations, even unconditionally, depending on the distribution of the signal.  
 
Our approach differs therefore from Bell and Kramer (1999) in three main aspects. First 
and for most, our definition of the MSE and its estimation (see below) is not restricted to 
the case of full forecasts and backcasts, and can be applied for any linear estimator of the 

form 
( 1)

N t

t kt t k

k t

H h y . In particular, it applies to the case when estimating the 

seasonally adjusted and trend series by use of X-11 ARIMA with only one or two years 
of forecasts and backcasts (to the best of our knowledge, the common case in practice) or 
even without ARIMA extrapolations, or when estimating the components by fitting a 
state-space model to the series, see Section 3. Second, we attempt to estimate the 
conditional MSE given the signal, even though the signal is in fact unobserved. We 
believe that many users of seasonally adjusted and trend estimators would feel most 
comfortable with the notion that the corresponding target components are fixed 
parameters, which conforms with classical sampling theory, although as stated in Remark 
5 below, our bias estimators may also be viewed as estimating the unconditional bias 
over all possible realizations of the signal under an appropriate model given the observed 
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series.  Third, our approach is applicable also to the case where the signal consists of only 
the trend and the seasonal effect, and the time series irregular is part of the error (GE1 
definition of the signal and error). 
 
2.3 Variance estimation 

Under the GE2 definition of the signal and error, t te , the sampling error, and by (5), 

ˆ( | )tVar T G 2

( 1)
( )

N t
T

kt t k

k t

E w = ( , )T T

kt lt t k t l

k l

w w Cov . Similar expressions apply 

when estimating the seasonal or the seasonally adjusted value. We assume the availability 
of estimates of the variances and covariances of the sampling errors for estimating the 
variance of the estimators. 
Next consider the estimation of the variance under the GE1 definition of the signal and 
error by which t t tG S T  and t t te I . By (5), the variance of the X-11 ARIMA 
estimator of the trend is a linear combination of the covariances  ( , )tm t mv Cov e e , 

, 1,...,t m N . Following Pfeffermann (1994), let ˆ ˆ
t t t tR y S T  

( 1)

N t
R

kt t k

k t

w y  define 

the linear approximation of the X-11 ARIMA residual term at time t , where 
0 0 01R S T

t t tw w w , R S T

kt kt ktw w w ,  0k . Then,  

2

( 1) ( 1)

( 1) ( 1)

( | ) {[ ( ( | )] | }

( , | ) ( , ) ( , )

N t N t
R R

t kt t k t k kt t k

k t k t

N t N m
R R R R

t m kt t k lm m l kt lm t k m l

k t l m k l

Var R E w y E y Var w e

Cov R R Cov w e w e w w Cov e e

G G G

G

.          (7) 

By (7), the vector U  of the covariances ( , | )tm t mu Cov R R G  and the vector V of the 
covariances ( , )tm t mv Cov e e , , 1,...,t m N , are related by a system of linear equations,   
 

DU V ,                                                                                                                          (8)                                                                                                                                   
where the matrix D  is defined by the known weights { }R

ktw , see Pfeffermann (1994) and 
Pfeffermann and Scott (1997) for details. Since the X-11 ARIMA residuals are known for 

1,...,t N , the covariances ( , | )t mCov R R G  can be estimated from these residuals.   
Substituting the estimates in the vector U in (8) allows in theory to estimate V  by 
solving the resulting equations (D is known). Notice that the use of (8) does not require 
the availability of estimates of the variances and covariances of the sampling errors. 
However, the X-11 ARIMA residual series is stationary only in the center of the series 
and the estimators obtained this way are very unstable. A possible solution to this 
problem is to assume that the covariances tmv  are negligible if | |t m C  for some 
constant C and hence can be set to zero, and then solve the reduced set of equations 
obtained from (8). Additionally, when estimates for the autocovariances of the sampling 
errors are available, they can be substituted into the vector V , in which case one only 
needs to estimate the unknown variance and covariances of the time series irregular 
terms, which reduces the number of unknown covariances and hence the number of 
equations very drastically. Note that all these procedures are basically ‘model free’. See 
Pfeffermann (1994), Pfeffermann and Scott (1997) and Chen et al. (2003) for different 
approaches of estimating U  and V . Bell and Kramer (1999) consider model based 
estimation of the variance and covariances of the sampling errors.  
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2.4 Bias and MSE estimation 
Estimation of the conditional bias given the signal and hence the conditional MSE of the 
estimator ˆ

tS  (or any other linear estimator) is more involved. In our simulation study we 
estimate the bias by estimating the signal and then substituting the estimate in the right 
hand side of the bias expression (4).  Within the X-11 ARIMA framework the signal can 
be estimated most conveniently by application of the following two steps.    
  
(a) Fit a model to the original series and use the X-11 ARIMA forecast–backcast option  
to augment the series with ( , )T Sm= max a a  forecasts and backcasts, thus allowing to 
apply the symmetric filters for estimating the signal in the central N time points. The 
length of the augmented series is 2augN N m . 
 
(b) Estimate the signal of the augmented series as,  

, ,

( 1 ( 1)

ˆ
aug augN t N t

aug S aug aug T aug aug

t kt t k kt t k

k t k t

G w y w y ,   1,...,t m N m ,                                    (9)  

where aug

t ty y  if ty  is observed, and aug

ty  is the corresponding forecasted (backcasted) 
value otherwise, and , ,,S aug T aug

kt ktw w  are the X-11 weights corresponding to the augmented 
series.  
 
Substituting the augmented signal into (4) yields the bias estimate,  

11

( 1)

ˆ ˆˆ ˆ ˆˆ [ | ] [( ) | ]
T

T

aN t
X T aug T aug

t t t kt t k k t k

k t k a

Bias T E T T w G w GG G ,    1,...,t N .               (10) 

Alternatively, the signal can be estimated more efficiently by extracting the models for 
the trend and the seasonal effects using signal extraction methodology and then estimate 
the signal within the observation period, and forecast and backcast the signal under the 
extracted model. Software for signal extraction is now available within X-13 ARIMA-
SEATS (X-13A-S Reference Manual). The estimated signal is in this case the minimum 
mean squared estimate under the model. One may also estimate the signal outside the X-
11 ARIMA framework using a different class of models.  
 
Having estimated the conditional bias generally produces a conservative estimator for the 
conditional MSE defined by (6); 
 
 2ˆ ˆ ˆ ˆˆ ˆ( | ) ( | ) ( | )t t tMSE T Var T Bias TG G G .                                                                     (11) 
 
The estimator in (11) is conservative since 2 ˆˆ[ ( | ) | ]tE Bias T G G

2ˆˆ{ [ ( | )] | }tE Bias T G G   
ˆˆ[ ( | ) | ]tVar Bias T G G

2ˆˆ{ [ ( | )] | }tE Bias T G G . The overestimation of the MSE can be 
corrected by subtracting an estimate of ˆˆ[ ( | ) | ]tVar Bias T G G . Notice that  ˆˆ ( | )tBias T G  is 
again a linear combination of all the observed values so the variance can be estimated 
similarly to the estimation of ˆ[ | ]tVar T G  discussed in Section 2.3. 
 

Remark 4. A possible objection to estimating the signal many years ahead is that the 
signal estimators may be severely biased for time points far away from the last time point 
N  with observation. Note, however, that the signal estimates in (9) may be biased (given 
the true signal) but the bias estimator in (10) may still be unbiased or only have a small 
bias. For example, if ˆ( | )aug

tE G BG  for all t where B is a constant, the bias estimator in 
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(10) is unbiased for the true bias since 
( 1)

1
T

T

aN t
T T

kt k

k t k a

w w , and similarly for the 

seasonal adjustment filter. In addition, the weights of the symmetric and asymmetric 
filters decay to zero very fast when moving away from the time point of interest, so that 
even large biases for the estimators of the signal for months far away from the last time 
point with observation may have little effect on the bias of the bias estimator in (10). See 
Figure 1 for the weights of the linear filters used in our study. 
 

 
   ---- Central X-11    ---- Central BSM     ---- End point X-11  ---- End point BSM 
 

Figure 1. Central and end weights when estimating the trend by default X-11 and under 
Basic Structural Model. 
 
Remark 5. When the signal is estimated by the minimum mean squared estimate under a 
model, the estimate coincides with the conditional expectation given the observed series. 
In this case the bias estimator (10) is the conditional expectation of the bias over all 
possible realizations of the signal given the observed series, implying an ‘unconditional’ 
interpretation for the bias estimator.  
 

3. The use of State-Space Models for Estimation of the X-11 Trend and 

Seasonally Adjusted Series 
 
Consider any other set of component estimators of the form, 
 

( 1)

N t
T

t kt t k

k t

T h y ,   
( 1)

N t
S

t tk t k

k t

S h y .                                                                           (12)  

      
Then, similar to the case of X-11 ARIMA estimators considered in Section 2, we can 
calculate the conditional bias and MSE with respect to the X-11 components defined in 
Definition 1, that is,                                                          

11

( 1)
( | ) [( ) | ]

T

T

aN t
X T T

t t t kt t k k t k

k t k a

Bias T E T T h G w GG G .                                       (13) 

[ | ]tVar T G 2

( 1)
( )

N t
T

kt t k

k t

E h e .                                                                                      (14)   
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11 2( | ) [( ) | ]X

t t tMSE T E T TG G
2( | ) ( | )t tVar T Bias TG G .                                     (15)                            

 
In particular, when fitting a state-space model with given (estimated) hyper-parameters, 
the state-space model estimates of the seasonal effects and the trend for any given time t  
are again linear combinations of the observed series. In our empirical study we calculated 
the weights defining the corresponding filters by using the impulse response method 
(Findley and Martin, 2006). By this method the weight of an observation for time m when 
applying the filter at time t is obtained by fitting the model with the observation at time m 

set to 1 and all other observations set to zero, and then computing the estimate for time t. 
Calculation of all the weights for all the time points for a series of length N requires 
therefore fitting the model N times, each time with a vector observation defined by a 
different column of the identity matrix 

NI . Substituting the weights in (13)-(15) defines 
the corresponding bias and MSE. As mentioned before, the bias can be estimated in this 
case by estimating the signal 1 0( ,..., ,..., ,..., )

S S

aug

a N N aG G G GG  optimally under the 
model. See next section for details of the model used in our empirical application. The 
bias and MSE estimators are obtained similarly to Equations (10) and (11). 
 

4. Simulation Study 
 
In this section we apply the estimators considered in Sections 2 and 3 to simulated series, 
generated from a model fitted by the Bureau of Labour Statistics (BLS) in the U.S.A. to 
the series Employment to Population Ratio in the District of Columbia, abbreviated 
hereafter by EP-DC. The EP series represents the percentage of employed persons out of 
the total population aged 15+. This is one of the key economic series in the U.S.A., 
produced monthly by the BLS for each of the 50 States and DC.  The BLS uses similar 
models for the production of the major employment and unemployment estimates in all 
the States, see Tiller (1992) for details. In order to assess the performance of the various 
estimators, we generated a large number of series from the EP-DC model. The model 
contains 18 unknown hyper-parameters estimated in 3 stages, but for the present 
experiment we consider the hyper-parameter estimates as the true parameters. See 
Pfeffermann and Tiller (2005) for the parameter estimation procedures used by the BLS. 
 
4.1 Model fitted 
The EP-DC series is plotted in Figure 2 along with the estimated trend under the state-
space model defined below and the trend estimated by application of X-11 ARIMA with 
12 months forecasts. In this presentation we only consider the estimation of the trend in 
the last four years of data so no backcasts were needed. This is a very erratic series: the 
residual component (calculated by X11 ARIMA) explains 55% of the month to month 
changes and 32% of the yearly changes. A large portion of the residual component is 
explained by sampling errors. Let ty  define the direct sample estimate at time t and tY  
the corresponding true population ratio such that t t ty Y  is the sampling error. A 
state-space model is fitted to the series ty   that combines a model for tY  with a model for 

t . The model postulated for tY  is the Basic Structural Model (BSM, Harvey, 1989), 
                2, ~ (0, )t t t t t IY T S I I N  
                2

1 1; , ~ (0, )t t t t t Rt Rt RT T R R R N  

                6
,1

;t j tj
S S                                                                                           (16) 
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                * 2
, , 1 , 1 , ,cos sin , ~ (0, )j t j j t j j t j t j t SS S S N  

                * * * * 2
, , 1 , 1 , ,sin cos , ~ (0, )j t j j t j j t j t j t SS S S N  

                2 /12 , 1...6j j j  

The error terms *
, ,, , ,t Rt j t j tI  are mutually independent normal disturbances. In the 

model (16), tT  is the trend level, tR  is the slope and tS  is the seasonal effect. The model 
for the trend approximates a local linear trend, whereas the model for the seasonal effects 
uses the traditional decomposition of the seasonal component into 11 cyclical 
components corresponding to the 6 seasonal frequencies. The added noise enables the 
seasonal effects to evolve stochastically over time. 
 

 
---- Original series ---- Trend X11 ARIMA  ---- Trend BSM 

 

Figure 2. Employment to Population Ratio in DC, 1999-2000. Original series and trends 
estimated by X-11 ARIMA with 12 forecasts and under BSM. 
 
The model fitted for the sampling error is AR(15), which approximates the sum of an 
MA(15) process and an AR(2) process. The MA(15) process accounts for the 
autocorrelations implied by the sample overlap resulting from the Labor Force Survey 
rotating sampling scheme. By this scheme, households in the sample are surveyed for 4 
successive months, they are left out of the sample for the next 8 months and then they are 
surveyed again for 4 more months. The AR(2) process accounts for the autocorrelations 
arising from the fact that households dropped from the survey are replaced by households 
from the same ‘census tract’. These autocorrelations exist irrespective of the sample 
overlap. The reduced ARMA representation of the sum of the two models is 
ARMA(2,17), which is approximated by an AR(15) model.  
 
The separate models holding for the population ratios and the sampling errors are cast 
into a single state-space model. In what follows we refer to the combined model holding 
for the observed series as the BSM model. Note that the state vector consists of the trend, 
slope, seasonal effects and sampling errors. The monthly variances of the sampling errors 
are estimated externally based on a large number of replications and are considered as 
known, implying that the combined model depends on 18 hyper-parameters.  
 
Remark 6. In this simulation study we used the known (previously estimated) hyper-
parameters and did not re-estimate them, except when predicting the signal values for 
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bias estimation, in which case we re-estimated the BSM hyper-parameters for every 
simulated series. 
 
4.2 Simulation plan 
We generated three sets of series. The first set consists of 1,000 series of observations 

, 1,...,1,000b

ty b , each of length 301, obtained by simulating separately for every month 
1,...,301t  a trend, seasonal effects and irregular term from the model (16), and a 

sampling error from the AR(15) model, and then summing the separate components; 
b b b b b

t t t t ty T S I . For the present study we employ the GE2 definition of the signal 
such that t t t tG T S I . A second set of 1,000 series was obtained by fixing the signal 
of the series generated in the second replication of the first set and adding the sampling 
errors from the first set to the fixed signal. Thus the second set of series has the same 
sampling errors as the first set but all the series have the same signal.  The third set of 
series is similar to the first set, except that the trend was generated deterministically as 

2 360 10 [2.8 exp( /100) exp[( /100) / 3] exp{[(180 ) /100] / 4}]tT t t t . The other 
components are the same as for the second set. The use of this trend allows studying the 
robustness of the estimators to model misspecification.  
 
Next we computed the default X-11 estimator of the trend and the seasonal component 
for each simulated signal in order to obtain the target X-11 components defined by (3) for 
the central 181 months. We defined the target for the seasonally adjusted component as 
the difference between the original series without sampling error and the target for the 
seasonal, that is,  

11 11 11( );
S

S

a
X X X S

t t t t t k t k

k a

SA y S S w G ,    11
T

T

a
X T

t k t k

k a

T w G .                             (17)  

Finally, we removed the first and last 60 monthly observations from the simulated series 
and applied X-11 ARIMA with only 12 forecasts and with 60 forecasts using the default 
X-11 filters, but fixing the ARIMA model to be the airline model (0,1,1),(0,1,1). The 
programme estimated the model parameters for each series. Here we only show and 
discuss the results for the last 6 months of data (last 4 years in Figure 3) and so no 
backcasts were needed. Additionally, we fitted the BSM for each of the reduced series of 
length 181N . The resulting estimators are, 

11 11
, ,

( 1) ( 1)

,
( 1) ( 1)

ˆˆ ,                          ;

ˆˆ ,                          ;

N t N t
X T b X b S b

t b kt t k t b t kt t k

k t k t

N t N t
BSM T b BSM b SA b

t b kt t k t t kt t k

k t k t

T w y SA y w y

T h y SA y h y

,                              (18)  

where the weights for the X-11 ARIMA estimates are defined by the number of forecasts 
(12 or 60) and { }S

kth , { }T

kth  are the weights defining the estimators of the seasonal 
component and the trend under the BSM. 
 
4.3 Computations 
We computed the empirical bias and MSEs for the first second and third sets of 1,000 
series. The first set of empirical bias and MSE correspond to the unconditional bias and 
MSE, integrated over the distribution of the signal, where as the second and third sets of 
bias and MSE condition on a given signal. In what follows we define the computations 
performed. 
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Step 1. Compute the variance of  X-11 ARIMA and BSM estimators:  
 

, 11T X

tV ( , )T T

kt lt t k t l

k l

w w Cov ,   , 11SA X

tV ( , )SA SA

kt lt t k t l

k l

w w Cov ,                    

,T BSM

tV ( , )T T

kt lt t k t l

k l

h h Cov ,    ,SA BSM

tV ( , )SA SA

kt lt t k t l

k l

h h Cov .  

Notice that the variances do not depend on the actual observed (simulated) series.                   

Step 2. Compute the empirical bias and root mean square error (RMSE) over the 1,000 
replications: 
 
Empirical Bias of  X-11 ARIMA estimators with respect to proposed target (Equation 3),  
 

1,000
11 11 11

, ,
1

1ˆ ˆ( ) ( )
1,000

X X X

t t b t b

b

Bias T T T , 
1,000

11 11 11
, ,

1

1ˆ ˆ( ) ( )
1,000

X X X

t t b t b

b

Bias SA SA SA ,           (19) 

where 11
,

ˆ X

t bT  and 11
,

ˆ X

t bSA  are defined by (18) and the target components are defined by (17). 
 
Empirical RMSE of  X-11 ARIMA estimators with respect to proposed  target,  
  

1,000
11 11 11 2

, ,
1

1,000
11 11 11 2

, ,
1

1ˆ ˆ( ) ( )
1,000

1ˆ ˆ( ) ( )
1,000

X X X

t t b t b

b

X X X

t t b t b

b

RMSE T T T

RMSE SA SA SA

.                                                                (20)    

The empirical bias and RMSE of the BSM estimators are computed the same way. 
 
Step 3. Compute the estimators of the bias and RMSE:  
Denote by ,

ˆT

t bB  and ,
ˆ SA

t bB  the bias estimates defined by (10) with the signal estimated by 
using X-11 ARIMA. The MSE estimates when applying the ARIMA procedure are 
computed as , 11 , 11 , 11 2

, ,
ˆ ˆ( )T X T X T X

t b t t bMSE V B , , 11 , 11 , 11 2
, ,

ˆ ˆ( )SA X SA X SA X

t b t t bMSE V B . The MSE 
estimates when fitting the state-space model are computed in the same way. Finally, 
compute: 
 
Average of the Bias estimates, 

1,000 1,000

, , , ,
1 1

1 1ˆ ˆ ˆ ˆ( ) ,    ( )
1,000 1,000

T T SA SA

t b t b t b t b

b b

Av B B Av B B ;                                                   (21) 

Empirical Standard Error of the Average of the Bias estimates, 
1,000 1,000

2
, , ,2

1 1

1,000 1,000
2

, , ,2
1 1

1 1ˆ ˆ ˆ( ) ( )
1,000 1,000

1 1ˆ ˆ ˆ( ) ( )
1,000 1,000

T T T

t b t b t b

b b

SA SA SA

t b t b t b

b b

SE B B B

SE B B B

;                                                             (22) 

Average of MSE estimates, 
1,000 1,000

, , , ,
1 1

1 1ˆ ˆ ˆ ˆ( ) ,    ( )
1,000 1,000

T T SA SA

t b t b t b t b

b b

Av MSE MSE Av MSE MSE .                             (23) 
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Remark 7. The statistics computed for the first set of 1,000 series represent the 
unconditional bias and MSE. For the second and third data sets we repeated the same 
computations but the empirical bias and MSE are now conditional on the given signal.  
 
4.4 Results 

The results are summarized in Tables 1 – 3 and Figure 3. We only show the results 
pertaining to trend estimation. All the statistics in the tables below are multiplied by 100. 
 
Table 1: Empirical bias and RMSE, and mean estimates as obtained by application of   
X-11 ARIMA and by fitting the BSM. First set of series, last six months. 

 
  Jul Aug Sep Oct Nov Dec 
 

X-11 
ARIMA  

60 forecasts 

Empirical 
Bias, Eq. 19 

0.02 0.03 0.03 0.03 0.03 0.02 

Average of Bias 
Estimates, Eq.21 

(SE,  Eq. 22) 

-0.01 
(0.01) 

-0.01 
(0.01) 

-0.01 
(0.01) 

-0.01 
(0.01) 

0 
(0.01) 

0 
(0.01) 

Empirical 
RMSE, Eq. 20 

1.26 1.27 1.27 1.28 1.35 1.47 

Average of 
RMSE 

Estimates, Eq.23 

1.27 1.27 1.27 1.28 1.32 1.37 

 
X-11 

ARIMA  
12 forecasts 

Empirical 
Bias 

0.02 0.03 0.04 0.04 0.03 0.02 

Average of Bias 
Estimates 

(SE) 

0 
(0.01) 

0 
(0.01) 

0 
(0.01) 

0 
(0.01) 

0 
(0.01) 

0.01 
(0.01) 

Empirical 
RMSE 

1.27 1.27 1.27 1.29 1.35 1.48 

Average of 
RMSE 

Estimates 

1.26 1.27 1.27 1.28 1.31 1.37 

 
BSM 

Empirical 
Bias 

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

Average of Bias 
Estimates 

(SE) 

0.01 
(0.02) 

0 
(0.01) 

0 
(0.01) 

0 
(0.01) 

0 
(0.02) 

0.01 
(0.02) 

Empirical 
RMSE 

1.11 1.14 1.16 1.21 1.29 1.39 

Average of 
RMSE 

Estimates 

1.10 1.12 1.15 1.19 1.29 1.47 

 
All the estimates of the bias in Table 1 are very close to the corresponding empirical bias, 
indicating no bias in the bias estimation. Recall that the results in Table 1 represent the 
unconditional bias and MSE. In this case if the ARIMA model used for the forecasts and 
the BSM are correct, then the X-11 ARIMA and BSM estimators of the trend are 
unbiased unconditionally.    
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Table 2 corresponds to the case of a fixed signal. In this particular simulation the absolute 
empirical biases of the BSM estimators are in most cases larger than the biases of X-11 
ARIMA estimators with 12  forecasts, and the latter estimators have larger biases than the 
X-11 ARIMA estimators with 60 forecasts. In fact, the X-11 ARIMA estimators with 60 
forecasts only have a significant bias for the last month whereas the BSM estimators are 
biased for all 6 months. The empirical statistics and the averages of their estimators look 
similar in most cases. It is interesting to note that for most of the months the RMSE’s of 
the BSM estimators are lower than RMSE’s of X-11 ARIMA estimators, even though the 
latter estimators are unbiased in the central part of the series. 

 
Table 2: Empirical bias and RMSE, and mean estimates as obtained by application of   
X-11 ARIMA and by fitting the BSM. Second set of series, last six months. 
 

  Jul Aug Sep Oct Nov Dec 
 

X-11 
ARIMA  

60 forecasts 

Empirical 
Bias, Eq. 19 

-0.06 -0.04 -0.02 -0.02 0.05 0.2 

Average of Bias 
Estimates, Eq.21 

(SE,  Eq. 22) 

-0.02 
(0.01) 

-0.04 
(0.01) 

-0.06 
(0.01) 

-0.03 
(0.01) 

0.10 
(0.01) 

0.34 
(0.01) 

Empirical 
RMSE, Eq. 20 

1.26 1.26 1.25 1.27 1.30 1.35 

Average of 
RMSE 

Estimates, Eq.23 

1.26 1.26 1.26 1.27 1.31 1.39 

 
X-11 

ARIMA  
12 forecasts 

Empirical 
Bias 

-0.12 -0.11 -0.07 -0.06 0.03 0.21 

Average of Bias 
Estimates 

(SE) 

-0.08 -0.08 -0.07 -0.02 0.13 0.38 

Empirical 
RMSE 

1.26 1.27 1.26 1.27 1.30 1.36 

Average of 
RMSE 

Estimates 

1.26 1.27 1.27 1.27 1.31 1.4 

 
BSM 

Empirical 
Bias 

-0.01 -0.22 -0.49 -0.74 -0.74 -0.47 

Average of Bias 
Estimates 

(SE) 

0 
(0.02) 

-0.2 
(0.01) 

-0.38 
(0.01) 

-0.53 
(0.01) 

-0.59 
(0.02) 

-0.56 
(0.02) 

Empirical 
RMSE 

1.01 1.07 1.18 1.34 1.38 1.29 

Average of 
RMSE 

Estimates 

1.01 1.06 1.15 1.24 1.31 1.33 

 
The results in Table 3 again correspond to a conditional case (fixed signal) but now the 
model is misspecified. This is the reason why the bias estimates perform badly for the last 
6 months under all the methods, see Remark 4 above. Note that the BSM estimators are 
biased with respect to the target even in the middle of the series; see Figure 1 for the 
central weights used under the BSM and X-11 ARIMA. Figure 3 shows the empirical 
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bias and the average of the BSM bias estimates for the last 4 years of data and it is 
evident that the bias estimators perform well except in the last 18 months or so. 
   
Table 3: Empirical bias and RMSE, and mean estimates as obtained by application of   
X-11 ARIMA and by fitting the BSM. Third set of series, last six months. 
 

  Jul Aug Sep Oct Nov Dec 
 

X-11 
ARIMA  

60 forecasts 

Empirical 
Bias, Eq. 19 

-0.13 -0.12 -0.07 0.03 0.32 0.83 

Average of Bias 
Estimates, Eq.21 

(SE,  Eq. 22) 

0.03 
(0.01) 

0.05 
(0.01) 

0.05 
(0.01) 

0.06 
(0.01) 

0.1 
(0.01) 

0.17 
(0.01) 

Empirical 
RMSE, Eq. 20 

1.27 1.27 1.26 1.27 1.33 1.56 

Average of 
RMSE 

Estimates, Eq.23 

1.26 1.26 1.26 1.27 1.30 1.33 

 
X-11 

ARIMA  
12 forecasts 

Empirical 
Bias 

-0.21 -0.2 -0.14 -0.01 0.3 0.85 

Average of Bias 
Estimates 

(SE) 

-0.04 
(0.01) 

-0.05 
(0.01) 

-0.04 
(0.01) 

-0.01 
(0.01) 

0.07 
(0.01) 

0.2 
(0.01) 

Empirical 
RMSE 

1.28 1.28 1.27 1.27 1.33 1.57 

Average of 
RMSE 

Estimates 

1.26 1.27 1.26 1.27 1.30 1.34 

 
BSM 

Empirical 
Bias 

-0.09 -0.14 -0.21 -0.26 -0.05 0.44 

Average of Bias 
Estimates 

(SE) 

0.06 
(0.02) 

0.04 
(0.01) 

-0.01 
(0.01) 

-0.07 
(0.01) 

-0.12 
(0.01) 

-0.15 
(0.02) 

Empirical 
RMSE 

1.01 1.05 1.1 1.15 1.16 1.28 

Average of 
RMSE 

Estimates 

1.01 1.05 1.08 1.12 1.17 1.22 

 
 

Intermediate conclusion: The method seems to work well when the model is correctly 
specified but we need to experiment with many more simulated and real series. The 
robustness of the method to possible model misspecification needs to be explored further. 
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Figure 3. Empirical conditional bias of BSM trend estimates and mean of bias estimates, 
misspecified trend, signal estimated by X-11 ARIMA. 
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