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Abstract 
In work with data collected under a responsive design, most analytic approaches may be 
viewed as extensions of methods developed previously under, respectively, selection 
models or pattern-mixture models for nonresponse.  Under selection models, one 
approximates the probability of specified responses (or, more generally, the probability of 
observing certain profiles of paradata) as a function of observable information from 
frame data, survey data and paradata.  Under pattern-mixture models, one views the 
moment structure of observed survey data as functions of specified response patterns (or, 
more generally, specified patterns of observed paradata).  For the pattern-mixture 
approach, an especially important issue is the use of constraints on subpopulation 
moments to ensure that the resulting models are estimable from available data.   

Following a brief review of these concepts, this paper presents some simulation-based 
evaluations of the properties of the estimators based on the pattern-mixture approach.  
Special attention is directed toward evaluation of these properties under moderate 
deviations from assumed conditions.   

Key Words: Cost-quality trade-offs; Model identification informaton; Nonresponse; 
Paradata; Pattern-mixture model; Selection model. 

1. Introduction

This paper consider the use of pattern-mixture model methods for analysis of survey
data collected under a responsive design. Section 2 provides an overview of selection-
model and pattern-mixture model approaches to survey nonresponse. Section 3 gives a 
brief review some of the recent literature on responsive designs. Section 4 outlines some 
ways in which one may extend previous pattern-mixture approaches to data collected 
under a responsive design. Section 5 presents some results from a simulation study and 
related discussion.   

2. Approaches to Nonresponse

Our work will center on standard survey environments, in which an analyst wants 
to carry out estimation and inference for population means, totals, quantiles or model 
coefficients associated with a finite population  U  or the with the associated 
superpopulation. As usual, the survey organization selects a sample through a complex 
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To develop the ideas for this paper, we will use the following notation.  Let 
ijR be the response indicator for item j from sample unit i .  In addition, iZ will be a

vector of paradata related to the survey process and other factors that may affect survey
response.   

With this notation, the survey literature has considered two general approaches to 
nonresponse. The first centers on selection models, in which we develop an explicit 
model for the probability of response as a function of the observed portions of our data 
X and Z .The second approach centers on pattern-mixture models, in which we focus

attention on the moments (usually the mean and covariance matrix) of our survey
variables X , conditional on certain observed “patterns” of nonresponse. 

This pattern-mixture approach has been primarily of interest for cases with 
multivariate X , subject to differing patterns of nonresponse across items or waves. For 
example, in a panel survey, one pattern would arise if a unit  i  responds on waves 1 and 
3, but not on wave 2. For the current discussion, it is useful to note that indicators for 
these observed “response patterns” can be viewed as a form of paradata.   

Work with pattern-mixture models can involve a number of technical issues.  
One issue of special importance centers on model identification.  To have an identified 
model in a pattern-mixture setting, one generally imposes identifying restrictions on some 
of the mean and covariance parameters, or on related regression coefficients. Pattern-
mixture models have both Bayesian and frequentist interpretations. Please refer to Glynn, 
Laird and Rubin (1986), Little (1993, 1994),  Little and Wang (1996),  and Andridge and 
Little (2011) for general background on these models and on interpretation of the 
resulting analyses.   

3. Responsive Designs

Within the general area of nonresponse,  most of the formal mathematical 
literature has considered survey procedures – including fieldwork and adjustment 
methods – as fully specified before one begins sample selection and data collection. 
However, practical applications often require some degree of field intervention to address 
nonresponse and other problems in data quality and cost.  In recent years, the statistical 
literature has explored these field-intervention ideas through development of methods 
known as “responsive design.”  For more details, please refer to Groves and Heeringa 
(2006); Laflamme and Karaganis (2010); Peytchev et al. (2010); Gonzalez (2012);  
Beaumont, Haziza and Bocci (2012); and references cited therein. 

In exploration of responsive-design and related approaches to field intervention, 
one can consider two fairly distinct cases. For the first case, we have field intervention 
with sample units for which we already have some paradata Z, and may have some of our 
survey data X.  This setting is conceptually similar to some aspects of on-line industrial 
quality control. For the second case, we have field intervention with “new” sample units.  
In this second case, we do not have any survey data or paradata for these “new” sample 
units, but our previous sample data may have provided us with improved information on 
the parameters of a given selection model or pattern-mixture model.  This second case is 
conceptually similar to some aspects of off-line industrial quality control. For the 
remainder of this paper, we will focus attention on the first case. 

design. However, in most practical applications, we do not observe all of the sample data 
of interest. In some cases, we have unit nonresponse, in which we do not observe any 
survey data for some sample units . In other cases, we have wave or  item  nonresponse, 
in which we are unable to observe some parts of our data   for some sample units . 
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To explore these ideas in some detail, we will consider a relatively simple 
example.  Our paradata vector Z  will have three components – 1Z , 2Z  and 3Z , where 
each of these components is an independent Bernoulli random variable. Our survey data 
X will follow a four-dimensional normal distribution. For this work, both the mean 

vector and the covariance matrix for iX  are allowed to vary across i .  In particular, these 
moments will depend on the paradata  iZ , through the functions 

* * * *
0 0 1 1 1 2 2 2 3 3 3Xi X X i X i X iZ Z Z           

and 
* * *

1 1 2 2 3 3Xi X i X i X iZ Z Z     

The fixed four-dimensional vectors  *
0X through *

3X , the scalar coefficients 0 through

3 , and the covariance matrices *
1X through *

3X will be discussed in greater detail in 
the next section. 

Although we are emphasizing a pattern-mixture approach, it is still useful to 
consider response probabilities.  For our example, we will consider final response 
indicators iR that are conditionally independent Bernoulli random variables, with 
response probabilities ip that depend on the paradata iZ  through a standard logistic 
regression model.  For this model, note especially that the logistic regression coefficient 
vector * depends on the specific field-intervention rules established by our responsive 
design. Thus, our model absorbs the responsive-design process into the model for our 
final response indicators iR . 

For the analysis, we will need some additional notation.  Let S  be the full set of 
sample units, and partition S  into two subsets.  The first subset ABS , is the group of 
sample units for which we observe the full vector X . In addition, we will partition X  
into two subvectors - AX (which contains the first two elements of X ), and BX (which 
contains the final two elements of X ). The second subset of our sample is BS . For units
in BS , we are only able to observe the subvector BX . For this example, the response 
indicator iR equals 1 if the sample unit i is in ABS , and iR equals zero otherwise. 

With this notation, we can extend previous pattern-mixture approaches to 
patterns, or groups, defined by our paradata Z .Specifically, we partition BS into a total 

4. Application of Pattern-Mixture Models to Data from Responsive Designs

In contrast with the previous responsive-design literature – which has tended to 
emphasize a selection-modeling approach – this paper will consider some ways in which 
to extend previous pattern-mixture work to the context of a responsive design.  Here, we 
will place special emphasis on the moments of our survey variables  conditional on 
our observed paradata .Some examples of are simple indicators of item- or wave-
level nonresponse, as considered previously for pattern-mixture models. Other examples 
of are process variables (for example, soft-refusal indicators), or observable 
demographic or economic characteristics that are considered important predictors of the 
response process and the survey variables.   



of  G  groups,  BgS , and we consider the standard multivariate-analysis coefficients for 

the expected value of AX  given BX . 
 In the initial discussion of pattern-mixture models, we emphasized the 

importance of restrictions on certain parameters, to ensure that we had an identified 
model. For our paradata setting, we will obtain the corresponding model-identification 
information through the assumption that the coefficients in the expression for the 
expected value of  AX   given BX are equal for all units i within a given group g , 
regardless of response status. Finally, we define the weights ABw and Bgw  for each 
group g , based on the observed prevalence of each group within our survey.  

Pulling together these components, we have an estimator of the mean of AX that
combines data from our two sample components ABS (for which we have direct 
observations on AX ), and BS  (for which we have only data on BX ). 

*
( )

1
( | )

AB

G

A AB A S Bg Ag Bg
g

X w X w E X X


 

This estimator is a weighted average of the sample mean obtained directly from AS , and 
of the estimated conditional expectations of AX  given BX for each of the groups g .   

Up to this point, the responsive design literature appears to have developed 
largely in the context of selection models and related analytic approaches.  In particular, 
these approaches have viewed responsive designs as variants on traditional two-phase 
designs, as considered by Särndal and Swensson (1987) and Särndal, Swensson and 
Wretman (1992).  Within that framework, the “selection probabilities” in the second 
phase of sampling will depend on the assumed response-probability model, and on the 
specific field intervention rules that are used in the responsive design.    

5. Simulation Study

To explore some features of a pattern-mixture approach to responsive design, we 
carried out a simulation study.  Numerical values for our mean vectors were equal to: 

* * *
1 2 3(1,0,0,0), (0,0,1,1), (1,1,1,1)X X X    

In addition,  *
1 4 ;X I 

*
2X    is a 4 4 -dimensional banded covariance matrix with diagonal elements equal to 

2, elements on the first upper and lower off-diagonals equal to 1, and 0 elsewhere; and  
*

3X is an equicovariance matrix with all diagonal elements equal to 10 and all off-
diagonal elements equal to 1.  



We considered six distinct cases, as summarized in Table 1.  All six cases had the 
same probability distribution for our paradata, with 90% probability that 1Z equals 1, and 
10% probability that 2Z equals 1.

The six cases differ in the ways in which the paradata 1Z  affects the mean of X , 
and in the ways in which the paradata affect the response probabilities. For cases 1, 2 and 
3, the vector *

1X  equals zero, so 1Z does not have a direct effect on the overall mean of 

X. In case 1, the vector * has a nonzero value only in its first element, so the response
probabilities depend only on 1Z .  In case 2, the vector * has  entries equal to 1, 0.5 and

0, respectively.  In case 3, the vector * has all of its entries equal to one.  For this
reason, cases 2 and 3 have response probabilities that depend on 2Z as well as on 1Z , 
and thus can be viewed as moderate deviations from case 1. For cases 4, 5 and 6, the 
vector *

1X  is not equal to zero, so 1Z  can have a substantial direct effect on the mean of 

X .  Cases 4, 5 and 6 differ in their values of the vector * , just as we had for cases 1 
through 3.  So again, cases 5 and 6 can be viewed as moderate deviations from case 4. 

Graphs (Figures 1 through 3) of the results are presented following Table 1.   
They present plots of the probability of response against the sum of the X values, with the 
plotting symbol equal to the value of 1Z .  Each plot provides points for 100 observations, 
generated independently.  

Figure 1 gives results for Case 1.  Note that we do not see much relationship 
between X and the response probabilities here. In contrast with this, Figure 2 gives results 
for Case 4, in which the units with 1Z equal to 1 have higher response probabilities, and 
tend to have higher values for the sum of X . Figure 3 gives results for Case 6.  Note that 
cases 4 and 6 are similar, except that Case 6 has a few units with larger response 
probabilities, due to the change in the value of * .   

Following that exploratory work, we carried out a simulation evaluation of our 
final weighted estimators.  For each of Cases 1 through 6, we considered samples of size 
1000, and produced 1000 independent replications of each of these samples. Table 2 
summarizes the resulting bias and standard deviation of our weighted estimators for the 
means of 1X and 2X .  Cases 1 through 6 are covered separately in the final six rows of
the table.  The bias and standard deviation for the 1X estimators are presented in the 
middle column, with the standard deviations in parentheses.  The corresponding results 
for the 2X mean estimators are in the final column. For Cases 1 and 4 (corresponding to 
simulation conditions that match the assumed conditions for model identification 
constraints), the absolute values of the bias estimates are less than the corresponding 
standard errors.  For Cases 2, 3, 5 and 6 (representing moderate deviations from the ideal 
conditions), the simulation-based estimates of bias are substantially larger than the 
corresponding standard errors.  In addition, note that the estimated biases are larger for 
Cases 3 and 6 than for Cases 2 and 5, respectively.  This is consistent with the general 
idea that Cases 3 and 6 represent more pronounced deviations from the idealized 
conditions considered in Cases 1 and 4, respectively.  

Tables 3 through 6 present related simulation results for the sample variance-
covariance matrix 12.34   of 1 2( , )X X   conditional on   3 4( , )X X .  Table 3 presents 



results for the full sample.  Tables 4 and 5 present the corresponding results for sample 
units with the paradata element 1Z equal to 0 and 1, respectively.  Note especially that the 
conditional variances are substantially larger for 1 1Z  .  Tables 6 and 7 present parallel 
results for the covariances of 1 2( , )X X conditional on 3 4( , )X X , now restricted to units 
with the response indicator equal to 1.    In addition, Tables 8 through 11 present the 
moments of the sample coefficients for the multivariate regression of  1 2( , )X X on  

3 4( , )X X for specified cases defined by the paradata 1Z and the response indicators R.
To explore our estimators in additional detail, we also have four graphs (Figures 

4-7) that present side-by-side boxplots of the final weighted estimators of 1X , separately 
for ten cells.  The ten cells are defined by the deciles of the full-sample means of 1X .  
Due to nonresponse, we are not able to observe these full-sample means in practice, but 
we are able to compute the final weighted estimators.  Consequently, it is useful to 
explore the relationship between these full-sample means and final weighted estimators.  
Each set of results is based on 1000 independent replications of the process described 
earlier, with 1000 observations in each replication.   

Figure 4 covers Case 1, with the final weighted estimators along the vertical axis 
and the ten groups of true full-sample means along the horizontal axis.  Note that as the 
true sample means increase across the ten groups, we have a general increasing pattern in 
the distribution of the final weighted estimators. Figure 5 covers Case 3. As previously 
stated, the response probability structure for Case 3 was a moderate deviation from the 
probability structure for Case 1.  Consistent with that idea, the boxplot pattern for Case 3 
is similar to the pattern for Case 1.  Figure 6 covers case 4.  As previously stated, Cases 1 
through 6 include cases in which the paradata  1Z can have a relatively weak effect (as in 
Cases 1 and 3) or a relatively strong effect (as in Cases 4 and 6) for estimation of the 
mean of 1X .  Again here for Case 4, as the true full-sample means increase across groups 
1 through 10, the distributions of the true weighted estimators display a moderate 
increasing pattern.  Finally, Figure 7 presents the boxplots for Case 6; these are similar to 
the boxplots for Case 4, again reflecting the idea that the response probability structure 
for Case 6 is a moderate deviation from that presented in Case 4.  In addition, for all four 
cases presented in Figures 4 through 7, the variability of the estimators is somewhat 
greater in the tail groups 1 and 10, compared with the middle groups.  This dispersion 
pattern is somewhat more pronounced for Cases 4 and 6, relative to the first two cases.   

6. Discussion

In closing, this paper has considered extension of pattern-mixture models to account for 
responsive-design features. There are several areas of potential future work, including 
modeling to account for more complex interventions based on observed paradata; 
diagnostics to evaluate the homogeneity of coefficients within the BgS groups; and 
extensions to unequal-probability sampling.  
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Table 1: Six cases based on 1 2 30.9, 0.1, 0Z Z Zp p p    

Case *
1X

*

1 (0,0,0,0) (1,0,0) 
2 (0,0,0,0) (1,0.5,0) 
3 (0,0,0,0) (1,1,1) 
4 (10,10,1,1) (1,0,0) 
5 (10,10,1,1) (1,0.5,0) 
6 (10,10,1,1) (1,1,1) 

Figure 1: P(Response) vs. 1 2 3 4X X X X   for Case 1; Plotting Symbol=Value 
for 1Z  



Figure 2: P(Response) vs. 1 2 3 4X X X X    for Case 4; Plotting Symbol=Value 
for 1Z  

Figure 3: P(Response) vs. 1 2 3 4X X X X   for Case 6; Plotting Symbol=Value 
for 1Z  



Table 2: Simulation Results: Bias (Standard Error) of * *
1 2,X X  for Cases 1-6 

*
1 1X  *

2 2X 

Case Mean      (Std Error) Mean     (Std Error) 
1 0.00053   (0.00077) 0.00050  (0.00077) 
2 -0.00805  (0.00076) -0.00915 (0.00075)
3 -0.01641  (0.00072) 0.01764  (0.00070) 
4 -0.00032  (0.00081) -0.00094  (0.00075)
5 -0.00931  (0.00076) -0.00955  (0.00077)
6 -0.01800  (0.00078) -0.01716  (0.00072)

Table 3: Simulation Results: Mean (Standard Deviation) of the Four Elements of 
12.34 for Cases 1-6 (Full Sample Results) 

Case 11.34 12.34 21.34  22.34

1 1.6872 (0.0955) 0.6483 (0.0714) 1.5966 (0.0879) 
2 1.6881 (0.0980) 0.6462 (0.0684) 1.5946 (0.0868) 
3 1.6873 (0.0995) 0.6480 (0.0721) 1.5983 (0.0891) 
4 9.0875 (0.6082) 8.0376 (0.6126) 8.9716 (0.6030) 
5 9.0306 (0.6216) 7.9850(0.6207) 8.9232 (0.6121) 
6 9.0611 (0.6155) 8.0078 (0.6188) 8.9588 (0.6118) 

Table 4: Simulation Results: Mean (Standard Deviation) of the Four Elements of 
12.34 0Z ( 1 0Z   only) for Cases 1-6  

Case 11.34 0Z 12.34 0 21.34 0Z Z  22.34 0Z

1 0.3829 (0.2045) 0.2483 (0.1423) 0.2494 (0.1307) 
2 0.3799 (0.2032) 0.2495 (0.1414) 0.2493 (0.1320) 
3 0.3813 (0.2111) 0.2475 (0.1446) 0.2466 (0.1308) 
4 0.3803 (0.2027) 0.2492 (0.1431) 0.2508 (0.2354) 
5 0.3820 (0.2226) 0.2505 (0.1558) 0.2514 (0.1425) 
6 0.3734 (0.2022) 0.2459 (0.1438) 0.2481 (0.1388) 



Table 5: Simulation Results: Mean (Standard Deviation) of the Four Elements of 
12.34 1Z  ( 1 1Z  only) for Cases 1-6  

Case 11.34 1Z 12.34 1 21.34 1Z Z  22.34 1Z

1 1.8230 (0.1034) 0.6483 (0.0714) 1.5966 (0.0878) 
2 1.8237 (0.1053) 0.6827 (0.0845) 1.7315 (0.0922) 
3 1.8220 (0.1056) 0.6840 (0.0778) 1.7352 (0.0947) 
4 1.8217 (0.1061) 0.6885 (0.0741) 1.7328 (0.0911) 
5 1.8197 (0.1075) 0.6849 (0.0781) 1.7315 (0.0928) 
6 1.8207 (0.1076) 0.6780 (0.0774) 1.7297 (0.0927) 

Table 6: Simulation Results: Mean (Standard Deviation) of the Four Elements of 
12.34 0Z R  1( 0Z  and R=1) for Cases 1-6 

Case 11.34 0Z R 12.34 0 21.34 0Z R Z R  22.34 0Z R

1 0.7916 (0.4280) 0.5126 (0.2935) 0.5154 (0.2721) 
2 0.7569 (0.4089) 0.4971 (0.2832) 0.4968 (0.2651) 
3 0.7482 (0.4191) 0.4868 (0.2884) 0.4850 (0.2616) 
4 0.7872 (0.4323) 0.5169 (0.3055) 0.5196 (0.2875) 
5 0.7649 (0.4499) 0.5019 (0.3137) 0.5041 (0.2884) 
6 0.7352 (0.4024) 0.4849 (0.2856) 0.4891 (0.2754) 

Table 7: Simulation Results: Mean (Standard Deviation) of the Four Elements of 
12.34 1Z R  ( 1 1Z  and R=1) for Cases 1-6

Case 11.34 1Z R 12.34 1 21.34 1Z R Z R  22.34 1Z R

1 2.4931 (0.1506) 0.9369 (0.1070) 2.3719 (0.1338) 
2 2.4671 (0.1473) 0.9236 (0.1006) 2.3426 (0.1314) 
3 2.4459 (0.1471) 0.9184 (0.1056) 2.3294 (0.1324) 
4 2.4964 (0.1519) 0.9395 (0.1034) 2.3745 (0.1326) 
5 2.4619 (0.1513) 0.9266 (0.1067) 2.3425 (0.1293) 
6 2.4422 (0.1495) 0.9095 (0.1043) 2.3200 (0.1294) 



Table 8: Simulation Results: Mean (Standard Deviation) of Estimated 
Coefficients for Multivariate Regression of 1 2( , )X X  and 3 4( , )X X (All sample 
units with 1 0Z  ) 

Case 11.34 0Z 12.34 0Z 21.34 0Z 22.34 0Z

1 0.4728 (0.5442) 0.4758 (0.5449) 0.9744 (0.4461) -0.0148 (0.4463)
2 0.4580 (0.5562) 0.4899 (0.5559) 0.9769 (0.4657) -0.0163 (0.4645)
3 0.5004 (0.6035) 0.4500 (0.6023) 0.9982 (0.4659) -0.0376 (0.4653)
4 0.4961 (0.5889) 0.4502 (0.5893) 0.4502 (0.5893) -0.0355 (0.4661)
5 0.4582 (0.5802) 0.4884 (0.5787) 0.9888 (0.4632) -0.0308 (0.4628)
6 0.4671 (0.5563) 0.4817 (0.5536) 0.9910 (0.4269) -0.0310 (0.4266)

Table 9: Simulation Results: Mean (Standard Deviation) of Estimated 
Coefficients for Multivariate Regression of 1 2( , )X X  and 3 4( , )X X (All sample 
units with 1 1Z  ) 

Case 11.34 1Z 12.34 1Z 21.34 1Z 22.34 1Z

1 0.4240 (0.0345) 0.4195 (0.0347) 0.4734 (0.0327) 0.3799(0.0327) 
2 0.4216 (0.0348) 0.4216 (0.0346) 0.4704 (0.0348) 0.3833 (0.0339) 
3 0.4225 (0.0331) 0.4218 (0.0335) 0.4742 (0.0332) 0.3792 (0.0339) 
4 0.4221 (0.0359) 0.4201 (0.0350) 0.4725 (0.0345) 0.3818 (0.0345) 
5 0.4236 (0.0479) 0.4205 (0.0347) 0.4735 (0.0333) .03814 (0.0345) 
6 0.4239 (0.0348) 0.4195 (.00340) 0.5737 (0.0333) 0.3820 (0.0342) 



Table 10: Simulation Results: Mean (Standard Deviation) of Estimated 
Coefficients for Multivariate Regression of 1 2( , )X X  and 3 4( , )X X (All sample 
units with 1 0Z  and R=1) 

Case 11.34 0 1Z R 12.34 0 1Z R 21.34 0 1Z R 22.34 0 1Z R

1 0.4725 (0.5456) 0.4761 (0.5461) 0.9740 (0.4471) -0.0146 (0.4474)
2 0.4578 (0.5571) 0.4900 (0.5567) 0.9755 (0.4662) -0.0160 (0.4649)
3 0.4671 (0.5884) 0.4813 (0.5557) 0.9909 (0.4285) -0.0314 (0.4284)
4 0.4961 (0.5898) 0.4501 (0.5900) 0.9949 (0.4660) -0.0356 (0.4668)
5 0.4580 (0.5793) 0.4885 (0.5793) 0.9884 (0.5779) -0.0305 (0.4626)
6 0.4725 (0.5456) 0.4761 (0.5461) 0.9740 (0.4471) -0.0146 (0.4474)

Table 11: Simulation Results: Mean (Standard Deviation) of Estimated 
Coefficients for Multivariate Regression of 1 2( , )X X  and 3 4( , )X X (All sample 
units with 1 1Z  and R=1)

Case 11.34 1 1Z R 12.34 1 1Z R 21.34 1 1Z R 22.34 1 1Z R

1 0.4240 (0.0345) 0.4194 (0.0347) 0.4734 (0.0318) 0.3799 (0.0326) 
2 0.4216 (0.0348) 0.4216 (0.0346) 0.4704 (0.0337) 0.3833 (0.0240) 
3 0.4224 (0.0306) 0.4218 (0.0335) 0.4742 (0.0332) 0.3791 (0.0339) 
4 0.4221 (0.0346) 0.4201 (0.0350) 0.4725 (0.0345) 0.3818 (0.0346) 
5 0.4236 (0.0344) 0.4205 (0.0347) 0.4735 (0.0333) 0.3813 (0.0345) 
6 0.4249 (0.0348) 0.4194 (0.0340) 0.4736 (0.0333) 0.3819 (0.0342) 



Figure 4: Boxplots of final estimators by group, for Case 1 

Figure 5: Boxplots of final estimators by group, for Case 3 



Figure 6: Boxplots of final estimators by group, for Case 4 

Figure 7: Boxplots of final estimators by group, for Case 6 




