
Changes in Panel Bias in the U.S. Current Population Survey 
and its Effects on Labor Force Estimates October 2012

Greg Erkens1 
1Bureau of Labor Statistics, 2 Massachusetts Ave NE, Washington DC 20212 

Abstract 
The U.S. Current Population Survey (CPS) is a rotating panel survey of U.S. households 
that measures the labor force statuses of the non-institutional civilian population. Each 
panel is a random sample of households that rotates into the survey for 4 consecutive 
months, rotates out of the sample for the next 8 months, and then rotates back into the 
survey for a final 4 months. CPS microdata undergo several weight adjustments so that 
estimated totals for various demographic characteristics match projected population 
totals. The final adjustment for demographic information is called the Second Stage 
adjustment, and it adjusts for age, race, gender, and ethnicity. The final stage of 
weighting--Composite estimation--employs the correlation in overlapping panels between 
adjacent months to reduce the variation of key labor force estimates. In the Second Stage 
adjustment each panel can produce an estimate of employment and unemployment, and 
each panel exhibits certain tendencies. This paper looks at how those tendencies have 
changed over time, their effects on Composite estimation, and a possible method to adjust 
for those effects. 

Keywords: Panel Survey, Panel Bias, Composite Estimation 

1. Introduction

The Current Population Survey (CPS) is a primary coincident economic indicator of the 
United States that measures the labor force status of US households each month. The 
CPS uses a rotating panel survey of US households, and one of the survey's primary data 
products is the unemployment rate. Panels consist of a random sample of households, and 
consecutive months have a large overlap in sampled households. 

To produce labor force estimates the CPS uses several benchmarking steps, and the final 
estimation step uses a Composite estimator. The Composite estimator used by the CPS is 
a linear estimator that combines a post-stratified estimate with a level estimate of the 
over-the-month-change. The estimate of change makes use of households that are in the 
sample in adjacent months. The Composite estimator possesses a lower variance than 
either of its components, and it is unbiased provided that each panels’ labor force 
estimates are unbiased. When those estimates are biased, then the Composite estimate is 
also biased. 

Panel bias and its effects were discussed by Bailar (1975) and then later by Solon (1986), 
and multiple authors documented the effect of this bias in the intervening years. While 
the bias of CPS Composite estimates was mentioned in additional papers in the 1990s, 
there has been little research in the last decade on that bias. This paper attempts to 
partially fill that gap by looking at the bias in National Unemployment estimates during 
the past 37 years—from 1976 through 2011. This paper contains 7 parts including the 



1. Coverage adjustment: The coverage estimation step attempts to correct for
differences between the projected and sample-based estimates of populations for
race and ethnicity combinations (Robison and Duff 2003). This step prepares the
sample for the next estimation stage—speeding convergence in that stage. It also
provides some control for the Asian population. Since race and ethnicity
combinations are sparse, it was necessary to combine panels to guarantee a
suitable number of respondents for each weighting cell. Panels i and i+4 were
combined (for i = 1, 2, 3, 4).

2. Second Stage estimation: The Second Stage (SS) estimation step is more
commonly referred to as a ratio-raking adjustment (US Census Bureau, p. 10-10),
and it is a form of calibration (Deville and Sarndal 1992). SS estimation consists
of three main steps, and it adjusts for race, sex, age, and ethnicity for national and
statewide populations.

introduction. Part 2 provides a quick overview of the CPS survey and estimation. Part 3 
gives an overview of the biases in CPS estimates and how they have changed. Part 4 
presents a discussion of how panel bias affects the CPS composite estimator. Part 5 
presents an estimate of the CPS Composite estimator's mean square error and a method to 
minimize it. Part 6 shows the results of implementing the results from part 5. Part 7 is a 
discussion of the results, comparisons with previous research, and possible directions for 
future research. 

2. CPS Survey and Estimation

2.1 CPS Sample Design 
The CPS survey uses a stratified, multistage sample of US households to collect 
information on labor force status, demographics, income, education, and many other 
variables. Counties within each State are grouped together based on demographic 
information related to labor force and cost considerations. Cost considerations could 
include the distances that an interviewer must travel to conduct an in-person interview—
performed the first and fifth months that a household is in the sample. More details are 
provided in the official documentation of CPS methodology—Tech Paper 66 (US Census 
Bureau, 2006). 

Households are assigned to panels to guarantee a representative national sample of US 
households within each panel, and panels are rotated using a 4-8-4 rotation scheme. This 
rotation scheme uses a panel of households for 4 consecutive months. The panel then 
falls out of the survey for 8 consecutive months, and then it re-enters the survey for a 
final 4 consecutive months. Each month a panel is in the sample is referred to by a 
particular month-in-sample (MIS) designation. The first 4 months are referred to as MIS 
1- 4. The final four months are referred to as MIS 5-8.

2.2 CPS Estimation 
The CPS uses several stages of estimation. These steps are discussed in greater detail in 
Tech Paper 66 (10-1), and this paper provides only the formula for the Composite 
estimation. After nonresponse adjustments, the CPS uses several post-stratification 
estimation steps. Adjustment cells are formed, and sampling weights are adjusted so that 
weighted sums of respondents match projected population totals for each cell. Post-
stratification occurs for three main estimation steps: 



3. Composite estimation: Composite estimation in the CPS combines two estimates
to improve the variance of level estimates and estimates of over-the-month
change.

The Composite estimator used by the CPS is called the AK Composite estimator, and it 
takes the following form: 
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The first two summands of this estimator consist of a weighted average between the SS 
estimate and a difference estimator involving the previous months AK Composite 
estimate. The difference estimator (4/3 Δ t-1,t) uses households common to both the 
current and previous months. The final term ( tA ) reduces the variance and helps to 

counteract the effect of CPS’ panel bias (Huang and Ernst 1981). 

Breau and Ernst considered a Generalized Composite Estimator (1983), hereafter referred 
to as the GCE. The GCE has the following form: 
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As the name indicates, the AK estimator is a specific form of the GCE. Table 1 shows the 
a and b parameter values of the GCE for the AK estimator. 

Table 1: a and b parameter values for the AK 
Composite estimator using the GCE. 

MIS  a  b  MIS  a  B 

1  1 – K + A  4/3  5  1 – K + A  4/3 

2  1 + (K – A)/3 4/3  6  1 + (K – A)/3 4/3 

3  1 + (K – A)/3 4/3  7  1 + (K – A)/3 4/3 

4  1 + (K – A)/3 0  8  1 + (K – A)/3 0 
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MIS bias is important to consider because the SS and Composite estimators have the 
same expectation provided that the MIS estimates are not biased (Rao and Graham, 
1965). When bias is present, then those two estimators give different values. MIS bias in 
CPS was discussed initially by Bailar (1975). Her results showed the difference between 
the Composite and Second Stage estimates for monthly and change estimates assuming a 
constant additive bias. Huang and Ernst (1981), Breau and Ernst (1983), and Cantwell 
(1992) all give general (and sometimes empirical) estimates of the effect of MIS bias on 
Composite estimates. Each author considers the additive MIS bias, and all bias results—
except for Bailar’s—are with respect to the Second Stage estimator. For a different 
perspective on the type of MIS bias, consult Solon. We consider only the additive MIS 
bias in this paper because it is mathematically easier to work with, and we could find no 
evidence of multiplicative bias in recent years. For example, when the unemployment 
rate rose substantially during the 2008 recession the additive MIS bias tended to remain 
steady, while the multiplicative MIS bias changed substantially—a behavior we may 
expect in the presence of an additive bias. Bailar and Solon both state that estimates of 
change are unbiased under an additive MIS bias, yet they are biased under a 
multiplicative MIS bias. An analysis of change estimates shows no evidence of bias, 
while level estimates do. 

3.2 Changes in MIS Bias 
Chart 1 shows the average, additive MIS bias for each year from 1976 through 2010. The 
y-axis shows the additive MIS bias, and the x-axis denotes the MIS. The MIS are labeled
in each graph. Note the general shape of the bias has an elevated level for MIS 4 and 8
from 1976 through 1990. After 1990 that pattern begins to change. By 2010 the MIS bias
shows a downward slope from MIS 1 through MIS 8.

Breau and Ernst also discuss minimizing the variance of the GCE for multiple labor force 
estimates and the resulting effects on the bias. Those results are discussed in section 7. 

3. Month-in-sample Bias

3.1 Calculating Bias 
The Month-in-sample (MIS) bias is measured by comparing a labor force estimate for a 
single MIS to the labor force estimate using all panels. There are two types of MIS bias, 
additive and multiplicative. The following formulas give the general formulation for MIS 
bias (Solon, 1986). 



Chart 1: Plot of yearly average of MIS bias (y-axis) for each MIS  
 (x-axis). A different plot is shown for each year. 

Chart 2 provides another view of the MIS bias changes. Chart 2 plots time on the x-axis 
and the additive MIS bias on the y-axis. All 8 MIS are plotted together, and the legend 
indicates the color for each MIS. A LOWESS regression fit (f parameter set to .35) is 
plotted instead of the actual time series to aid interpretation. The vertical reference lines 
indicate the 1994 and 2003 CPS redesigns. Charts 1 and 2 provide similar information 
and demonstrate the changing patterns. Prior to 1990, the MIS biases were somewhat 
stable. After 1990, the bias patterns change considerably. The next section demonstrates 
the effect of these changes on the AK Composite estimator. 

Chart 2: Time series plot of MIS biases. Actual values  
smoothed with LOWESS. 
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3.3 Effects of Bias 
We begin by rewriting the AK Composite estimator with respect to the MIS differences. 
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We also make the following assumptions about the Second Stage estimate and each MIS 
estimate. 
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Yi,t are panel i’s estimate of the population value Yt. The ,
ˆ

i td are monthly estimates of the

MIS bias for each panel. The important assumption for the remaining sections is that the 
Second Stage estimate is unbiased, and that assumption is discussed in section 4. 
Carrying out the recursion we have the following result for the AK Composite estimator. 
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The Composite estimator is therefore just the sum of the SS estimator and the products of 
coefficients and the MIS biases. If the expected value of the Bias for each MIS is the 
same each month, then we have the following result for the Bias for large values of t: 

   '

4,8 1,5

4 4 1

3 3 1t t i i
i i

E Y Y K d K A d
K 

    
             

  (2)

Note that only two sets of MIS have an effect on the Composite estimator—MIS 1 and 5, 
and then MIS 4 and 8.  Formula (2) shows that the difference between the Composite and 
SS estimators will continue to decrease (specifically, Composite – SS < 0) under the 
following conditions: 

1. The bias for MIS 1 and 5 continues to increase.
2. The bias for MIS 4 and 8 continue to decrease.



Chart 3: Time series plot of MIS Bias for  Chart 4: Time series plot of Composite  
select groups. Series smoothed with LOWESS. Estimators bias. Bias = Composite – SS 

4. Resolving Effects of MIS Bias

4.1 Reducing Bias 
In attempting to resolve the effects of MIS bias we want to maintain the reduced standard 
errors provided by Composite estimation while reducing its bias. The AK Composite 
estimator allows a small tradeoff between the variance and bias for different values of A 
and K. One method of selecting A and K is to calculate the standard errors and bias using 
many different parameters, and the A and K set with the lowest MSE is chosen. This 
method was used by Lent et al (1998) and Huang and Ernst (1981). One alternative is to 
use the GCE. The additional parameters may offer some additional flexibility to better 
meet our goals. 

We start be rewriting the GCE with respect to the ,
ˆ

i td mentioned in section 3. After

carrying out the recursion we have the following formula for the GCE: 
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Chart 3 is similar to chart 2, but it shows the MIS grouped together instead of showing 
each one separately. The bias for MIS 1 and 5 (black) has increased, while the bias for 
MIS 4 and 8 (red) has decreased. The blue line shows the bias for the remaining MIS. 
Given the black and red lines’ trends we expect the estimators’ differences to grow. Chart 
4 plots differences in level estimates between the CPS Composite and SS estimates from 
February, 1998 through December, 2011. Chart 4 indicates that the difference between 
those two estimates grew as the MIS biases changed. 



Note that the sums indexed by j are inflated, integrated moving averages with an 
intercept. To be more specific: 
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will inflate the moving average and intercept. Noting the previous equality, we can 
rewrite the GCE again in the following form: 
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When considering the bias and variance of this form, we decided to ignore the intercept 
terms for the following reasons: 

1. K is fixed, so variances from the intercept terms will exponentially decay. For
unemployment K = .4, so variances decay to nearly 0 after 12 to 18 months
(.412 = 6.8 E-8, variances are about 1.0 E6).

2. We expect covariances between the intercepts, and we expect these covariances
to partially cancel out the variances.

3. It is easier computationally to ignore the intercepts.

Given the first and third reasons in particular, we decided to ignore the intercept term. 
The Composite estimator now has the approximate value shown in equation 3: 
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4.2 Approximate Variance and Bias of GCE  
Using formula 3 we can calculate the approximate variance and bias of the GCE. Writing 
the variance in matrix form we have formula 4: 
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Where VCOV is the variance-covariance matrix of the integrated moving averages in 
months t and t-1, COV is the matrix of covariances between the Second Stage estimate 

and the integrated moving averages, and  a b is the column vector of the a and b

parameters from the GCE. 

Given the previous definitions the bias consists of the moving averages. 
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Since we defined the expected value of the Second Stage estimator t̂Y  to be unbiased,

equation 5 shows the approximate bias of the GCE and its matrix form. 
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B is a column vector of the MIS biases. Now that we have expressed the variance and 
Bias of the GCE, the approximate MSE of the Composite estimator is: 
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Before calculating parameters to minimize the MSE, we want to reiterate the assumptions 
that lead to this result: 

1. The Second Stage estimator is unbiased.
2. The expected value of each MIS does not necessarily provide an unbiased

estimate.
3. We have ignored the intercepts of the integrated moving averages.
4. The parameter K is held constant.

Given that we are investigating differences between the Second Stage and Composite 
estimates, the first assumption is a valid one for this study, though it may not be correct 
(Bailar, p. 26). It was also used in previous studies to demonstrate the bias of the 
Composite estimator (Huang and Ernst p. 305, Breau and Ernst p. 308). The third 
assumption is a computational convenience. We believe that the MSE we derived in 
equation (6) still holds if the intercept term is not ignored, but it is simpler to ignore it. 
Furthermore, after a set number of months the intercepts are negligible. We believe it is 
important to consider the long-term behavior of the Composite estimator, and ignoring 
the intercepts achieves that purpose. Incorporating the intercept terms may also provide 
sub-optimal GCE parameters after the first year. The fixed K is necessary to maintain a 
quadratic form for the a and b parameters, and we exploit that form in the next section. 

5. Minimizing the MSE of Generalized Composite Estimates

Quadratic programming is a specific version of nonlinear optimization where the 
objective function takes the following form: 

1( ) c ;  subject to   and  02
T Tf x x Gx x   Hx b x

where G is a triangular-symmetric matrix, c is a vector, and x is a parameter vector 
subject to linear constraints. The MSE given in equation (6) has a quadratic form where 

x= Ta b , G=2*(VCOV + B*BT), and c=2*COV, where a and b are column vectors of

the parameters in equation (1). The final component of the MSE is the variance of the 
Second Stage estimator. Since it is constant with respect to the parameters, it does not 



Year 

Current 
AK 

Composite 

GCE with 
Optimal 

Parameters 

Second 
Stage 

2005 150,326.66 154,307.05 152,519.36

2006 144,661.44 146,186.08 145,823.77

2007 150,545.66 152,753.23 154,062.01

2008 171,165.85 175,758.11 178,422.77

2009 208,230.01 212,182.85 216,935.82

2010 205,639.55 213,089.72 218,075.20

2011 211,467.23 217,985.27 221,384.74

Note that the average SE’s during the first two years are higher for the optimal GCE than 
the Second Stage estimate. We attribute this increased error to the fact that we ignore the 
intercepts in the integrated moving averages. While the optimal parameters have a higher 
average error during the first two years, the error is lower than the SS estimator for all of 
the following years. SE’s for the optimal estimator are between the Composite and 
Second Stage SE’s after 2006. 

Table 4 shows the average yearly biases for the AK Composite estimator and the optimal 
GCE. The optimal GCE reduces the bias substantially for all years (about -110,000 for 
the AK Composite and -8,000 for the optimal GCE). The optimal GCE therefore achieves 
our goals of reducing the bias of the Composite estimator while still decreasing the SE 
compared to the Second Stage estimate. 

affect the objective function’s minimization. In this research the only constraints are 
those provided in equation (1). Breau and Ernst give no explicit constraint that the a and 
b parameters must be positive, but we enforce it here. 

Covariances are estimated using Balanced Repeated Replication. The methodologies used 
in CPS are also documented in Tech Paper 66 (US Census Bureau, p. 14-1). The vector 
of biases (B) consists of the MIS biases. We calculate the additive MIS biases using the 
formula described in section 3.1, then calculating their integrated moving averages. A 6-
year mean of these moving averages were used in B. The quadratic optimization was 
performed using PROC MINQUAD in SAS. 

6. Results

To test the optimal parameters calculated in section 5 we calculate replicate standard 
errors for all years from 2005 – 2011 for the following 3 estimators: the current AK 
Composite, GCE, and Second Stage. The Composite estimates were initialized in January 
2005. Table 3 shows average standard errors of level estimates for each year in our study.  

Table 3: Average SE’s of Monthly Estimates by Year 



Table 4: Average Bias of Monthly Estimates 
by Year: Bias = Composite – Second Stage 

Year

Current 
AK 

Composite 

GCE with 
Optimal 
Parms 

2005 -86,135 472

2006 -122,530 -36,748

2007 -103,262 -1,260

2008 -120,145 -7,161

2009 -125,360 -7924

2010 -114,735 -723

2011 -112,777 -7,730

7. Summary

The Second Stage and Composite estimators have the same expected value provided that 
there is no MIS bias. When that bias exists, then these two estimators will diverge from 
each other. If we write the Composite estimator in terms of the additive MIS biases, then 
we have can derive a closed form solution for the Composite estimator’s bias relative to 
the Second Stage estimate. That bias is a function of particular groupings of the MIS bias. 
Between 1976 and 1990 the MIS biases where fairly stable, and the Composite estimator 
possessed little bias given the AK Composite estimator used in CPS. After 1990 the MIS 
bias began to change, and it changed in a way that increased the bias of the Composite 
estimator. 

One way to reduce the bias is to use the Generalized Composite Estimator. Writing the 
GCE with respect to the MIS biases allows us to express the Composite estimator of the 
MSE in a quadratic form. That expression allows us treat the MSE as an objective 
function to minimize in a Quadratic programming problem. Breau and Ernst noticed that 
GCE parameters optimized for the variance sometimes had a drastic impact on the bias—
sometimes overwhelming the reduced variance (p. 407). This paper’s method considers 
the variance and bias at the same time. 

Solving via quadratic minimization differs substantially from previous attempts to find 
parameters for the Composite estimator. Huang and Ernst, and Lent et al both create a 
series of estimates for K and A and then choose the parameter set that minimizes the 
estimated MSE. Breau and Ernst do not describe how they calculated their optimal GCE 
parameters. Quadratic minimization allows us to find an optimal A for a given K 
(provided the proper constraints) or weighted combinations of each MIS. 

While the constraints allow the parameters to be free, there are alternate versions that 
allow us to formulate different versions of the Composite estimator. For example, if we 
set constraints that force certain sets of a and b parameters to be identical, then we may 
create a form that mimics the a and b parameters for the AK Composite estimator shown 
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in Table 1, and derive an A parameter from the results. Putting the problem in the context 
of nonlinear optimization allows the flexibility to construct a Composite estimator that is 
highly restricted (AK Composite), very general (GCE), and different choices in between 
those two extremes. 

Another possible advantage of Quadratic minimization is the use of multiple objective 
functions. The objective function described in section 5 involved an approximation of the 
MSE for a level estimate of National unemployment. We can also use the same objective 
function for estimates of change or demographic estimates. Since the objective function 
doesn’t require us to use the variance and bias for the same estimate, we could use 
variances for monthly change estimates and the bias for monthly estimates; allowing us 
to focus on the variance and bias that may matter most to the CPS. Variances for 
demographic estimates could also be combined with the variance for a National estimate 
and considered at the same time. This formulation would allow us to find the “best” 
parameters for a wide range of estimates, though in each scenario we would lose the 
minimization of a particular estimate’s MSE. One drawback that the current method 
shares with previous research is the choice of K. To keep the Quadratic form of the 
variance and bias we need to use a constant K, though it may be possible to construct 
another optimization that incorporates K into the minimization. 

We plan to continue this paper’s research by applying its methodology to different 
estimates (for example, change estimates and annual averages) as well as different 
demographic estimates. It is not plausible to apply parameters for National estimates 
without first understanding the effects on estimates for demographic groups. It is also 
important to see how the parameters change as the MIS biases change, and the how those 
parameter changes affect the variances. 

Disclaimer 

Any opinions expressed in this paper do not reflect official policy at the Bureau of Labor 
Statistics. 
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