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Abstract 

A long-standing question within the Consumer Price Index (CPI) program has been how 
best to determine the contribution of geographic areas to the overall CPI variance using 
standard statistical inference tools.  The CPI is constructed of higher-level AREA-ITEM 
aggregates that are built up from an initial set of AREA-ITEM cells at the basic Index-
Area—Item-Stratum level.  The CPI produces summary percent price changes for all of 
these aggregate levels.  By utilizing the basic level price changes and their higher level 
price changes, we will proceed to construct an ―adaptive‖ analysis of variance (ANOVA) 
using these basic level price changes as the initial set of observations.  A standard two-
way ANOVA with one observation per cell is then applied.  The ANOVA results provide 
F statistics that demonstrate the significance (or not) of AREA and ITEM in the two-way 
model.  For the time periods covered, two out of every three models show AREA to be a 
significant effect. 
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Introduction 

The CPI-U, at its higher (Index) level, is constructed of AREA-ITEM aggregates that 
build up from an initial set of AREA-ITEM cells at the basic Index-Area—Item-Stratum 
level.  Currently, and since 1997, the number of Index-Areas has been 38.  Of these 38 
AREAs, 29 of them are A-sized cities (or PSUs), like Denver or Chicago or Miami.  Two 
of them ―act‖ as A-sized cities:  Honolulu and Anchorage.  These 31 are self-representing 
AREAs and were selected with certainty in the initial area sample.  The other 7 Index-
Areas are non-self-representing AREAs and consist of a number of cities (PSUs), each of 
which represents an optimally sampled set of other cities within the given area stratum, 
with the chosen city in each stratum representing all the non-chosen cities in that stratum.  
These 7 non-self-representing Index-Areas include the medium (X-sized) metropolitan 
and small (D-sized) micropolitan areas throughout the United States.  These smaller 
metropolitan and micropolitan areas, and the geographic strata that they inhabit and 
represent, are divided into the four natural regions of the country:  Northeast (the 100’s), 
Midwest (the 200’s), South (the 300’s) and West (the 400’s).  There are 4 X-sized Index-
Areas  (X100, X200, X300 ,X499), and there are 3 D-sized Index-Areas (D200, D300, 
D400).  Currently there is no D100 because its 1990-based population totals were not 
large enough to constitute even one full stratum, and its weight and cities were subsumed 
by X100. 
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(1)  Σn
i CWt  / Σn

i CWt-k   ≈  1/n Σ CWt,i / CWt-k,i  

Now the LHS of (1) is precisely the price relatives from above and the RHS of (1) is 
exactly the y-bars from the ANOVA table below.  (In the RHS all the AGGWTs cancel 

Then within each of these PSUs (or AREAs), the CPI samples and collects monthly and 
bi-monthly prices in each of 211 Item Strata.  There are the larger PSUs (all the A-sized 
cities), and then there are the smaller PSUs which are the assortment of medium- and 
small-sized cities in the 7 non-self-representing Index-Areas.  In all of these PSUs, the 
CPI currently prices unique items in all of these Item Strata on a monthly or bi-monthly 
basis.  The smaller PSUs in the 7 non-self-representing Index-Areas are sampled using 
optimization procedures; the larger PSUs are sampled with certainty and thus are 
designated self-representing Index-Areas.   

In each of the 38 Index-Areas, all of the 211 Item-Strata are sampled on a monthly or bi-
monthly basis, producing 38 x 211 = 8018 price relatives each month, which, after 
updating the previous month’s index number in that cell and then being multiplied by its 
aggregation weight, top and bottom, yields the basic price relative structure:  PRELt  =  
CWa,i,t / CWa,i,t-k, where  CW = AGGWT * IX, and these CWs are called cost weights. 
Every higher level price relative, including the one for All-US—All-Items, is simply a 
sum of the ingredient set of CWs at time t in its numerator with the corresponding set of 
CWs at time t-k in the denominator.  (NOTE that in the 8018 basic cell price relatives the 
AGGWTs cancel out, though not in any of the higher level price relatives.)  Finally, the 
price relatives are turned into price changes by the simple linear combination:  PC = 
(PRELt – 1) * 100. 

An “Adaptive” Analysis of Variance 

Analysis of Variance (ANOVA) is the most direct and useful statistical methodology for 
determining the significance of any one or more effects on the total variance of a model.  
The question at hand is which ANOVA architecture, if any, is applicable to the structure 
of price relatives and price changes that we have described in the introduction above.  
There seems to be the outline for a two-way layout with one observation per cell.  The 
two main effects here would be AREA and ITEM, and assuming these two terms to be 
independent of each other (a strong and proper assumption), there would need to be no 
interaction terms in the ANOVA model.  Moreover, since any higher aggregate CPI 
estimate is some cross combination of x number of AREAs with y number of ITEMs, 
where all x AREAs are in every ITEM and all y ITEMs are in every AREA, the 
ingredients for a properly balanced two-way ANOVA seem to be in place.  As for the 
―one observation per cell‖, this is the basic cell (one AREA by one ITEM) price change.  
In the ANOVA table below, these price changes are the yij’s.   

So far so good.  However, all the y-bars in these sums of squares (SS) equations are 
supposed to be the exact averages of the yij’s, at the appropriate levels denoted in their 
subscripts:  y.. is the simple average of all the yij’s; each yi.. is the average of each AREA 
over all the ITEMs in the model; and each y.j is the average of each ITEM over all the 
AREAs in the model.  What we have in the CPI structure are weighted averages in all 
these y..’s, yi.’s, and y.j’s, all of which are ratios of averages.  (Σ CWt  / Σ CWt-k  is 
equivalent to  (1/n) Σ CWt  / (1/n) Σ CWt-k  since the number of CW’s in the denominator 
will always be the same as the number of CW’s in the numerator.)  However, since a 
ratio of averages is approximately equal to the average of ratios,  



TABLE 1 

Analysis of Variance for Two-Way Layout 
with One Observation per Cell 

Source______________SS___________________    _   __d.f._________MS___ 
AREA         I–1              SSArea/(I–1)  
ITEM                  J–1              SSItem/(J–1)  
ERROR          νe  =  (I–1)(J–1)           SSe / νe 

TOTAL        IJ – 1  

Implementing the ANOVA using CPI “averages” 

As noted in the introduction, the self-representing Index-Areas and non-self-representing 
Index-Areas are structurally and stochastically dissimilar parts of the full CPI.  The 38 
self-representing Index_Areas (the A-Sized Cities) are sampled with certainty while the 7 
non-self-representing Index-Areas (the B- and D-Sized Cities) sample the set of smaller 
PSUs that are contained in each of their Index-Areas.  The CPI does not calculate 
summary statistics for the individual PSUs in the B- and D-Sized Index-Areas for any of 
the Item categories. Thus PSU (or AREA) becomes a random effect in the non-self-
representing Index-Areas.  Later on, we will look at a set of Variance Components from 
these non-self-representing Index-Areas to establish at least the percentage influence that 
AREAs (versus ITEMs or OUTLETs or ERROR) have in this part of the CPI model.  For 
the purposes here, we will look only at the certainty Index-Areas (less Honolulu and 
Anchorage --- for reasons to be explained shortly) where we have only AREAs and 
ITEMs, plus ERROR, in the CPI model, and where we have summary (―averages‖, as it 
were) statistics for all the variables which are contained in the ANOVA table above.  The 
CPI model will not be All-Cities—All-Items (0000-SA0) but All-A-Sized-Cities—All-
Items (A000-SA0).  Thus this slightly reduced CPI model will consist of 29 AREAs (all 
the A’s less Honolulu and Alaska) but using all 211 of the ITEMs (or Item-Strata).  
A000, as a CPI category, itself does not include Honolulu or Anchorage, which is why 
we will be using A000 (and not A000 + Honolulu + Anchorage) in all the ANOVA 
calculations. 

out in every computed average, since the weights are always the same for an individual 
price change at time t and time t-k.)  Moreover, for any least squares calculation any price 
relative can be translated into a price change without changing the essential ANOVA 
results.  The decimal place simply moves over four places for the Sums of Squares, with 
the proportions between SSs remaining the same, and more importantly, all the 
significance test results remain exactly the same.  Thus, if the CPI higher aggregate 
―averages‖ are substituted into the ANOVA table below, then, at least by analogy, 
approximately similar ANOVA results are being produced, as would be the case if the 
ANOVAs were using their usually prescribed higher-level averages.  (In fact, in Table 2, 
corresponding sets of results will illustrate how similar the two sets of ANOVAs are.)   



We need four variables to complete all the Sum of Squares (SS) totals contained in the 
ANOVA table above:     ,     ,      and      . 

 The  yij’s are the 29 x 211 = 6119 basic level 12-month CPI price changes.

 The      ’s are the 29 AREA summary 12-month price changes, each with all 211 ITEMs.

 The      ’s are the 211 ITEM summary 12-month price changes, each with all 29 AREAs.

 The one       is the All-A-Cities (A000)—All-Items summary 12-month price change.

Using an EXCEL spreadsheet, we then pull in all the 1- and 12-month price changes, 
from the CPI databases, for the 12 months of 2009 and proceed to calculate all the Sums 
of Squares (SSs) using the formulas from the ANOVA table above.  Knowing that I = 
211 and J = 29, we can fill out a complete set of the ANOVA summary tables, including 
F-test results for the two main effects in the model, AREA and ITEM.  We will include a 
column for Percentage of Total Sums of Squares (% of SS) for each effect and for 
ERROR.  We know the various higher-level summary price changes are not exact 
averages from the basic cell price changes, so the Total Sums of Squares as calculated 
will never exactly equal the sum of the three terms in the model (as it has to in any 
regular ANOVA table).  But we will note the percent ratio of that TOTAL to the SUM of 
the three SSs in the model and use the closeness of that ratio to 100% to gauge how well 
the ―adaptive‖ methodology here conforms to a true ANOVA structure.  Finally, we will 
add on a Model Standard Error ( = Sqrt [MSE/6118] ) and compare that to its official CPI 
SE counterpart.  As an added check on the worthiness of the methodology, we will 
perform a straight-forward ANOVA on the 8,018 basic level 12-month price changes and 
put them side by side with the ―adaptive‖ ANOVAs for comparison. 

ANOVA Results  

On the following two pages, the two sets of ANOVA results for the 12 months of 2009 
are displayed.  The regular ANOVA results are to the right, the ―adaptive‖ ANOVA 
results to the left.  The two sets of results are clearly more similar than not.  While the ―y-
bars‖ in the regular ANOVAs are at no turn equal to or even resemble the CPI price 
change ―means‖ used in the ―adaptive‖ ANOVAs, the ANOVA results themselves are 
nearly equivalent at every turn, even the p-values from the F tests.  The Sums of Squares 
are roughly equivalent, point by point, in all twelve comparison sets, with the other near 
equivalencies following naturally from those results.  Clearly the ―adaptive‖ ANOVAs 
are not wildly out of sync with the regular ANOVAs using exact ANOVA methodologies 
and calculations.  This is some degree of evidence that the one main assumption in (1) is 
a sound enough assumption --- at least as adapted for these ANOVA uses.  A second 
measure of the soundness of the ―adaptive‖ ANOVA is how close to 100% the percent 
ratio of the calculated TOTAL SS comes to the sum of the three SS terms in the model 
(i.e, TOTALSS / (AREASS + ITEMSS + ERRORSS)).  The twelve percent ratios average 
out to 99.23% across the 12 sets of results.  Again, more evidence attesting to the 
soundness of the ―adaptive‖ ANOVA constructions.   



            TABLE 2 

        Two-Way ANOVAs for A000-SA0  (LHS = “Adaptive”, RHS = Regular) 

DF SS % SS MS Pr > F SS % SS MS Pr > F 
200901 
AREA 28 8550 0.56% 305.4 0.0311 8172 0.55% 291.9 0.0358 
ITEM 210 352131 23.24% 1676.8 <.0001 345557 23.46% 1645.5 <.0001 

ERROR 5880 1153900 76.16% 196.2 1119232 75.99% 190.3 
TOTAL 6118 1515086 [100.0%] SE= 0.1791 1472961 SE= 0.1764 

SEcpi= 0.1068 
200902 
AREA 28 6950 0.67% 248.2 0.0013 8076 0.80% 288.4 <.0001 
ITEM 210 314675 30.19% 1498.5 <.0001 297518 29.33% 1416.8 <.0001 

ERROR 5880 727671 69.82% 123.8 708788 69.87% 120.5 
TOTAL 6118 1042261 [99.33%] SE= 0.1422 1014382 SE= 0.1404 

SEcpi= 0.1046 
200903 
AREA 28 6449 0.59% 230.3 0.0016 4762 0.45% 170.1 0.0465 
ITEM 210 400684 36.79% 1908.0 <.0001 378377 35.89% 1801.8 <.0001 

ERROR 5880 684981 62.89% 116.5 671016 63.65% 114.1 
TOTAL 6118 1089210 [99.73%] SE= 0.1380 1054155 SE= 0.1366 

SEcpi= 0.1103 
200904 
AREA 28 8609 0.78% 307.5 <.0001 4849 0.45% 173.2 0.0554 
ITEM 210 389369 35.13% 1854.1 <.0001 378871 35.06% 1804.1 <.0001 

ERROR 5880 711957 64.24% 121.1 697017 64.49% 118.5 
TOTAL 6118 1108323 [99.85%] SE= 0.1407 1080737 SE= 0.1392 

SEcpi= 0.1041 
200905 
AREA 28 7337 0.64% 262.0 0.0003 6760 0.61% 241.4 0.0008 
ITEM 210 433513 37.82% 2064.3 <.0001 420066 37.62% 2000.3 <.0001 

ERROR 5880 707378 61.71% 120.3 689660 61.77% 117.3 
TOTAL 6118 1146371 [99.84%] SE= 0.1402 1116486 SE= 0.1385 

SEcpi= 0.1022 
200906 
AREA 28 6113 0.56% 218.3 0.0028 4706 0.44% 168.1 0.0443 
ITEM 210 449713 40.85% 2141.5 <.0001 410938 38.22% 1956.8 <.0001 

ERROR 5880 674000 61.22% 114.6 659549 61.34% 112.2 
TOTAL 6118 1100885 [97.44%] SE= 0.1369 1075193 SE= 0.1354 

SEcpi= 0.0932 



DF SS % SS MS Pr > F SS % SS MS Pr > F 
200907 
AREA 28 6191 0.38% 221.1 0.3399 6680 0.41% 238.6 0.2097 
ITEM 210 464348 28.17% 2211.2 <.0001 446967 27.64% 2128.4 <.0001 
ERROR 5880 1193146 72.39% 202.9 1163581 71.95% 197.9 
TOTAL 6118 1648302 [99.08%] SE= 0.1821 1617228 SE= 0.1798 

SEcpi= 0.1171 
200908 
AREA 28 5626 0.36% 200.9 0.4729 7621 0.49% 272.2 0.2097 
ITEM 210 401047 25.47% 1909.7 <.0001 397458 25.40% 1892.7 <.0001 
ERROR 5880 1187991 75.44% 202.0 1159947 74.12% 197.3 
TOTAL 6118 1574770 [98.75%] SE= 0.1817 1565026 SE= 0.1796 

SEcpi= 0.1022 
200909 
AREA 28 6548 0.59% 233.9 0.0044 6220 0.56% 222.1 0.0063 
ITEM 210 350534 31.72% 1669.2 <.0001 368339 33.40% 1754.0 <.0001 
ERROR 5880 746430 67.55% 126.9 728126 66.03% 123.8 
TOTAL 6118 1105024 [100.14%] SE= 0.1440 1102685 SE= 0.1423 

SEcpi= 0.0970 
200910 
AREA 28 3851 0.40% 137.5 0.2145 6176 0.64% 220.6 0.0016 
ITEM 210 295500 30.73% 1407.1 <.0001 298946 31.10% 1423.6 <.0001 
ERROR 5880 673586 70.05% 114.6 656205 68.26% 111.6 
TOTAL 6118 961640 [98.80%] SE= 0.1368 961328 SE= 0.1351 

SEcpi= 0.0915 
200911 
AREA 28 4907 0.60% 175.2 0.0063 4971 0.62% 177.5 0.0042 
ITEM 210 249101 30.43% 1186.2 <.0001 232602 29.00% 1107.6 <.0001 
ERROR 5880 574655 70.20% 97.7 564481 70.38% 96.0 
TOTAL 6118 818603 [98.70%] SE= 0.1264 802053 SE= 0.1253 

SEcpi= 0.1155 
200912 
AREA 28 3653 0.40% 130.5 0.1685 4769 0.53% 170.3 0.0155 
ITEM 210 314418 34.11% 1497.2 <.0001 293139 32.56% 1395.9 <.0001 
ERROR 5880 612310 66.42% 104.1 602329 66.91% 102.4 
TOTAL 6118 921844 [99.10%] SE= 0.1305 900237 SE= 0.1294 

SEcpi= 0.1156 



We can now finally turn to the ―adaptive‖ ANOVA results themselves.  In the ―% SS‖ 
column the percentage of sums of squares for AREA in the model never rises above 1%, 
in fact, averages just above 0.5%.  The percentage of sums of squares for ITEM, on the 
other hand, averages above 30%.  But we have to turn to the F tests to find meaningful 
statistical significance in these numbers.  Due to the adaptive nature of the ANOVAs we 
cannot claim that any of the F test results are precisely correct, but if we can believe in 
the model fit results in general, then we can accept the F test results as good 
approximations.  To that end, we see that all of the ITEM  p-values from their F tests are 
quite simply zero.  ITEM is always a significant effect in the model.  But it is the AREA 
effect that we are most concerned with in this study.  There, 4 of the 12 AREA p-values 
are clearly not significant.  The other 8 AREA p-values are significant, at an α = .025 
level, but with only one p-value out of the twelve defined as a zero.  This is a mixed 
result, and does not easily call for the elimination of AREA from the model as a 
significant main effect.  Its ―% SS‖ is indeed quite small, but still not so small as to be 
not significant in two out of every three models examined.  Therefore, AREA cannot be 
ruled out as a significant contributor to the total variance in the CPI model. 

An additional two years of ANOVA results were run, and the overall significance results 
were similar:  in 2008, 5 out 12 months showed AREA to be a non-significant effect, in 
2007, 3 out of the 12 months showed AREA to be a non-significant effect in the model.  
Thus, the 2/3 significant, 1/3 non-significant pattern persists through 24 additional 
months of results 

AREA Percentage Variance in the Non-Self-Representing Index-Areas 

Turning to the non-self-representing sector of the CPI, we could not adopt an ANOVA 
methodology in the same way as we have done with A000 (the A-Sized Cities).  The 
seven non-self-representing Index-PSUs could be treated as seven more singular AREAs 
in a larger ANOVA model, but more properly, the actual AREAs (PSUs) in these seven 
sectors are the multiple smaller PSUs that are contained within each of these Index-PSUs.  
We do not calculate price relatives for these smaller PSUs for any ITEM or set of ITEMs 
combination.  What we can do, however, is determine components of variance for the 
random terms in the model.   

The generic linear model  Y = Xβ + ε  can consist of fixed effects (X) along with any 
random effects contained within the error term ε.  With the A000-SA0 model we had 
fixed effects for both AREA and ITEM, along with one ERROR term.  If we now treat 
the model as containing only the random effects within the error term ε, we can obtain a 
different but comparable set of variance components within the model.  In the non-self-
representing Index-Areas we are able to identify as random effects within the model 
AREA and ITEM (plus OUTLET now and, of course, any remaining ERROR term).  We 
obtain these variance components using a Restricted Maximum Likelihood (REML) 
methodology.  In an earlier memorandum by the author (―Estimation of Variance 
Components of the U.S. CPI Sample Design‖ in 1999, and updated in 2008), the 
theoretics and implementation for using REMLs to produce sets of variance components 
for the CPI are laid out and explained.  For the purposes here, we will simply draw on the 
variance component results drawn from CPI micro-data from mid-2005 through mid-
2008.  These variance component results were then averaged across the 36 months of 
model results for AREA, ITEM, OUTLET and ERROR.  The data were at the micro, or 
unit, level and used a 6-month price relative as the random variable (Y) in the model.  



 The MEDIAN percentage of total variance for AREA across the 91 ( 7 x 13)
Area-Item combinations across the 36 months of results was  1.2%

 The MEAN percentage of total variance for AREA across the 91 ( 7 x 13) Area-
Item combinations across the 36 months of results was  2.0%

 The MEAN percentage of total variance for AREA across the 91 ( 7 x 13) Area-
Item combinations across the 36 months of results eliminating one egregious
outlier was   1.7%

The comparable summary statistics for ITEM in the Component of Variance models 
were:  MEDIAN percentage of total variance for ITEM = 10.0%, with MEAN = 14.3%.  
Any summary statistics for OUTLET and/or ERROR are not relevant to this study.  They 
are the 82%-86% leftover in the total variance. 

We can compare these variance component summary results with the ―% SS‖ for AREA 
in the earlier fixed effects models.  There the average percentage of total variance for 
AREA in the self-representing areas was 0.544%, as compared to the 1.2-2.0% levels we 
find in the random effects model in the non-self-representing areas of the CPI.  Due to the 
summary nature of the VC statistics we are presenting here, we cannot provide accurate 
p-values for them.  But since the variance contribution of AREA in the non-self-
representing AREAs seems to be running at more than twice the percentage level as in
the self-representing AREAs, we can only infer that, while AREA is the smallest of all
the variance components (in either model, using the term loosely), it is most probably a
statistically significant term in the model, thus giving added weight to the proposition that
AREA is an important statistical consideration in any CPI structure that is estimating
price change.

Conclusion 

In the main effects models, we have found 1/3 of the ANOVA models exhibiting no 
significance whatsoever, yet with the remaining 2/3 of them showing AREA (for the A-
Sized Cities sector of the CPI) to be significant, at an α = .05 level.  Moreover, the 
component of variance for AREA in the rest of the CPI when treated as a random effect 
seems to contribute more than twice the percentage of total variance as in the main 
effects model.  However, these percentages are quite small – roughly 1.5% in the smaller 
PSUs and roughly 0.5% in the larger PSUs.  AREA comes close to being statistically 
non-significant, but holds strong enough to claim its place in the overall model. 

The components of variances were then calculated for each Index-Area by Item-Group.  
There were the 7 Index-Areas, each with at least two or more small PSUs within each, 
plus 13 Item Groups, each with at least two or more Item-Strata within each Item-Group.  
One or more outlets were contained then within each Index-Area—Item-Group 
combination.  Thus were we able to generate variance components for AREA, ITEM, 
OUTLET and ERROR in these 7 non-self-representing Index-Areas by the 13 Item 
Groups.  The composite summary results expressed in percentage of total variance terms 
for AREA are as follows: 


