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Abstract 
In cutoff sampling, inference -— for example, interval estimates with associated alpha-
levels —- is problematic. Design-based samplers do not find an adequate random design 
on which to base variance estimates. Model-based samplers worry that gaps in 
information can lead to biases. We nonetheless describe some schemes for inference in 
cutoff sampling. 
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1. Introduction
In general, a sampling strategy consists of a sample plan (design) and a method of
estimation, together aimed at estimating one or more target quantities, subject to resource
constraints and limits on allowable respondent burden. The twin goals of a sampling
strategy are accurate estimation and sound inference. We can aim at optimal accuracy or
accuracy that meets some standard. Inference-the assessing of error- is the assessment of
the accuracy of ones estimate and requires that an interval be placed around the estimate
with an associated probability of the interval containing the unknown target.

To make this a bit more specific, consider the following scenario:  if Y is a population 
target, then estimation is said to be accurate if there is good reason to think that the 
estimate Ŷ  satisfies Ŷ Y Y ε− ≤ , where ε  is small (in the eyes of the user); in other 
words, the relative absolute error is small. For inference we typically rely on confidence 
intervals, that is, an interval I (based on Ŷ  and also usually a variance estimate) such that 
Y I∈  a certain specified percent of the time. 

Cutoff sampling is the practice of taking cutoff samples, where by a cutoff sample we 
mean a sample from which some portion of the population is deliberately excluded.  
Cutoff sampling typically entails omitting units that are in some respect much smaller 
than the units that are sampled, but this is not always the case. For example, in Haziza et 
al (2010), the portion cutoff is the part of the population of establishments inaccessible to 
electronic sampling, which might include some large as well as small firms.  We will 
focus on the typical case, where the small fry are excluded.  In any case, cutoff sampling 
poses special difficulties with regard to assessing the accuracy of the estimates and 
performing inference through confidence intervals. This is essentially due to the fact that 
an estimate based on a cutoff sample may have a bias, the magnitude and direction of 
which may be hard to assess.  In this regard, it is akin to the better known (and more 
widely accepted) procedures of Small Area Estimation and Non-response Adjustment . 

Bridgman et al. (2011) suggested some theoretical results by which interval estimates 
might be constructed for cutoff samples, but gave no empirical examples.  One problem 
is that suitable populations for studying cutoff sampling tend to lie behind a veil of 



confidentiality, and not be publishable.  In this paper, we construct a set of (we hope 
realistic) populations to illustrate the effects of various approaches to inference under 
cutoff sampling.  We shall take the target to be the total Y over the population of a 
positive variable of interest y.  

2. Some Results bearing on Inference in a Cutoff Sample
Consider a population U comprising strata UN , the not sampled or take none stratum, and
US the sampled stratum.  Often in practice each unit in US will be sampled with certainty,
but this need not be the case.  Let Y, YN, and YS be the sum of values of the (positive)
variable of interest y attaching to each of the units in U, UN and US respectively.  Let N̂Y
and ŜY be estimates of YN  and YS  and ˆ ˆ ˆ

N SY Y Y= +  an estimate of Y.  Inevitably N̂Y  and ŜY
are different in kind: ŜY will be a standard design-based or model-based (e.g. Valliant et
al. 2000) estimator; N̂Y will be based on some sort of extrapolation from the data at hand,
possibly guided by auxiliary or historic data. N̂Y will use an explicit or implicit model for
the data on UN, precisely where there is no data to verify the model (as is also the case 
often enough with small area estimation and non-response adjustment.) Thus getting 
bounds on the relative error of ŜY  will be straightforward, whereas bounds on the relative
error for N̂Y will tend to be more conjectural and tenuous.

We repeat some of the results from Bridgman et al. (2011): 

Result 1:  If N̂ N N NY Y Y ε− ≤  and Ŝ S S SY Y Y ε− ≤ , then ( )ˆ max ,N SY Y Y η ε ε− ≤ = . 
Proof. Recall the assumption that components of Y are positive.  We have 

ˆ ˆ ˆ ˆ ˆ
N N S S N N S S N N S SY Y Y Y Y Y Y Y Y Y Y Yε ε− = − + − ≤ − + − ≤ +  

         ( )( ) ( )max , max ,N S N S N SY Y Yε ε ε ε≤ + = . 

 Hence,  ( )ˆ max ,N SY Y Y η ε ε− ≤ = . 

Corollary. If US is sampled with certainty, and N̂ N N NY Y Y ε− ≤   then ˆ
NY Y Y ε− ≤

There are other results in that paper having to do with “coverage”—the fraction that YS is 
(expected to be) of Y—which are germane to cutoff sampling, but which we pass over 
here for the sake of simplicity of presentation. 

Iinference requires a probability p that an interval does what it says it does.  Iinference 
requires a probability p that an interval does what it says it does.  It is useful to remind 
ourselves of Bonferroni’s inequality:  

( )1 2 nP A A A ≥ ( ) ( ) ( ) ( )1 2 1 ,nP A P A P A n+ + + − −

which enables us to go from separate assessments of probabilities on YS and YN to a 
probabilistic statement regarding Y itself.  For example, suppose based on sampling (or 
well founded modeling) properties we are 95% certain that Ŝ S S SY Y Y ε− ≤  and, based 

on historical or other considerations, 90% certain that N̂ N N NY Y Y ε− ≤ . Then, for



ˆ ˆ ˆ
N SY Y Y= + , we can be 85% certain that ( )ˆ max ,S NY Y Y η ε ε− ≤ = .  This sort of 

reasoning enables us to construct interval estimates for Y. 

We should recognize that we are typically speaking of two probabilities pS and pN which 
are different in nature. The probability pS will derive from standard properties of well 
constructed confidence intervals, while pN will derive from experience of historical data 
and may require some exercise of judgment.  

Result 2. Suppose that we have a ( )1Sp α= − confidence interval ˆ ˆSY zσ±   for SY  and 
that 

N̂ N N NY Y Y ε− ≤  with probability pN.  
Then 

ˆ ˆ ˆ ˆˆ ˆ
1

N
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with probability pS + pN -1and we have a pS + pN -1 confidence interval 

ˆ ˆ ˆ ˆˆ ˆ
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− + ≤ ≤ + +   − −    . 
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Note that N̂ N N NY Y Y ε− ≤ implies 
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, for Nε small. 

Corollary.  If US is sampled with certainty, then with probability pN, 
ˆ ˆ ˆ

1
N

N N N N N
N

Y Y Y Y Y Yε
ε

ε
− = − ≤ ≤

−
And corresponding pN confidence interval 

ˆ ˆ ˆ ˆ
1 1

N N
N N

N N

Y Y Y Y Yε ε
ε ε

− ≤ ≤ +
− −

The challenge, of course, is getting Nε  and p*.  

3. Simulation Study
See Bridgman et al. (2011) for examples of populations which have been subject in
practice to cutoff sampling within U.S. government agencies.  Unfortunately, because of
confidentiality restrictions, these are not readily available for study.  Instead, we shall
here make use of artificial populations, which, however, are based firmly on a natural
population that possesses some degree of the skewness that cutoff sampling typically
requires.



For the first set of 200 populations, for each population we generate succeeding years of 
data starting with Counties60 data by  

( )1, 1ti t i i tiy y r ε−= + , where 1/10
i ir R=  and tiε  is a small mean zero normal error (standard 

deviation = 1/25).  Call this the set of plain populations. Each population contains 11 
years of data. Counties60 is kept as base year throughout for all populations. The year 
1970 data should bear some resemblance to Counties70 data, but will not be exactly the 
same. 

We generate 3 sets of populations based on the y variables in Counties60 and Counties70 
data (Royall and Cumberland 1981).  The variable of interest y was the number of people 
living in each of N = 304 southern U.S. counties in 1960 and 1970 respectively. 

Each set consists of 200 populations, their data running from 1960, 1961, etc. thru 1970.  
We shall assume that censuses are available in 60 and 65 and the goal will be to get an 
estimate of the number of people in all the counties in 1970 – call this Y70 – based on a 
sample of n = 50 in 1970 and possibly the earlier census data.  We shall consider cutoff 
sampling and pps sampling.  

Note.  This is an unusual context for cutoff sampling.  Cutoff samples of n = 50 will have 
about 55% “coverage” -- ratio of sum y’s in the sampled portion to sum of population y’s. 
A rough rule of thumb is that cutoff sampling becomes viable when such coverage 
reaches 80% (e.g. Knaub 2007, p. 3).  Nonetheless we will see what we can learn in this 
setting. 

3.1 Population generation 
Background. Over the 10 years, the actual county populations on an annualized basis 
changed by factors R =i 70y /i i60y , the ratio of county i’s  population in 1970 to its 
population in 1960. The following figure is a graph of these factors.  It will be noted that, 
as a rough rule, the larger counties increased at a steeper pace than the smaller ones.  



3.2.1 Estimation and Inference, under Cutoff sampling 
For cutoff sampling, we use two distinct estimation procedures, namely standard ratio 
estimation and also an updating procedure. 

For the second set of 200 populations, we do the same except that after the census year 
65, we randomize all the ri so that units no longer necessarily retain their original growth 
rate.  Those that were originally growing might now be shrinking, etc.  We refer to this 
set as the jogged populations.   

For the third set of populations there is again a shift after the census year, but now the 
lower half of the population is growing at a rate 1.05 times that of the upper half.  More 
specifically,  for i = 1,…, 152, we set ri =1.05 ri +152.  This is the set of ramped up 
populations. 

For each of the 200 populations in each set we shall have use of census data from years 
60 and 65. Our target year will be 1970.  From this we take a sample of n = 50, either by 
cutoff sampling or by probability proportional to size sampling (pps), using the 65 census 
data as the size variable.   

3.2 S ampling S trategies.  We use three sampling strategies: (a) cutoff sampling 
combined with ratio estimation, (b) cutoff sampling combined with updating of known 
census values, (c) pps sampling combined with mean of ratios estimation. In each of 
these cases only one sample will be taken from each population. 

The following figure represents the information available with cutoff sampling in ’70 and 
censuses in 60 and 65.  B, D, F correspond to the units in the population collected with 
certainty in 1970; A, C, E represent the units excluded from the sample in 1970.  But A, 
C are later subject to a census.  Therefore in the figure only E is unknown.    



3.2.1.1 Ratio Estimation 

We take 70 70, 65,
ˆˆ

i i
S N

Y y yβ= +∑ ∑ , where 
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65,
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ˆˆ )N i
N
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For inference we in turn use two procedures: 
(a) Use jackknife variance estimator vJ and calculate a nominal 95% CI by 70

ˆ 2 JY v±

This may be regarded as the “standard procedure”.
(b) For the second approach, we assume some data from 1967 is available, enabling us to
estimate

67 67 67 67
ˆ

N N N NY Y Y ε− ≤ .  (In the simulation study we used info from just first five of the 
200 runs for this, taking the maximum value this ratio took in the five runs—a crude 
estimate, “based on historical data”.)  We set 70 675 / 2N Nε ε=   (this is not a self-evident 
calculation, but can be given some justification) and use Result 2 to get an interval 
estimate ( )70 70 70 70

ˆ ˆ 1N N NY Y ε ε± − .   

3.2.1.2 Updating procedure 
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For inference we again use two approaches.   (a) Let lower bound of interval be 
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whichever is greater.   Somewhat arbitrarily, 

we used the 90th quantile.   
(b) as above, using Result 2.

3.2.2 Estimation and Inference, pps (size variable = counties65) 
 Here things are straightforward.  For point estimation, suitable to the selection 
probabilities, we used the mean of ratios estimator  

70 70, 65,
ˆ

i i
S N

Y y yβ= +∑ ∑


, with
70, 65,/

ˆ
i i

S
y y

n
β =
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For inference, we used a jackknife variance estimator vJ and calculated a 95% CI by 

70 2 JY v±


Notes: (i) the pps samples had a minimum of 6 certainty units; contrary to usual design 

based protocol, these were included in the calculation of β̂ .  This was merely a matter of 
convenience.  (ii) About half of each pps sample fell below the cutoff point used in the 
cutoff sampling;  thus there was a serious difference between the cutoff and the pps 
samples, the latter filling in the lower half of the population to a large extent. 

3.3 Assessment Measures for each set over the K = 200 populations 
It should be noted that the target differed for each run k =  1,…, 200. 
We used the following measures to compare the several methods of estimation and 
inference that were tried: 

mean relative error = 
1,...,200

ˆ
100 k k

k k

Y Ymean
Y

=

 −
  
 

mean relative absolute error  =  
1,...,200

ˆ| |100 k k

k k

Y Ymean
Y

=

 −
  
 

Coverage = ( )
200

1
/ 200k k

k
I Y I

=

∈∑  

 mean relative interval length = 100 ( ( ) / )k kmean length I Y

3.4 Results 

Population Set 1  (Plain Population) 
Rate of increase on units same over time,  although subject to random error 

relative  bias relative abs 
error 

% coverage relative 
int. length 

cutoff/ 
ratio 

1.79 1.80 92.5   (vJ) 
100.0   (ε ) 

5.82 
8.84 

cutoff/ 
updating 

-0.42 0.50 100.0 (90q) 
88.0   (ε ) 

9.28 
1.97 

pps/mean of 
ratios 

0.86 1.16 92.0   (vJ) 4.86 



Population Set 2 (Jogged Population) 
Rate of increase on units jogged after 65 census 
relative  bias relative abs 

error 
% coverage relative 

int. length 
cutoff/ 
ratio 

0.00 0.76 99.0   (vJ) 
95.5   (ε ) 

5.35 
3.89 

cutoff/ 
updating 

0.17 0.39 100.0 (90q) 
97.0   (ε ) 

8.98 
2.21 

pps/mean of 
ratios 

-0.03 1.01 95.5   (vJ) 4.67 

Population Set 3  (Ramped Up Population) 
Rate of increase on lower units ramped up after 65 census 

relative  bias relative abs 
error 

% coverage relative 
int. length 

cutoff/ 
ratio 

-2.63 2.63 56.0   (vJ) 
80.0   (ε ) 

5.56 
6.59 

cutoff/ 
updating 

-4.75 4.75 100.0 (90q) 
83.0   (ε ) 

8.88 
10.45 

pps/mean of 
ratios 

-0.60 1.17 94.5   (vJ) 5.56 

3.5 Observations 
Here are some observations on these results. 
1. pps sampling works well: relative absolute error about 1%,

coverage about nominal, relative confidence interval length
      (rcil) about 5%, consistently across the two tame and one wild 
      population sets   
2. cutoff/ratio: its relative absolute error was intermediate between updating and what pps

gave, for all three population sets.  Very mixed bag with respect
to inference:  coverage as low as 56% using jackknife based
intervals (basically because of bias of estimates).  Mixed results
with respect to the two methods of inference, but method (b)  using the ’67 data,
better on ramp population

3. cutoff/updating: best with respect to relative absolute error for tame populations, worst
for
    ramp.   Method (a) inference based on 90th quantiles of ratios of known 
     units, very conservative, giving unduly large 100% intervals.  Raises the question 
whether we  
    can find a more appropriate choice of quantile.  Is there a rationale for choosing 
     appropriate quantile?  Method (b),  using ε  method with data supposed known from 
67,  
    worked quite well on the  tame and jogged populations, but, mysteriously, had 
     lesser coverage with longer intervals for ramp population set. 

4. Discussion
We have carried out one simulation study on three sets of populations, none of which
would usually be considered ideal for the use of cutoff sampling.  We have explored two
different ways of capitalizing on fuller data from the past for point estimation, and for
each of these two ways of constructing interval estimates.  The newer methods are
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suggestive, but not conclusive, and, as the results on the ramped up population shows, 
there is a vulnerability to things going very badly, if the population behaves in very 
unexpected ways.  The potential increase in efficiency when the population is well 
behaved, and the promising behavior under those circumstances of the interval estimates, 
suggests that cutoff sampling should continue to be considered, and that the methods we 
have suggested for interval estimates deserve further exploration.  
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