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Abstract 

There are numerous ways to address nonresponse bias adjustment in surveys; two such 
methods are calibration weighting and propensity score models. Calibration is a viable 
technique when good external benchmarks exist; however, good external benchmarks are 
not always available.  An alternative method to calibration is to use propensity scores to 
adjust for nonresponse.  There are at least three main modeling techniques used to create 
propensity scores, but little if any research has focused on which methods provide the 
best propensity scores in terms of nonresponse adjustment.  This paper compares 
calibration weights with three propensity score adjustment methods.  One propensity 
weight is based on logistic regression models; the other two are based on classification 
trees (using either a single or an ensemble tree approach).   

This research focused on the Agricultural Resource Management Survey Phase III 
(ARMS III), which adjusts for potential bias resulting from unit nonresponse by 
calibrating weights so that estimates equal published benchmarks from other sources. 
Using Census of Agriculture (COA) data, we were able to compare the effectiveness of 
using calibration weights versus propensity score weights to reduce (unit) nonresponse 
bias.  Bias comparisons were done by using COA data as proxy data for the 2000-2008 
ARMS III samples, since the COA includes items surveyed on ARMS III as well as a 
number of items pertaining to operational characteristics. Nonresponse bias of the mean 
was compared across 30 production and demographic type items.  The results indicate 
that tree weights outperform logistic regression weights, and that calibration weighting 
reduces nonresponse bias of the mean to the lowest levels.  The results also suggest that 
tree weighting is the next best option when calibration targets are not available. 
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1. Introduction

Survey nonresponse is concerning to both statisticians and survey methodologists; 
however, each has a different perspective on how to address nonresponse bias.  
According to Singer (2006), statisticians mainly focus on adjusting for nonresponse, 
where survey methodologists are more interested in understanding reasons for 
nonresponse and increasing response rates.  

We will concentrate here on unit (whole-record) nonresponse.  Both statisticians and 
survey methodologists use propensity scores to manage unit nonresponse.  Traditionally, 
propensity scores are developed using logistic regression (Little and Vartivarian, 2005; 
Little, 1986; Rosenbaum and Rubin, 1983); however, in cases where there are large 
amounts of auxiliary data, using logistic regression is not the best approach for two main 
reasons: 1) due to the fact that we have to hypothesize specific variables up front, we are 
forced to assume that these are the only causes of nonresponse; and 2) the more auxiliary 
variables we include in our model the more problematic it will be to specify interaction 
terms, account for missing data, avoid issues of multicollinearity, and interpret the results 
(Phipps and Toth, 2012).  Alternatively, if we use a data mining approach such as 
classification trees, we are able to include a large number of auxiliary variables, 
automatically detect significant interaction effects worth exploring, automatically include 
item missingness as an indicator of nonresponse, and use multicollinearity to our benefit 
by allowing variables that are highly correlated to work as surrogates when other 
variables are missing.   

Like household surveys, establishment surveys have (unit) nonresponse, but with 
establishment surveys nonresponse bias can be a more serious threat to estimates since 
individual establishments can have a large effect on the final estimates even after larger 
establishments are given higher probabilities of selection.   According to the 2007 Census 
of Agriculture (COA), 0.3 percent of farms with total annual sales of five million dollars 
or more accounted for 27.9 percent of total sales in the US; thus, the impact of 
nonresponse on the estimate of total sales is much greater for these operations than for 
other operations (US. Department of Agriculture, 2007, Table 2). To adjust for possible 
nonresponse bias, NASS weights the Agricultural Resource Management Survey Phase 
III (ARMS III) respondent sample so that estimated variable totals for a large set of items 
match “target” figures from other sources. This is done through a weighting process 
called “calibration” (Deville and Sarndal, 1992; Kott and Chang, 2010). Calibration 
weighting adjusts the survey weights so that certain targets, typically estimates from 
sources outside the survey, are met. NASS uses official estimates as calibration targets 
since  they are correlated with the economic activity of farm operations; calibration 
targets include estimates of total number of farms, total number of farms by state and by 
economic class; corn, soybeans, wheat, cotton, hay, rice, peanuts, sugar (sugarcane/sugar 
beets), tobacco, fruits, and vegetable acreage; egg and milk production; cattle, hog, 
broiler, and turkey inventories; and nursery and floriculture     Using some form of 
calibration weighting assures that the calibration-weighted sum of the survey data will 
equal the NASS official estimate produced using sources other than ARMS.  NASS uses 
a truncated linear version of calibration (Kott 2009, p 74, 75).  In this version no adjusted 
weight is allowed to fall below one Sometimes, however, calibration targets cannot be 
reached and need to be dropped.  

In addition to reducing the confusion in the user community that might result if NASS 
released alternative estimates for the same totals, calibration weighting produces ARMS 



Phase III estimates that generally have less bias than the unadjusted estimates; however, 
in 2008 a third of the 30 variables assessed still exhibited nonresponse bias levels that 
were significantly different from zero even after calibration; thus, leading in part to the 
research of alternative weighting methods discussed in this paper (Earp, McCarthy, 
Porter, & Kott, 2010). 

Nonresponse bias is very difficult to evaluate directly, since data are lacking for the 
nonrespondents.  Fortunately, data similar to those collected in ARMS III are available 
from the Census of Agriculture (COA).  We can measure the difference between the 
average ARMS III respondent and the average of the full sample without any 
nonresponse adjustment, after calibration weighting, and after propensity score 
adjustments using logistic regression and classification tree procedures.    

Propensity methods have been developed to reduce a large set of covariates to one single 
variable with which adjustment is done (Rosenbaum and Rubin, 1983).   A propensity 
score is the fitted probability that a given case will become a survey respondent.  Both 
logistic regression and classification tree models can be used to create the propensity 
scores.  However, given the lack of knowledge about the nonresponse mechanism in 
ARMS III in particular and establishment surveys more generally, data-driven methods 
like classification trees might be more suitable.  Classification trees offer a number of 
advantages over logistic regression: 1) classification trees automatically detect significant 
relationships and interaction effects without pre-specification, reducing the risk of 
selecting the wrong variables or other model specification errors; 2) the classification tree 
models identify both the variables that are correlated with the target variable, but also the 
optimal breakpoints within these variables for maximizing their correlation; 3) they 
identify hierarchical interaction effects across numerous variables and summarize them 
using a series of simple rules; 4) they incorporate missing data into the model and assess 
whether missingness on a given variable is related to the target; 5) they create a series of 
simple rules that are easy to interpret and use for identifying subgroups with higher 
propensities; and 6) they reduce the subjectivity of selecting variables to include in the 
model.  This paper will compare nonresponse adjustment as currently done using 
calibration, with four sets of propensity score adjustments, one derived directly from a 
logistic regression, one using the logistic regression to adjust the base weights within 10 
classes (n/r), one using a classification single-tree, and one using an ensemble of trees. 

Other nonresponse models have been developed using auxiliary data, but most begin with 
hypotheses about a small set of relevant predictor variables and have generated response 
propensity scores based on logistic regression or similar models (Abraham, Maitland, and 
Bianchi, 2006; Johansson and Klevmarken, 2008; Johnson, Cho, Campbell, and 
Holbrook, 2006; Lepkowski and Couper, 2002; Nicoletti and Peracchi, 2005).  These 
types of models may accurately predict which cases become nonrespondents, but they do 
not typically include large sets of auxiliary variables.  Furthermore, as Groves (2006) 
states, this approach assumes that these “…variables are the only possible „common 
causes‟ of response propensity and survey variables.” (p. 654) 

While other propensity score models have been built using decision trees, most typically 
use a single tree to predict nonresponse (Phipps and Toth, 2012).  According to Phipps 
and Toth (2012), by taking a more conservative approach and only modeling the 
variables that are strongly associated with response, they are able to avoid over fitting 
and thus produce more stable estimates; however, by limiting the analysis to only the 
variables with strong associations to nonresponse, they also admit possibly limiting the 



accuracy of their estimates.  According to Dietterich (1999), bagging can be used to 
exploit model instability and improve classification accuracy.  Bagging involves creating 
multiple trees with varying criteria and then taking the average propensity score across all 
of the trees (Brieman, 1998).  This approach results in an ensemble of classification trees, 
which is more stable and powerful than a single classification tree (Brieman, 1998).   

Models can be combined in various ways.  In the current study, we calculated the average 
of the propensity scores produced across all of our classification trees, which, according 
to Bauer and Kohavi (1999), performs better than the other methods used to combine 
trees.  

Although the 2007 COA data do not perfectly match the 2008 ARMS III data, they are 
moderately to highly correlated (Earp, McCarthy, Porter, & Kott, 2010). This paper will 
compare 2008 ARMS III survey respondents to nonrespondents using their 2007 COA 
data.  One of the weaknesses of this approach according to Groves is that not all of the 
variables of interest have auxiliary data available (2006).  While it is true that not 
everything collected on ARMS is available on the COA, we were able to assess bias 
across 30 estimates including both household and establishment type items that are of 
particular interest to both NASS and the Economic Research Service (ERS). 

2. Method

The ARMS III is an annual survey conducted by NASS and ERS.  ARMS III is one of 
the most complex and detailed sample survey data collections conducted by NASS.  It 
collects calendar year economic data from agricultural producers nationwide.  The 
ARMS is conducted in three phases. Phase I screens for potential samples for Phases II 
and III. Phase II collects data on cropping practices and agricultural chemical usage, and 
Phase III collects detailed economic information about the agricultural operation, as well 
as the operator‟s household. Phase III is the only phase of the ARMS with unit  response 
rates lower than 80 percent, which falls below the Office of Management and Budget 
requirement.  Surveys with less than an 80 percent unit level response rate are required to 
complete an analysis of nonresponse bias (United States, 2006).  This paper focuses on 
unit nonresponse and in part addresses a recommendation made by the Committee on 
National Statistics report (2007) to identify characteristics of ARMS nonrespondents.  
This paper focuses on unit nonresponse and in part addresses the recommendation to 
identify characteristics of ARMS nonrespondents.  This paper also considers how this 
information could be used to create adjustment weights. 

The COA is a mandatory collection of data from all known agricultural operations.  
NASS has data from the COA on items of interest for many of the ARMS 
nonrespondents; however, the COA itself is incomplete. An estimated 16.2 percent of all 
farms were missing from the 2007 COA Mailing List, and 14.6 percent of farms on the 
Mailing List failed to respond to the COA (USDA, 2007, Table A).  Moreover, 5.7 
percent of the operations sampled for ARMS III could not be matched to 2007 COA 
records. Nevertheless, by comparing the 2007 COA values of the ARMS III respondents 
to the full sample of ARMS III cases (including nonrespondents), data from the COA 
were matched to both respondents and nonrespondents in the ARMS III 2000-2008 
samples to create response propensities, as was done by Groves and Couper (1998).  
Matching 2007 COA data were available for 71.3 percent of the ARMS III 2000-2008 
sample.  Nonresponse bias was assessed using just the 2008 sample; for that year 
matching 2007 COA data were available for 94.3 percent of the records.  The match rates 



The logistic probability of response,   , has the form   

, 

where the subscript i  denotes a farm, xik the kth (k = 1, …, K) explanatory variable 
associated with farm i, and    is the kth logistic regression coefficient.  The response 
probability is estimated using a logistic regression routine by  

where  bk is a large-sample estimator for   .  This leads to initial nonresponse weights of 

where   
  was the base weight for farm i.  The base weights are each farm‟s ARMS III 

sample weight before calibration multiplied by its COA sample weight (the latter to 
account for the COA‟s undercoverage).   

In addition to using the we also followed the advice of Eltinge and Yansaneh (1997) 
and sorted the sample by the farms‟       values.  Farm classes were created based on 
sorted quintiles (C = 5) and deciles (C = 10).  A pooled inverse probability of response 
was estimated within each class c (c = 1, …, C; C = 5 or 10) as  

for the 2008 ARMS III respondents (94.5 percent) and nonrespondents (94.1 percent) 
were approximately equal.  Our analysis is based just on these matching cases. 

Sixty-nine COA variables were used to model ARMS III nonresponse using logistic 
regression and classification trees (Earp, Mitchell, McCarthy, & Frauke, 2012, Table 2).  
For both models, we used variables thought to be related to unit nonresponse as 
predictors.  These variables include operator demographics, farm type, size, commodities 
raised, expenses, and location.  Our analysis of nonresponse bias focuses on 30 specific 
production and demographic variables collected on both the ARMS and the COA.  These 
variables were selected by NASS and ERS subject area experts as the variables that are 
common to both ARMs and COA.  Nineteen of these 30 variables were included in the 
logistic regression and tree models.  The majority of the variables not included as 
predictors are not collected during data collection, but are calculated after data collection. 

The logistic regression and tree approaches are quite different from calibration.   
Calibration does not include any household attributes as targets, since they are not 
considered to be related to physical farm attributes as much as business economic 
information.  The logistic regression and tree models do include both business unit and 
household attributes as predictors of unit nonresponse. 

Unit nonresponse propensity scores were created using logistic regression and 
classification trees.  Both the logistic regression and the classification tree models were 
set to predict the probability that operations were unit respondents.   



              ac = ncs/ncr,       (2) 

where ncs is the sample size of class c, and ncr the respondent size.  

The alternative logistic regression weight for a respondent in c was then 

(3) 

Eltinge and Yansaneh argued that the final weights from equation (3) are often less 
variable than those from  equation (1), which in turn leads to more stable estimates.  
Nevertheless, the use of equation (3) should still remove much of the nonresponse bias.  
Moreover, by employing the estimates of the actual (weighted) response rates within 
classes (the 1/ac) in equation (2),   

    may be more reflective of the true shape of the 
nonresponse function than    

  .   

The logistic regression model was used to predict likely nonrespondents, where the 
classification trees were used to model characteristics of likely nonrespondents. 
Therefore, while the logistic regression analysis included all operations sampled for 
ARMS III between 2000 and 2008 with matching 2007 Census of Agriculture Data, the 
classification trees were created using only a randomly selected subset of the data to 
avoid over-fitting.  We randomly partitioned the data using simple random sampling into 
subsets to be used for training (40%), validation (30%), and testing (30%).  The training 
dataset was used to construct tree models that identified subsets of records that responded 
at lower rates than the overall sample.  This model was then applied to the validation and 
the test datasets, and the average squared error was compared across results from all three 
datasets; this procedure helps prevent generating a model that would not fit other data or 
that would be unreliable (i.e., overfitted).   

The classification tree nonresponse propensities were calculated using a single tree and 
an ensemble of classification trees.  A classification tree model is constructed by 
segmenting the data using the application of a series of simple rules (SAS, 2009).  Each 
rule assigns an observation to a subgroup, or “segment,” based on the value of one 
predictor variable.  The rules are applied sequentially, resulting in a hierarchy of 
segments within segments.  The rules are chosen to subdivide cases into segments that 
have the largest difference with respect to the target variable, in this case, nonresponse 
rates.  Thus, the rule selects both the variable and the best breakpoint to separate the 
resulting subgroups maximally. Variables can be used more than once to further segment 
groups, and thus may appear multiple times throughout a tree.  

The hierarchy of segments is called a tree, and each segment in it is called a node.  The 
original segment contains the entire set of cases and is called the root node of the tree.  A 
node with all its successors is termed a branch of the node that created it.  The final nodes 
are called leaves.  In our analysis, we are ultimately interested in the leaves that contain a 
higher proportion of nonrespondent cases. 

The optimal splits of cases are found using significance testing or reduction in variance 
criteria.  Significance tests (based on F or chi square tests) use the p value as the stopping 
rule.  Interval variables were assessed using an F test criteria, and nominal level variables 



were assessed using a chi square test, where the best split is the one with the smallest p 
value (Enterprise Miner, 2009).  Bonferroni adjustments were applied to the p value 
before the split was selected to “…mitigate the bias towards inputs with many values.” 
(Neville, 1999, p. 18)  Ordinal variables were assessed using entropy.  Splitting rules 
were selected by measuring the reduction in entropy, after adjusting for ordinal 
differences. 

where, 

 = proportion of observations in the node assigned to branch b 

Like other data mining techniques, classification trees describe subsets of data and are 
constructed without any theoretical guidance.  Variables are chosen to create maximally 
different segments, so if variables are correlated, only one or a few of these (which 
individually might be related to the target) may appear in the tree.   

There are multiple stopping criteria that can be used to decide how large to grow a 
classification tree.  After the initial split, the resulting nodes are considered for splitting 
using a recursive process that ends when no nodes can be split further (SAS, 2009).  A 
node can no longer be split when there are too few observations, the maximum depth 
(hierarchy of the tree) has been reached, or no significant split can be identified.  For 
purposes of our research, the minimum number of observations for a node was set to five, 
the maximum depth was set to six, and the significance level was set to 0.20.  

The characteristics associated with nonrespondents were first identified using the training 
data set (with n = 72,954 records). This model was then validated using 30 percent of the 
data (n = 54,446), and finally tested using final 30 percent of the data (n = 54,447).  We 
compared the average squared error to determine that the model performed nearly as well 
in all three data sets.   

A decision tree split can be selected automatically to maximize the dichotomy or it can be 
forced.  When variables are automatically selected to maximize the dichotomy of the 
outcome, the selection is done looking at a single level of the tree, automatic selections 
do not consider the effect of subsequent splits.  Due to the sheer number of nodes 
involved in the single tree (116), it would be impractical to try to display them.  This 
approach was used to create the single-tree propensity scores.  As a result, while a 
variable may initially provide the most optimal split for maximizing the dichotomy of the 
target, it may not ultimately result in the best model after subsequent splits are applied.  
For example, a model using the worst initial split for maximizing the dichotomy may in 
fact identify more of the target with less misclassification error than the model using the 
best initial split due to the effect of subsequent splits. In our case we had 69 COA 
variables we were using to model characteristics of nonrespondents, and thus we created 
69 separate trees, with each tree using one of the 69 classification tree predictor variables 
for the initial split.  This allowed us to identify more nonrespondents by forcing the trees 
to consider all 69 predictor variables in relation to nonresponse.  After the initial split was 
forced, the following splits were selected using the automated methods described above.   
Separate propensity scores were created for each tree.  Within each tree, propensity 



This leads to the following nonresponse weights for the ensemble classification tree 
model. They were calculated using: 

Here, t denotes the tree,   the tree-t nonresponse propensity score of farm i using the 
training data, and  is the tree-t nonresponse propensity score of farm i using the 
validation data. 

Calibration weights,    
     were created by taking the base weights for the subset of 

farms responding to the ARMS III and calibrating them using a truncated linear routine 
so that no final weight ever fell below one and  the calibration equation held.  This means 
that final weighted totals from the 2008 respondents equaled the weighted total computed 
from the entire 2008 matched sample for the following list of calibration variables: 
acreages for corn, soybean, wheat, cotton, hay, rice, peanuts, sugar , tobacco, fruits, and 
vegetables; production of egg and milk;  inventories of cattle, hogs, broilers, and turkeys; 
indicators for nursery and floriculture; number of farms by economic classes; number of 
farms by non-estimated states; and total number of farms.   Each of these target variables 
were used operationally to calibrate the ARMS III data.  Targets initially selected for 
calibration, but not used operationally were excluded from the list.  

  Mathematically, in linear calibration: 

(4) 

where the zip (p = 1, …, P) are the calibration variables, and the gp are chosen so that  the 
calibration equation holds.   In truncated linear calibration, when the right-hand side of 
equation (4) is outside the permissible range (e.g., below 1) ,   is set at the boundary 
of the range (e.g., 1).  The gp are recalculated (if possible) so that even with some 

set at boundary values, the calibration equation holds.  

Calibration weighting is unbiased in some sense for the estimated mean of a survey 
variable if it behaves like a linear function of the calibration variables whether or not the 

scores were calculated first using the training data and then using the validation data. The 
propensity score for the entire tree was calculated by taking the mean of the training and 
validation propensity scores.  Propensity scores are not calculated for the test data set to 
avoid over-fitting the models.  The overall nonresponse propensity score for the ensemble 
of decision trees was calculated by averaging all 69 tree propensity scores.  The single-
tree propensity scores were derived from the first tree, which started with the most 
optimal split. 

The ensemble tree nonresponse propensities were calculated as 



farm responds (Kott 2006).  Linear calibration will also return large-sample, unbiased 
estimators in some sense if a farm‟s probability of  response, which is implicitly 
estimated by   

    
     is the inverse of a linear function of the calibration varibles 

(Fuller et al. 1994).   Truncated linear calibration will share this property when the only 
weight restriction is that no   

     be lower than one. 

As in the operational program, the ARMS III respondent subset was calibrated 
independently in 20 regions.  These included the 15 leading cash receipts states 
(Arkansas, California, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Minnesota, 
Missouri, Nebraska, North Carolina, Texas, Washington, and Wisconsin).  The 
remaining 35 states (Alaska and Hawaii are not sampled for ARMS) were grouped using 
the five production regions: 1) Atlantic, 2) South, 3) Midwest, 4) Plains, and 5) West.

Using the base weights in combination with either logistic regression weights, the 
classification tree weights, or the calibration weights, we calculated the nonresponse bias 
of 30 estimates collected on both the ARMS III and the COA.  We then compared the 
amount of the remaining nonresponse bias under each of the weighting schemes.  We 
compared the weighted estimates for the ARMS III responding operations with the 
weighted estimates for the entire ARMS III sample; we used COA data, which were 
available for both the ARMS III respondents and the ARMS III nonrespondents.  The 
inverse of the fitted propensities from the logistic regression model and from the 
classification tree model were multiplied by the base weights to give the final weight for 
these estimates.   We computed estimates of the relative nonresponse bias for means 
under each weighting scheme.   Because it treats upward and downward biases 
symmetrically, we used the log scale to compare average nonresponse biases across 
production and demographic type items (i.e., log(a/A)  100% was our measure for the 
relative bias of a as an estimate of A). 

3. Results

Nonresponse bias was assessed under the base weights and under a variety of adjustment 
schemes.  These included the methods described earlier in the text: using fitted logistic 
probabilities of response directly, creating five weight-adjustment classes based on the 
sorted logistic fit, 10 reweighted-adjustment classes based on the sorted logistic fit, using 
a single classification tree, using an ensemble tree, and (truncated linear) calibration 
weighting.   We also created and employed alternative single and ensemble tree 
probabilities based on sorting the initial tree probabilities into five and 10 classes as we 
did the fitted logistic probabilities (see equations 2 and 3).  

Before we could compare the weighting methods against each other, we had to assess 
which adjustment method involving logistic regression (and the base weights) worked 
best on our data. We also had to compare the single tree weighting methods and the three 
ensemble tree weighting methods.  Through these analyses we found that the logistic 
regression weighting using 10 classes appeared to result in the least amount of bias 
across the production type items while all weights do well when adjusting for bias of 
demographic type items with the exception of race. Moving forward, we will only 
examine the logistic regression weighting method using 10 classes, since that method 
results in the least amount of bias for both production and demographic items. The single 
tree method using a direct approach appears to result in the least amount of bias across 
the production type items while all weights do well when adjusting for bias of 



demographic type items with the exception of race. Again, moving forward, we will only 
examine the single tree direct method because that method results in the least amount of 
bias for both production and demographic items. Finally, examining the ensemble tree 
method, we found the same results as for the single tree weight method. Therefore, we 
will only examine the ensemble tree direct method since that method results in the least 
amount of bias for both production and demographic items. For more in-depth 
information, including figures that display these findings, contact the first author. 

After we identified the best overall weighting method using the logistic regression, single 
tree, and ensemble tree models, we then compared the best weighting methods from each 
model with calibration weighting.  According to Figure 1, it appears that the best 
weighting method varies across the production items.  Both of the best tree methods and 
calibration outperform the best logistic regression weighting method for all of the 
production variables.  According to Figure 2, the weights perform relatively the same for 
the demographic variables, except for race.  According to Figure 3, the single tree 
resulted in the least amount of bias on average for the production type items, and 
calibration resulted in the least amount of bias on average for the demographic type 
items.  Overall, according to Figure 4, when we looked across all of the items including 
both production and demographic, calibration resulted in the least amount of bias on 
average. 

In conclusion, we found that overall logistic regression weights perform better using 
classes, tree weights perform better when used directly, and that tree weights performed 
better than logistic regression weights.  When we looked specifically at production versus 
demographic type variables, we found that while the 10 class approach was the best 
method regardless of variable type when using a logistic regression model; the best 
method varied depending on the type of item for both the tree type models.  With both of 
the tree models, it appeared that the direct method worked best for the production type 
items, and the five class approach worked best for the demographic type items.   

When we looked across all 30 variables, without distinguishing between production 
versus demographic type items, we found that the direct method resulted in the least 
amount of bias on average for both of the tree methods.  Single tree weights created 
directly performed slightly better in terms of average bias than the ensemble tree weights; 
however, ensemble tree weights provided a better estimate for more variables than the 
single tree method.  If classes are used, ensemble tree weights provide better estimates 
than single tree or logistic regression models.  All of the weighting methods performed 
essentially the same in terms of demographic type items.  Calibration did the best job of 
adjusting for nonresponse bias overall, but trees performed slightly better for production 
type items.  Weights created using tree models could provide a good alternative to 
calibration when external benchmarks are not available, but rich auxiliary data are.   



Figure 1:  Comparison of Best Weighting Methods Using Production Items

Figure 2:  Comparison of Best Weighting Methods Using Demographic Items



Figure 3:  Comparison of Average Nonresponse Bias (Absolute Values) Across 
Production and Demographic Type Items Using Best Weighting Methods 

Figure 4:  Comparison of Average Nonresponse Bias (Absolute Values) Across 
All Items Using Best Weighting Methods 
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All of the models had difficulty adjusting for race of the operator.  All of the weighting 
methods underestimated the number of Native American operators and over estimated the 
number of Asian and Pacific Islander operators.  The logistic regression weights 
underestimated the number of Black operators, where the other weighting methods 
overestimated the number of Black operators.  Calibration underestimated the number of 
Spanish operators, where the other weighting methods resulted in relatively zero bias.  
Calibration did a considerably better job than the other weighting methods at adjusting 
for the number of operators that are Pacific Islander. 

Variance estimation was outside the scope of this analysis.  The ARMS III presently uses 
a replication approach to variance estimation, which seems well suited for handling 
nonresponse adjustment for tree methods.   

The results of our study were limited in that our logistic regression model only looked at 
main effects, where the trees looked at interaction effects.  The logistic regression model 
would likely perform better if: 1) indicators of item missingness were developed for all 
69 variables; and 2) all six way interaction effects were explored across the 69 variables 
and 69 indicators of item missingness; however, the logistic regression model would still 
not be capable of identifying optimal breakpoints to distinguish between nonrespondents 
and respondents.  The results would only show that more or less of something was 
indicative of nonresponse, not specifically how much or how little.  Another limitation is 
that for purposes of this study, we had rich auxiliary data; therefore, we are unsure 
whether trees would perform as well as calibration using only limited frame data.  On the 
other hand, when we do have rich auxiliary data, a tree is capable of including a number 
of variables in the model; however, the same is not true for calibration.  The more 
variables we include in the calibration process, the more difficult it can become to meet 
all of the specified targets and thus converge at a solution.  The fact that the trees were 
able to account for so many other characteristics that the calibration weights did not, may 
in part explain why they performed slightly better when adjusting for the production type 
items. 

4. Discussion

In the case of the ARMS survey, NASS has good external estimates to use as calibration 
targets.  This analysis shows that this weighting scheme considerably reduces the bias 
that would be introduced into the selected survey estimates using only the survey‟s base 
weights. Indeed, the objective of calibration is not just to meet the calibration 
benchmarks, but to improve all of the statistics produced by the survey.  The correlation 
between the calibration variables and survey estimates of economic activity is likely high.  
For example, an operation‟s “corn acres” (the calibration benchmark) is likely correlated 
with its “cropland acres” and “seed expenses” (the survey variables of interest discussed 
in this analysis).  Although, for other variables of interest, the correlation is likely lower 
(for example with variables such as “acres rented” or “operator‟s age”).  The analysis 
also shows that a single-tree or ensemble tree weighting scheme is more effective at 
reducing nonresponse bias of the mean than calibration for selected production items, but 
not for demographic type items.   



Time Use Survey. Who is Missing from the Data and How Much Does it Matter?  
Public Opinion Quarterly, 70 (5), 676-703. 

Bauer, E. a. (1999). An Emperical Comparison of Voting Classification Algorithms: 
Bagging, Boosting, and Variants. Machine Learning, 36 105-132. 

Brieman, L. (1998). Arcing Classifiers (with discussion). Annals of Statistics 26(3), 801-
849. 

deVille, B. (2006). Decision Tress for Business Intelligence and Data Mining using SAS

Enterprise Miner. Carey, NC: SAS Institute, Inc. 

Earp, M., McCarthy, J., Porter, E., and Kott, P.  (2010). Assessing the Effect of

Calibration on Nonresponse Bias in the 2008 ARMS Phase III Sample Using Census 

2007 Data. In JSM Proceedings, Government Statistics Section. Vacouver, CA: 
American Statistical. 

Earp, M., Mitchell, M., and McCarthy, J. (2011). Who is Responsible for the Bias? Using

Proxy Data and Tree Modeling to Identify Influential Nonrespondents & Reduce Bias. 
Proceedings of the Fourth International Conference of Establishment Surveys, June 11-
14, 2012, Montréal, Canada [CD-ROM]: American Statistical Association.  

Groves, R. M. (2006).  Nonresponse Rates and the Nonresponse Bias in Household 
Surveys.  Public Opinion Quarterly, 70 (5), 646-675. 

Grobes, R. M. and Couper, M. (1998).  Nonresponse in Household Interview Surveys.  
New York: John Wiley. 

Johansson, F. and Klevmarken, A. (2008). Explaining the Size and Nature of Response in 
a Survey on Health Status and Economic Standard. Journal of Official Statistics, 24

(3), 431-449. 

Johnson, T.P., Cho, I.K., Campbell, R.T., and Holbrook, A.L (2006). Using Community-
Level Correlates to Evaluate Nonresponse Effects in a Telephone Survey. Public

Opinion Quarterly, 70 (5), 704-719. 

While these results are limited to the 30 variables assessed in relation to nonresponse for 
the ARMS III 2008 sample, this research suggests that trees work better than logistic 
regression and are comparable to calibration, which is not always an option.  The results 
also indicate that while on average using a single-tree approach results in less bias across 
variables, an ensemble-tree approach provides a better estimate for more variables than a 
single-tree approach.  If a survey administrator is more concerned about the average bias 
across estimates, then a single tree appears to work best; however, if they are more 
concerned with how frequently they produce the best estimate, they may want to consider 
creating an ensemble of classification trees.  While calibration works well for ARMS III, 
calibration is not a viable option in surveys when good external benchmarks for 
calibration are not available.  Our analysis provides evidence that tree methods may 
provide a comparable alternative to calibration when rich auxiliary data is available. 
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