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Abstract 

Much of the information about work related injuries and illnesses in the U.S. is recorded 

only as short text narratives on Occupational Safety and Health Administration (OSHA) 

logs and Worker’s Compensation records. Analysis of these data has the potential to 

answer many important questions about workplace safety, but typically requires that the 

individual cases be “coded” first to indicate their specific characteristics. Unfortunately 

the process of assigning these codes is often manual, time consuming, and prone to 

human error. 

 
This paper compares manual and automated approaches to assigning detailed occupation, 

nature of injury, part of body, event resulting injury, and source of injury codes to 

narratives collected through the Survey of Occupational Injuries and Illnesses, an annual 

survey of U.S. establishments that collects OSHA logs describing approximately 300,000 

work related injuries and illnesses each year. We review previous efforts to automate 

similar coding tasks and demonstrate that machine learning coders based on the logistic 

regression and support vector machine algorithms outperform those based on naïve 

Bayes, and achieve coding accuracies comparable to or better than trained human coders. 

 
Key Words: machine learning; statistical learning; natural language processing; text 

classification; logistic regression; naïve Bayes; support vector machines 

 

1. Introduction 

 

Much of the information about work related injuries and illnesses in the U.S. is recorded 

as short written narratives on OSHA logs and Worker’s Compensation records. An injury 

to a nurse, for example, may ultimately be recorded as: 

 

Job title: registered nurse 

 

What was worker doing? 

Employee was moving patient 

 

What happened? 

Patient became agitated and pushed employee causing her to fall on her wrist 

 

What was the injury? 

Sprained left wrist and contusions to left knee 
 

What was the object or substance that inflicted the injury? 

Floor and patient 



 

 

 

Analysis of this data is useful for safety surveillance and injury prevention, but is 

complicated by its unstructured nature. A common approach is to first assign predefined 

codes to each narrative to indicate characteristics of interest, and then to perform 

aggregate level analysis on the codes. 

 

Unfortunately, the process of assigning these codes is typically manual, resource 

intensive, and vulnerable to human error. The Bureau of Labor Statistics, for example, 

which collects and codes OSHA logs describing approximately 300,000 incidents each 

year through its annual Survey of Occupational Injuries and Illnesses (SOII), requires an 

estimated 25,000 hours of labor for the initial coding task, and many additional hours to 

find and correct errors. Despite these considerable efforts, there is reason to believe that 

some errors go uncaught. 

 

An important goal, therefore, is to improve both the quality and efficiency of coding. 

Progress in the field of natural language processing suggests that computers may be able 

to help by partially or fully automating the process. Previous research has identified two 

broad approaches to accomplishing this task, which we formulate more generally as text 

classification. 

 

The first, the knowledge engineering approach, consists of manually encoding human 

knowledge into computer programs. To automatically assign occupation codes, for 

example, one might create a program made up of rules like the following: 

 

If job title contains the word “janitor” then assign code 37-2011 

 

Here, code 37-2011 corresponds to the Standard Occupational Classification (SOC) 

system’s code for Janitors and Cleaners. 

 

This works well for simple tasks; unfortunately many coding tasks are not simple. For 

example, the 10,325 Janitor and Cleaner cases collected for the 2011 Survey of 

Occupational Injuries and Illnesses included more than 2,000 distinct job titles and more 

than 80% of these cases had job titles that did not include the words “janitor” or 

“cleaner”. This variability often requires many, and sometimes very complex rules to 

achieve high levels of automated coding performance. 

 

An alternate approach, machine learning, avoids the problem of manually creating rules 

by using a computer to learn a model of code assignments directly from previously 

collected (and typically coded) data. One challenge is creating a representation of the 

relevant inputs that is amenable to modeling. A common approach is to represent each 

document (i.e. each narrative or case) with a vector where each element corresponds to a 

pre-determined feature of the data considered relevant for the classification task, and each 

value provides information about the state of that feature in a particular document. Text is 

typically incorporated into this vector using the bag-of-words approach, where each word 

is treated as a feature, and its occurrence in a particular document is indicated by its 

value. Once constructed, these vectors can be used with any of a wide variety of popular 

machine learning algorithms including logistic regression, naïve Bayes, decision trees, 

support vector machines, or neural networks. 

 

A natural question is which approach works better, knowledge engineering or machine 

learning? The truth is that in practice both approaches are frequently combined to varying 

degrees. Still, there is a legitimate question as to which provides better performance for 



 

 

 

the requisite costs. Creecy et al. explored these differences in work comparing a 

knowledge engineering and a machine learning approach to assigning industry and 

occupation codes to Census narratives. They found the knowledge-based approach not 

only required vastly more labor to implement (192 person-months compared to 4 person- 

months for machine learning), but also had worse performance [1]. This does not mean 

knowledge-based approaches are always worse. In fact, they have occasionally performed 

very well on tasks where elaborate knowledge based resources have already been 

constructed and training data is limited, such as a medical text classification challenge 

(CMC 2007) focused on coding radiology reports [2]. In general, however, the 

knowledge engineering approach becomes increasingly unattractive as the complexity of 

the classification task and the availability of training data and computing power increase. 

As a result, knowledge-based approaches have increasingly lost popularity since the early 

1990’s and receive little attention from modern text classification researchers [3]. 

 

Recent efforts to automatically classify worker injury narratives have focused almost 

exclusively on machine learning. Lehto and Wellman used the naïve Bayes algorithm to 

automatically assign 1 of 19 “event” codes to workers’ compensation narratives [4]. 

Similarly, Bertke et al. used naïve Bayes to automatically classify workers compensation 

narratives into 1 of 3 categories [5]. Both report relatively good results, but their studies 

leave a number of important problems unresolved. 

 

Perhaps the biggest is that the quality of their automated coding still lags behind that of 

their human coders. For organizations where coding quality is of high importance and 

manual methods are available, this is a serious barrier to adoption. 

 

Another problem is that the level of coding detail required for many surveillance tasks is 

much higher than that pursued in Lehto and Bertke’s work. For the Survey of 

Occupational Injuries and Illnesses, for example, the Bureau of Labor Statistics assigns 

detailed occupation, nature of injury, part of body, event resulting in injury, and source of 

injury codes to each case, and each of these categories has hundreds of potential 

classifications. Source alone has 1,400 codes, and occupation, 800. For organizations like 

the Bureau of Labor Statistics to adopt these methods, they must demonstrate high 

effectiveness on the very broad and complex coding tasks they face. 

 

The goal of this study therefore is twofold: to improve the quality of automated coding by 

exploring alternative machine learning approaches, and to test the feasibility of 

automatically assigning codes at the high level of detail and breadth of scope required for 

the Survey of Occupational Injuries and Illnesses. 

 

2. Methodology 

 

The data for our experiments comes from the nearly 300,000 cases collected and coded 

for the 2011 Survey of Occupational Injuries and Illnesses. We removed cases from 

Puerto Rico, which tend to be in Spanish, all cases where no job title was reported, all 

cases without a response to at least one of the injury narrative questions, and all cases that 

were considered unusable for the purposes of SOII estimation. Of the remaining cases, 

we randomly selected 261,000 and then randomly divided these into 3 data sets; a 

training set of 195,000 cases, a validation set of 65,000 cases, and a test set of 1,000 

cases. 



 

 

 

As part of the Bureau’s normal collection activities, each case had been assigned 5 codes 

by Bureau of Labor Statistics employees. These include an occupation code, assigned 

according to the 2010 version of the Standard Occupational Classification system, and a 

nature, part, event, and source code assigned according to version 2.01 of the 

Occupational Injuries and Illnesses Classification system. Each of these codes went 

through the Bureau’s normal review process which includes automated checks for invalid 

code combinations and manual reviews in BLS regional and national offices. 

 

In addition to these codes, each case had the following potentially classification-relevant 

information associated with it: 

 a short narrative indicating the worker’s occupation title 
 a checkbox indicating the worker’s occupation category (1 of 12 possible, 

including “other”) 

 a short narrative indicating the occupation category, if the respondent indicated 

“other” 

 a narrative answering “What was the employee doing before the incident 

occurred?” 

 a narrative answering “What happened?” 

 a narrative answering “What was the injury or illness?” 

 a narrative answering “What object or substance directly harmed the employee?” 
 the ownership of the worker’s establishment (private, state government, or local 

government) 

 the 2007 North American Industry Classification System (NAICS) code for the 

establishment 

 the state where the establishment was located 

 

To measure the performance of human coders we hid the codes assigned to the 1,000 

cases in the test set and then distributed these cases among BLS trained coders in such a 

way that each case was assigned to 3 different people. Coders were then instructed to 

assign codes as accurately as possible without referencing previously coded data or 

discussing code assignments with others. Accuracy was calculated in the usual way, as 

the number of code assignments matching the original code divided by the total number 

of possible code assignments. 

 

Three machine learning algorithms were chosen for comparison based on their popularity 

for the text classification task; naïve Bayes, regularized logistic regression, and support 

vector machines. We used the free and open-source implementations of these algorithms 

available through the scikit-learn 14.1 software package [6]. We describe each briefly 

below. 

 

Naïve Bayes 

Let 𝑦 denote a specific classification (for example, that the injury event is a “fall”), let 𝑛 
denote the number of features in our feature representation, and let 𝑥1, … , 𝑥𝑛 denote the 

values of all features associated with a given document. Naïve Bayes performs 

classification by first estimating the probability of classification 𝑦 given observed feature 

values 𝑥1 through 𝑥𝑛 using Bayes’ theorem, which can be written as: 
 

𝑃(𝑦|𝑥 , … , 𝑥 ) = 
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛|𝑦) 

1 𝑛 𝑃(𝑥1, … , 𝑥𝑛) 
( 1 ) 



 

 

 

𝑖=1 

𝑖=1 

𝑖=1 

𝑃(𝑦) is typically estimated as the relative frequency of classification 𝑦 in the training 

data, and 𝑃(𝑥1, … , 𝑥𝑛) can be ignored altogether since it is the same for all possible 

classifications, but 𝑃(𝑥1, … , 𝑥𝑛|𝑦) is more problematic. 

 

In practice there is never enough data to calculate a reasonable estimate of 𝑃(𝑥1, … , 
𝑥𝑛|𝑦). Instead, we make the “naïve” assumption that for a given classification 𝑦, the 

probability of observing any feature 𝑥𝑖 is independent of observing any other feature. 

This allows us to calculate 𝑃(𝑥1, …  ,   𝑥𝑛|𝑦) as ∏𝑛 𝑃(𝑥𝑖|𝑦). 
 

𝑃(𝑥𝑖|𝑦) can be calculated in multiple ways depending on our assumptions of the 

underlying distribution. In our experiments we try two popular variations, multinomial 

naïve Bayes, and Bernoulli naïve Bayes. 

 

In multinomial naïve Bayes, 𝑃(𝑥𝑖|𝑦) is estimated as 
 

𝑃(𝑥  |𝑦) =  
𝑁𝑦𝑖   + 𝛼

 
𝑖 𝑁𝑦 + 𝛼𝑛 

( 2 ) 

where 𝑁𝑦𝑖 denotes the sum of 𝑥𝑖 over all training examples where the classification is 𝑦, 

𝑁𝑦 denotes the sum of all features 𝑥1, … , 𝑥𝑛 over all training examples with a 

classification of 𝑦, and 𝛼 is a positive number that acts to smooth the maximum 

likelihood estimate of 𝑃(𝑥𝑖|𝑦) to prevent zero probabilities. Smoothing is desirable 

because a single zero probability in the 𝑃(𝑦) ∏𝑛 𝑃(𝑥𝑖|𝑦) expression effectively erases 

whatever information was conveyed by the other terms. 

 
In Bernoulli naïve Bayes, the value of 𝑥𝑖 is restricted to either 0, or 1, and indicates the 

presence or absence of that feature. Here, 𝑃(𝑥𝑖|𝑦) is calculated as 
 

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦))(1 − 𝑥𝑖) ( 3 ) 

 
where 

𝑃(𝑖|𝑦) = 
𝑀𝑦𝑖 + 𝛼

 
𝑀𝑦 + 𝛼𝑛 

( 4 ) 

 

and 𝑀𝑦𝑖 is the number of training examples with classification 𝑦 containing feature 𝑥𝑖, 

and 𝑀𝑦 is the number of training examples with classification 𝑦. 

Classification is performed by assigning the value of 𝑦 that maximizes the expression: 

𝑃(𝑦) ∏𝑛 𝑃(𝑥𝑖|𝑦) [6–8]. 
 

Logistic Regression 

Let 𝑆 denote the set of possible classifications, let 𝑥 denote a feature vector of length 𝑛 + 

1, where the first position is always 1, and let 𝑤𝑦 denote a weight vector of length 𝑛 + 1 

specific to classification 𝑦. In the multi-class setting, logistic regression models the 

probability of classification 𝑦 given feature vector 𝑥 as 



 

 

 

𝑖=1 

𝑦 

 

𝑒𝑤𝑇𝑥 
𝑦 

𝑃(𝑦|𝑥) = 
∑ 𝑒𝑤𝑇𝑥 

𝑘∈𝑆 𝑘
 

( 5 ) 

 

The optimal weight vectors are calculated using convex optimization techniques that 

maximize the likelihood of the training data, subject to a penalty on the size of the weight 

vectors (also known as regularization) to prevent overfitting. 

 

If we denote the number of training examples in our training set as 𝑚, and define 𝑦𝑖 to 

have a value of 1 if the label of the i-th training example is classification 𝑦, and -1 

otherwise, we can write this mathematically as 
 

𝑚 

𝑎𝑟𝑔𝑚𝑖𝑛 
1 

𝑤𝑇𝑤 + 𝐶 ∑ log(1 + 𝑒−𝑦𝑖𝑤
𝑇𝑥𝑖) 

𝑤 2 
𝑖=1 

 
( 6 ) 

 

Here, ∑𝑚 log(1 + 𝑒−𝑦𝑖𝑤
𝑇𝑥𝑖) is the empirical loss, i.e. the penalty for not classifying the 

training data correctly, 1 𝑤𝑇𝑤 is the L2 regularization loss used to prevent overfitting, 
2 

and 𝐶 is a regularization constant which controls the tradeoff between minimizing the 
empirical loss and minimizing the regularization loss [9,10]. 

 
Once the weights have been learned, classification is performed by selecting the 

classification which maximizes 𝑃(𝑦|𝑥). 

 

Support Vector Machines 

To perform classification with support vector machines we begin by first finding the 

hyperplane defined by 𝑤𝑇𝑥 = 0 for each possible classification 𝑦 that maximizes the 

margin between the closest training example belonging to classification 𝑦, and the closest 

training example belonging to any other classification. 
 

The weight vectors parameterizing these hyperplanes are calculated using convex 

optimization techniques that simultaneously minimize the squared hinge loss and the 

regularization loss (L2 loss in our experiments). We write this mathematically as 
 

𝑚 

𝑎𝑟𝑔𝑚𝑖𝑛 
1 

𝑤𝑇𝑤 + 𝐶 ∑ max(1 − 𝑦 𝑤𝑇𝑥 , 0)2 
𝑤 2 𝑖 𝑖 

𝑖=1 

 
( 7 ) 

 

Once the weights have been calculated, classification is performed by calculating 𝑤𝑇𝑥 
for each possible classification 𝑦, and choosing the classification which produces the 

largest value [10]. 

 

Feature Representation 

For each classification task, two feature representations were created: a baseline 

representation designed to include all obviously relevant information in a simple manner, 

and a “best” representation developed by manually and iteratively training models on 

different representations of the training set until settling on one that produced the most 

accurate model, as measured against the validation data set. Because the logistic 

regression and support vector machine algorithms demonstrated substantially better 

performance with the simple representation, and because they are widely considered 



 

 

 

better classifiers than naïve Bayes for this type of task [3,11,12], the “best” representation 

was designed primarily to maximize their performance. The details of each representation 

are summarized in table 1. 

 
Table 1. Feature Representations 

Classification Task Baseline Representation Best Representation 

occupation job_unigrams, 

other_category_unigrams, 

category, 

naics 

job_unigrams, 
job_unigrams + job_category, 

job_unigrams + naics2, 

job_unigrams + ownership, 

job_bigrams, 

other_category_unigrams, 

fips_state_code, 
naics 

nature incident_unigrams nature_unigrams, 

incident_bigrams, 

naics 

part incident_unigrams nature_unigrams, 

incident_bigrams, 
incident_trigrams 

event incident_unigrams incident_unigrams, 

incident_bigrams, 

naics 

source incident_unigrams source_unigrams, 

incident_bigrams, 

naics2, 
fips_state_code 

See the Appendix for a more detailed description of each feature 

 

All three learning algorithms have hyper-parameters (parameters not directly learned 

from the training data) that must be set in some way; the regularization parameter for 

logistic regression and support vector machines, and the smoothing parameter for naïve 

Bayes. We selected separate hyper-parameter values for each combination of 

classification task and feature representation by iteratively training each algorithm using 

a range of hyper-parameter values and then choosing the values that produced the most 

accurate model, as evaluated against the validation data. The final models were then 

trained on the combination of the training set and validation set, and evaluated based on 

their accuracy on the test set. Table 2 contains the resulting accuracy scores for the 

machine learning algorithms and the human coders. 



 

 

 

 
 

Table 2. Classification Accuracy (%) 

features classifier occupation nature part event source 

 human 64.4 75.4 80.0 47.6 56.5 

baseline Bernoulli NB 68.7 62.7 62.4 42.0 43.8 

baseline multinomial NB 68.9 62.5 59.9 42.4 43.1 

baseline logistic regression 73.2 78.3 75.8 47.8 55.1 

baseline SVM 73.9 78.4 76.4 47.0 56.5 

best Bernoulli NB 71.1 58.9 64.8 42.7 47.8 

best multinomial NB 70.2 61.1 65.9 44.5 47.9 

best logistic regression 77.5 79.5 81.1 49.2 57.8 

best SVM 78.0 79.3 81.4 49.1 60.0 

SVM = support vector machines, NB = naïve Bayes 
The highest accuracy for each classification task is shown in bold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. Discussion 

 

Our results suggest two important findings. First, machine learning techniques like 

support vector machines and logistic regression can produce more accurate coders than 

naïve Bayes. Second, these more effective machine learning approaches can achieve 

classification accuracies similar to, or better than those achieved by human coders, even 

on highly detailed coding tasks like those performed for SOII. 
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Appendix 

 
Feature Description 

fips_state_code Code indicating the state in which the worker’s 
establishment was located 

naics The 2007 North American Industry 

Classification System (NAICS) 6 digit code for 
the worker’s establishment 

naics2 The first 2 digits of the NAICS code of the 
worker’s establishment 

job_unigrams Individual words from the job title narrative 

job_unigrams + estab_ownership Concatenation of individual words from the job 

title narrative and the code indicating the 
ownership of the worker’s establishment 

job_unigrams + job_category Concatenation of individual words from the job 

title narrative and the code indicating the job 

category 

job_unigrams + naics2 Concatenation of individual words from the job 

title narrative and the first 2 digits of the 
establishment’s NAICS code 

job_bigrams Two word sequences from the job title narrative 

other_category_unigrams Individual words from the “other job category” 
text field 

incident_unigrams Individual words from the 4 narratives 
describing the circumstances of the incident 

incident_bigrams Two word sequences from the 4 narratives 

describing the circumstances of the incident 

incident_trigrams Three word sequences from the 4 narratives 
describing the circumstances of the incident 

nature_unigrams Individual words occurring only in the narrative 

corresponding to “What was the injury or 

illness?” 

source_unigrams Individual words occurring only in the narrative 

corresponding to “What object or substance 
directly harmed the employee?” 

 




