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Abstract 
Traditional weight adjustments for survey sampling error are often constructed through 
multiple stages, where design weights are based on the inverse of the probability of 
selection, and in a separate stage nonresponse adjustments are derived from weighting cells 
or classes, or based on model-deduced response propensities.  More recent efforts by Little 
and Vartivarian (2003) have advocated the use of propensity models that incorporate both 
design information, as well as variables that are, ideally, related to both nonresponse and 
the survey outcome.  There is often a third stage of adjustment that involves calibration to 
known or reliable population totals.  It would be useful to incorporate this calibration stage 
into a propensity model containing the design information and variables related to response 
behavior.  This can be accomplished via a latent constructs that are constrained (by totals 
or proportions) to the external information being used.  By simultaneously estimating the 
response propensity under calibration and incorporating design variables, additional 
variance due to adjustment would be minimized. 
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1. Motivation

Unit nonresponse is an ever increasing problem in sample surveys.  Response rates have 
continued to fall, putting more strain on adjustment procedures.  When unit nonresponse is 
not completely at random (MCAR) we can expect some amount of bias to be introduced in 
our survey estimates.  Corrections for this bias are usually made by weighting responding 
sample units to match the sampling frame or population as closely as possible. 

One methodology that is recently gaining purchase in the survey sampling community is 
propensity weighting.  This technique regresses the log odds of the response on sample 
frame information that is available for both respondents and nonrespondents.  It then 
utilizes the inverse of the predicted outcomes (the “propensity” to respond) from this 
logistic model as weights.  One advantage of these propensity models over classic 
weighting adjustment using adjustment cells, is that they can easily incorporate auxiliary 
information with continuous distributions.  However, it is often the case that these models 
do not fit very well, and succeed in decreasing bias only modestly at the expense of 
increasing weight variability to an unacceptable degree.  Nonresponse adjustment weights 
based on response propensity are therefore frequently trimmed or attenuated in some way.  

Calibration weighting is also frequently used to adjust for nonresponse.  With calibration 
the responding sample units are adjusted to known population totals.  For example, sample 
units may be weighted to reflect the race distribution in the sample region based on U.S. 



Figure 1: Latent variable model incorporating a single calibration variable and four 
auxiliary variables from sample frame 

Figure 1 illustrates the proposed latent variable model. In this diagram R is the response 
indicator variable; A, B, C, and D, are auxiliary variables available on the sampling frame; 
and E is an indicator of the latent variable W.  The latent variable W is constrained to match 
known population totals, where E is the corresponding sample totals.  In cases where 

Census estimates.  If more than one group of population totals is used like employment, 
and the intersection of these two groups is unknown in the population (for example, one 
does not know the population total for unemployed whites) than iterative proportional 
fitting, or generalized raking, is typically utilized to calculate the nonresponse weights.  In 
this case of calibrating to known population totals the weights typically do not utilize any 
information from respondents only. 

Many surveys use both propensity weighting and calibration to adjust for nonresponse.  
This is typically done in two steps where the two independently calculated weights are 
multiplied together.   While this does not affect the ability of the weights to adjust for bias, 
it can increase the variability of the weights dramatically and, in some cases, increase the 
mean square error to levels larger than the contribution of the bias one seeks to correct. 

2. Model

A possible solution to the potential increase in the variability of the overall weights due to 
estimating the calibration weights in a separate step from the propensity weights is to 
estimate a propensity model under the constraints of the calibration variables population 
totals using latent variable models.  In this way, the proposed latent variable model extends 
the basic logistic propensity model to incorporate population information for calibration.   



calibration is conducted with information from only respondents, an extra category is 
simply added to E to include the unit nonresponders.   There is no extra category for W in 
this case.  This effectively serves to reclassify missing sample units to categories based on 
population values.  Unlike usual calibration procedures, this parameterization takes into 
account measurement error. 

2.1 Adjustment Weights 
Adjustment weights are the inverse of the probability of response given the auxiliary 
information and the latent variable.  For the previous example shown in Figure 1 the 
weights (wi) are calculated by: 

wi = 1 / P(R=1|ABCDW) 

Calculating propensity and calibration weights in a single step should decrease, in general, 
the variance of the weights – if the estimation of the model itself does not add a significant 
amount.  These models are easy to estimate using existing software such as, Lem, Mplus, 
LatentGold, LISREL, and R. 

3. Simulations

Simulations were conducted in order to compare the properties of the weights calculated 
using the latent variable model to those of a two-step procedure where a logistic propensity 
model is estimated separately from the calibration step.  In the two-step procedure the 
weights are then combined by simply multiplying the two.  This procedure is fairly 
common in large surveys. 

3.1 Simulation Details 

The sample size for the simulated data is 8,000 with a 60% response rate.  Because the 
latent variable models took a fairly long time to estimate (~5 minutes), only 100 iterations 
for each condition was completed.  Lem, a free latent variable software written by Jeroen 
Vermunt, was used to estimate the latent variable models.  To avoid local maxima each 
model was run 10 times with the best fitting run selected for each of the 100 iterations.  A 
number of conditions were varied.  Here we summarize the set of conditions where we 
vary the association of the auxiliary and calibration variables with response and a 
hypothetical variable of interest, or outcome variable. 

3.2 Results 

Table 1 through Table 5 summarize the findings from the simulation studies.  Due to space 
constraints only selected results are included here.  Listed in each table are the mean (across 
the iterations) of the bias, the variance of y, the Mean Square Error (MSE), and the mean 
variance of the weight variable.  For each of these, a lower value is preferable.  The “true” 
distribution of the five class calibration variable, as well as the distribution for the weighted 
sample for the two-step estimation procedure and the latent variable model is included at 
the bottom of each table. 

Table 1: Auxiliary Information Strongly Related to Both Response and Outcome 



Table 1 shows the results of the comparison of the two approaches when the auxiliary 
information and calibration variables are strongly related to both response and the outcome 
variable.  There is some modest improvement in the mean bias and a slight improvement 
in the variance of the weighted outcome variable using the latent variable model.  These 
improvements are quite small and it should be noted that distribution of the calibration 
variable is somewhat different for the latent variable model. 

Table 2 shows the results of the comparison when the auxiliary information and calibration 
variables are strongly related to response but not related to the outcome variable.  There is 
almost no difference in the bias of the estimate and only a modest difference in the MSE, 
due to the latent variable model producing weights that increase the variability of the 
outcome variable.  Once again, the distribution of the calibration variable is incorrect. 

Estimates 

Two-Step Latent 

Mean bias -349.83 -233.90
Mean variance y 236287.44 222105.81 
Mean MSE 358734.48 287147.89 

Mean variance wi 0.329 20.592 

Distribution of Calibration Variable

1 2 3 4 5 

True .15 .15 .25 .30 .15 
Two-Stage .15 .15 .25 .30 .15 
Latent .14 .14 .36 .22 .14 

Table 2: Auxiliary Information Strongly Related to Response Only 

Estimates 

Two-Step Latent 

Mean bias -476.66 -478.47
Mean variance y 159800.63 172433.27 
Mean MSE 387048.08 401920.35 

Mean variance 
wi 0.331 20.518 

Distribution of Calibration Variable

1 2 3 4 5 

True .15 .15 .25 .30 .15 
Two-Stage .15 .15 .25 .30 .15 
Latent .14 .09 .33 .30 .15 

Table 3: Auxiliary Information Strongly to Outcome Only 

Estimates 

Two-Step Latent 

Mean bias -591.63 -602.50
Mean variance y 229303.97 348480.91 
Mean MSE 579364.57 734456.59 

Mean variance wi 0.001 97.457 
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Table 3 shows the results of the comparison when the auxiliary information and calibration 
variables are strongly related to the outcome variable only but not related to response.  
While the bias is only modestly larger for the latent variable model, the variance of the 
outcome variable is quite a bit larger for the latent variable approach.  The distribution of 
the calibration variable is also very different than the true distribution. 

Table 4 shows the results of the comparison when the auxiliary information and calibration 
variables are not related to either response or the outcome variable.  As in previous models, 
the difference in the mean bias between the two weighting procedures is negligible.  
However, in this case the MSE and the variance of the outcome variable is significantly 
different - the latent variable model producing weights that greatly increase the variance.  
In addition, the distribution of the calibration variable is unacceptably different from the 
true distribution. 

Distribution of Calibration Variable

1 2 3 4 5 

True .15 .15 .25 .30 .15 
Two-Stage .15 .15 .25 .30 .15 
Latent .20 .24 .11 .21 .25 

Table 4: Auxiliary Information Not Related to Response or Outcome 

Estimates 

Two-Step Latent 

Mean bias 505.51 506.57 
Mean variance y 159843.47 264519.70 
Mean MSE 415411.46 522210.28 

Mean variance wi 0.001 85.563 

Distribution of Calibration Variable

1 2 3 4 5 

True .15 .15 .25 .30 .15 
Two-Stage .15 .15 .25 .30 .15 
Latent .27 .28 .10 .17 .17 

Table 5: Auxiliary Information Strongly Related to Both Response and Outcome 
(Calibration Variable Present for Respondents Only) 

Estimates 

Two-Step Latent 

Mean bias 169.24 165.96 
Mean variance y 235808.40 496202.70 
Mean MSE 264520.96 525533.30 

Mean variance wi 0.33266 344002 

Distribution of Calibration Variable

1 2 3 4 5 

True .15 .15 .25 .30 .15 
Two-Stage .15 .15 .25 .30 .15 
Latent .14 .18 .52 .03 .13 



Table 5 shows the results of the comparison when the auxiliary information and calibration 
variables are strongly related to both the response and the outcome variable.  However, in 
this case, the calibration variable is only available for respondents rather than the entire 
sample.  The parameterization of E in Figure 1 has an additional class which includes the 
unit nonrespondents.  This seemed to affect the estimation of W (the latent construct), such 
that the distribution is quite different from the true distribution.  The variance of the 
outcome variable is quite large, as well, leading to a very high MSE.  However, like many 
of the models the bias is very similar between the two weighting methods. 

4. Summary and Discussion

Decreasing response rates has led most survey practitioners to incorporate a variety of 
weighting techniques to adjust for possible bias introduced from nonresponse.  Propensity 
model based weighting and calibration are two popular techniques that utilize auxiliary 
information from the sample frame and known population totals.  Combining both of these 
procedures into one step should lead to a decrease in the variance of the adjustment weights 
and the weighted response variable.   

However, the proposed method, fitting the data with a latent variable model, produced 
mixed results.  Only in the case where auxiliary and calibration variables are strongly 
related to both response and the outcome variable did the latent variable model reduce both 
the bias and variance of the weighted outcome compared to that of the two-step method.  
Indeed, while the bias was comparable regardless of the relationship of the model 
information to response and the outcome variable, the variance of the outcome variable 
(and therefore the MSE) was significantly increased in most cases. 

It is not particularly surprising that when the model information is not related to response 
that latent variable models produce weights that are not optimal in terms of their variance.  
Like propensity models – but even more so – poorly fitting or misspecified latent variable 
models produce highly variable estimates.  Thus, the same criticisms levied at propensity 
models apply to latent variable models, with consequences that appear to be more severe. 

Much more testing needs to be conducted.  In particular research should be aimed at 
estimating latent variable models in such a way that they can be as robust to 
misspecification as logistic propensity models – if not more so.  It would be interesting to 
include more than one calibration variable and compare that to a generalized raking 
procedure.  In addition, we could parameterize the latent variable model to assume no 
measurement error in the calibration variable.  In this case, we would specify that the 
probability of the calibration variable indicator being a certain value “x” given the 
calibration latent variable is the same value “x” is one, or  

P(E=x|W=x) = 1 

It would also be interesting to incorporate the outcome variable into the model as an 
additional latent construct.  This should help to reduce bias, and, to the extent the auxiliary 
information is related to outcome, reduce variability in the weighted outcome variable. 
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