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Abstract 
This study looks at the density distribution of standard errors (SE) of item stratum-index 
area level percent change using Consumer Price Index for All Urban Consumers (CPI-U) 
historical data in order to understand anomalous behavior. Many attributes can be 
determined about the SE, such as: the shape of the SE density distribution; whether the 
overall central tendency and overall variability of the SE distribution are smaller, larger, or 
similar from one year to the next, or from one month to the same month of the following 
year; whether the distributions tend to shift over time or stay stationary. The SE of basic 
level price changes are used to produce the underlying distributions for further examination. 
SE for May 2006 in particular were investigated as it was the month when the SE of 12-
month CPI-U percent change reached its largest value of 0.19. Non-parametric methods 
and categorical analysis techniques were employed to assess the May 2004-May 2008 
datasets. A compelling approach to data visualization is produced by combining multiple 
pieces of information in a single graph in order to demonstrate an optimal and coherent 
visual of comparisons.  

Key Words: Consumer Price Index (CPI), Consumer Price Index for All Urban 
Consumers (CPI-U), variance, standard error, distribution, data visualization  
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1. Introduction

Consumer Price Index for All Urban Consumers (CPI-U) is a measure of average price 
change over time in the prices of consumer items—goods and services that people buy 
for day-to-day living. Here “people” implies about 88% of the U.S. population, referred 
to as urban population. CPI-U provides an estimate of the price change between any two 
periods, such as, 1 month, 2 month, 6 month, or 12 month intervals. This price change is 
then presented in percent (%) format to indicate the degree of change between periods.  

This percent change also has a corresponding standard error (SE) which can be used to 
determine whether this change is statistically significant or not. Standard errors (SE) are 
produced for all the basic indexes and the aggregate indexes, although basic index SE are 
not published for the public. There are 38 geographic areas called index areas, and the set 
of all goods and services purchased by consumers is divided into 211 categories called 
item strata. This results in 8,018 (38 x 211) item-area combinations that are basic

indexes. The CPI is calculated in two stages. The first stage is the calculation of basic

indexes, which shows the average price change of the items within each of the 8,018 CPI 
item-area combinations. In the second stage, aggregate indexes are produced by the 
weighted average across subsets of the 8,018 CPI item-area combinations. The aggregate 
indexes are the higher-level indexes and different types of aggregates can be produced 
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….. (1) 
The standard error of the 12-month price change is then equal to: 

𝑺𝑬(𝑨, 𝑰, 𝒕, 𝒕 − 𝟏𝟐) = √𝑽(𝑨, 𝑰, 𝒕, 𝒕 − 𝟏𝟐)      or      𝝈𝑨𝒍𝒍 𝑼𝑺,𝑨𝒍𝒍 𝑰𝒕𝒆𝒎 = √𝝈𝑨𝒍𝒍 𝑼𝑺,𝑨𝒍𝒍 𝑰𝒕𝒆𝒎
𝟐    .….(2) 

Where: 
 r Ra refers to the set of replicates in AREA = a,
 aA refers to the 32 self-representing and 6 non-self-representing index areas in A,

based on usefulness, such as, 38 geographic areas, 4 census regions, 211 items, 8 major 
groups, etc. The weights for the second stage do not derive from the CPI survey but from 
the reported expenditures of the Consumer Expenditure Survey (CE) (Chapter 17, The 
Consumer Price Index). 

This study investigates the probability density distribution (PDF) of standard errors (SE) 
of all 8,018 basic indexes in order to understand the anomaly in the behavior of the 
percent change standard errors for a particular area or item. This study also aims to 
examine the historical behavior of these basic index SE. Many properties can be 
examined about the standard errors from this underlying density distribution, such as: the 
shape of the SE density distribution; whether the overall central tendency and the overall 
variability of the SE distribution are smaller, larger, or similar from one year to the next, 
or from one month to the same month of the following year, and whether the distributions 
tend to shift over time or stay stationary.  

In support of the Bureau of Labor Statistics (BLS) mission, the CPI program produces 
accurate and precise estimates within given constraints. One CPI program performance 
goal is to produce “All U.S. – All Items” 12-month percent change standard error 
estimates less than 0.25. Thus, this performance goal provides another motivation for this 
research study, which is to look at the properties of the basic level SE density 
distribution, anomalous behavior of SE in particular item-area level, and possible 
probabilistic quality control.  

2. Research Frame-Work and Datasets

Twelve-month CPI-U percent change “All U.S. – All Items” aggregate SE reached its 
largest value of 0.19 in May 2006. It was due to a single item-area index that attributed a 
high proportion of variance in aggregation compare to other 8,017. In this study, historic 
datasets of May 2004, May 2005, May 2006, May 2007, and May 2008 are used as 
comparison groups that contain basic index level information. Choosing the same month 
of a different year as comparison groups reduces the source of variability due to 
seasonality (blocking). Additionally, these pre-post comparison groups may provide a 
perspective on the behavior before and after that May 2006 event. 

3. Probability Density Distribution of Basic Index Variances

CPI is a complex construct that uses the following Stratified Random Group (SRG) 
methodology to calculate the variance for its 12-month percent change (PC) for “All U.S. 
– All Items”:



 I = All Items, and
 Na is the number of variance replicates in AREA = a.
As an approximation for computational purpose, this “All U.S. – All Items” variance can
be decomposed into its 8,018 basic index components.

 𝝈𝑨𝒍𝒍 𝑼𝑺,𝑨𝒍𝒍 𝑰𝒕𝒆𝒎
𝟐  ≈  𝝈𝒘𝒈𝒕.𝟏

𝟐 + 𝝈𝒘𝒈𝒕.𝟐
𝟐 + ⋯ + 𝝈𝒘𝒈𝒕.𝟖,𝟎𝟏𝟖

𝟐

= ( 𝒓𝒊𝟏 ∗  𝝈𝟏)𝟐 + ( 𝒓𝒊𝟐 ∗  𝝈𝟐)𝟐 + ⋯ + ( 𝒓𝒊𝟖,𝟎𝟏𝟖 ∗  𝝈𝟖,𝟎𝟏𝟖)𝟐 

Where: 
 σ2

1 is the variance for 1 of the 8,018 item-area indexes
 σ2

wgt.1 is the weighted variance component for 1 of the 8,018 item-area indexes
 ri1 is the corresponding expenditure weight for 1 of the 8,018 item-area indexes known

as relative importance. Weights are derived from the reported expenditures of the
Consumer Expenditure Survey (CE).

There are four selection choices for probability density distribution, data visualization 
and further assessment. They are:  

1) decomposed variances (σ2),
2) decomposed standard errors (σ),

3) 1decomposed weighted variances (σ2
wgt), or

4) decomposed weighted standard errors (σwgt).

For this study, decomposed standard error (σ) and decomposed weighted variances (σ2
wgt) 

are used for further examination.   

Since the first stage of CPI design computes standard error (σ) for all the basic indexes 
(area-item) before incorporating the weights from Consumer Expenditure survey, 
standard error (σ) distributions are examined. On the other hand, weighted variance 
(σ2

wgt) distribution is also examined because “All U.S. – All Items” variance (σ2
All US, All

item) is computed by summing across all the weighted variances (σ2
wgt) in the second stage. 

The following Table 1 shows the 12 month “All U.S. – All Items” variance (σ2
All US, All

item) from re-calculation based on decomposed weighted variances, originally published 
using formula (1), and corresponding rankings among groups.  

The following Figures (1, 2 and 3) display the probability density distribution (using 
kernel density estimation method), boxplots, and cumulative probability distribution of 
decomposed standard errors (σ) and decomposed weighted variances (σ2

wgt) of 8,018 
basic indexes.

1 decomposed weighted variances (σ2
wgt) indicates decomposed weighted variance components throughout this document.

Table 1 Variance  
σ2

All US, All item  
SE 
σAll US, All item Ranking 

SE 
σAll US, All item Ranking difference 

Month-Year 

calculated from 
approximation 
formula 

calculated from 
approximation 
formula 

high to low 
based on 
approximation 

as originally 
published 

high to low 
as 
published 

original SE - 
approximated 
SE  

May 2004 0.01256 0.11208 3 0.13137 3 0.01929 

May 2005 0.00856 0.09252 4 0.09601 5 0.00348 

May 2006 0.04214 0.20529 1 0.19046 1 -0.01483 

May 2007 0.02299 0.15162 2 0.13394 2 -0.01768 

May 2008 0.00732 0.08557 5 0.10304 4 0.01747 

Performance 
Goal < 0.0625 < 0.25 -- < 0.25 -- -- 



3.1  Exploratory Analysis Summary 
The superimposed probability density distributions (non-
parametric, kernel density estimation) of the decomposed 
SE (σ) and the decomposed weighted variances (σ2

wgt) 
display a positively skewed distribution (Figure 1 & 3), i.e., 
a large proportion of data are condensed on the lower side 
of the distribution across all groups (May 2004-May 2008). 
Potential outliers are also observed (red dots) in both 
distributions by assessing boxplots (Figure 1). An 
important feature is: once the standard errors are weighted 
based on their relative importance (expenditure weight 
from CE survey), different outliers emerge in the weighted 
variance distribution (σ2

wgt) than SE distribution (σ). For 
example, an extreme outlier is detected in the May 2006 
weighted variances distribution but not in the SE 
distribution. Similarly, the extreme outlier in May 2004 SE 
distribution is not observed as extreme once weighted.  
To assess the properties of median and mean (average) of each distribution, boxplots are 
magnified (Figure 2). Distribution means are inside the box for SE; however, they are 
pulled out of the box and whisker in the weighted variance distribution. May 2006 mean 
moved the highest among the groups due to an extreme outlier presence (figures 2 & 1).  

To assess the data properties and distributions more intuitively, magnified plots are 
produced for probability density distribution (kernel density), cumulative probability 
distribution (see section 5 for details about ecdf) and boxplots for SE and weighted 
variances. It is observed that the distribution of weighted variances is highly skewed than 
the SE distribution for a similar proportion of data.   

The probability density distribution (kernel density) and boxplots of SE and of weighted variances are superimposed for all 5 

comparison groups (May 2004-May 2008), and are displayed in pairs for intuitive comparison.  “May04SE12” indicates May 2004 

SE of 12-month, and “wgt_Var0405” indicates weighted variances of 2004 of May. The red dots display a potential outlier.  

Figure 1: Probability density distribution (kernel density) and boxplots of SE and of decomposed weighted variances

Figure 2: Magnified boxplots with 

distribution mean (blue dots) 



Figure 3: Magnified plots of figure 1.

Cumulative probability distribution (ecdf), probability density distribution (pdf; kernel density), 

and boxplots of SE and of decomposed weighted variances for May 2004-May 2008 

These magnified figures display about ~95% data for SE (0-20 range) and weighted variances (0-2x10-6 range). Identical proportion of 

data for all these graphs provide a frame of reference for intuitive comparisons. It enables us to observe the shape of the density and 

shape of the cumulative distribution curve. They all graphically confirm that the SE and weighted variance display a positively skewed 

distribution, and that the weighted variance distribution is much skewer and highly dense in lower end than the SE distribution.  

Boxplots and ecdf aid us to assess the quantiles and the skewness properties. The boxplot with notches is produced to display a normally 

approximated 95% confidence interval around the median (Chambers, J. et al, 1983). 



Ha:   Fi (x) < Fj (x) or Fi (x) > Fj (x)

for at least one pair of (i, j), where {(i, j): (2004, 2005, 2006, 2007, 2008)} 

Table 3:   Kruskal-Wallis Test Results
 P-values 

standard 
errors (σ)  

weighted 
variances 

(σ2
wgt) 

Kruskal-Wallis Test 
(asymptotic Chi-Square Appr) 0.003037 0.1918 
Kruskal-Wallis Test 
(permutation  test  1,000,000) 0.00311 0.1917 

Multiple Pairwise Comparison with Bonferroni adj 
maintaining overall α < 0.05 

   Significant contrast between SE 2005 & SE 2008 
   Significant contrast between SE 2006 & SE 2008 

Figure 4: QQ Plot of Log (SE May 2006), 

A data transformation example that 

displays non-normality of transformed data 

4. Non-Parametric Inference for Density Distributions

To compare the superimposed distributions of standard errors (σ) and of decomposed 
weighted variances (σ2

wgt), a more robust and distribution free, non-parametric statistical 
method is employed. The rank based Kruskal-Wallis test (KW) is implemented to 
compare more than two groups as it can be applied to a dataset without ties or adjustment 
for ties. Since the distributions are skewed (not normal) as section 3.1 confirms, KW test 
generally provides a greater power to detect differences among groups than one way 
ANOVA F-test (Higgins, J., 2004). KW test is essentially a one-way ANOVA on ranks 
and does not require normality to be a prerequisite. However, it does assume that the 
groups have the same distributional form or shape (Higgins, J., 2004; Aho, K., 2014). 
Section 3.1 also confirms that the groups have similar shape. A reference distribution for 
KW test statistic can be generated using either a permutation-testing procedure from 
randomization of observed data or chi-square approximation for a large sample size. If 
significant difference is detected by rejecting the null, multiple pairwise comparisons can 
be conducted while accounting for the familywise error rate to find contrast between 
pairs. A conservative multiple comparison method, Bonferroni procedure, is used here 
(Aho, K., 2014; Higgins, J., 2004, Hothorn, T., 2006). 

Initially, the skewed data was attempted to be transformed in order to produce normality, 
so that the parametric methods could be applied to transformed data. Log, square root, 
and cube root transformations were produced. However, the transformed data did not 
meet the criteria of a normal distribution as confirmed by an example Q-Q (Figure 4). So 
this was another motivation for implementing the non-parametric procedure.   

The Kruskal-Wallis test of k populations with the following cumulative distribution 
function (cdf) is: 

H0:   F2004 (x) = F2005 (x) = F2006 (x) = F2007 (x) = F2008 (x) 



4.1  Non-Parametric Result Summary 
The Kruskal-Wallis Tests results indicate that there is no significant differences (p-value 
= 0.1918) in weighted variance (σ2

wgt) distribution among groups. However, there is a 
significant difference in SE distribution among groups. Two out of ten pairwise 
comparisons show significant contrast—between SE 2005 & SE 2008 and between SE 
2006 & SE 2008 distributions (table 3). The Bonferroni procedure maintaining overall α 
< 0.05 is implemented in the multiple pairwise comparison to account for familywise 
error rate. It is important to note that the large sample size (n=8,018) contributed to a 
significant result even for a small shift (small effect size) in a distribution (as observe 
from figure 3). 

Intuitively it makes sense. Based on the exploratory analysis (section 3.1, figure 3), we 
observe that the weighted variance (σ2

wgt) distribution is more skewed than SE 
distribution. More skewed implies, higher proportion of data points are condensed within 
smaller region. As a result, data points from this densely small region do not show any 
differences across groups in significance testing. On the other hand, SE are spread across 
larger region compare to weighted variance distribution (figure 3). Thus, a shift in 
distribution is easily detectible even if it is small. 

In summary, it basically informs us that the standard error distributions of 8,018 indexes 
may be different initially; however, once standard errors are weighted based on the 
consumer expenditure weight (buying habits of American consumers), the weighted 
variance distributions look very similar across time. It also indicates, weighted variance 
distributions show stability (no shift) across time, while SE distributions may or may not. 
Please note that this comparison is observed only among five time points of the same 
month (May 2004 - May 2008) and not across all time points; hence, extrapolation should 
not be drawn without further investigation across more time points.  

Based on this result, if weighted variance distributions do not show a shift across the 
comparison groups (no significant difference), then what drives the increase in the final 
aggregate “All U.S. – All Items” variance?  

Exploratory analysis (section 3.1) provides a preliminary assessment, i.e, it’s the extreme 
outlier that may contribute a high proportion of variance in the final aggregation. To 
further investigate this idea, a categorical analysis is deployed in Section 6.  
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This ecdf uses a step function method that jumps up by 1/n at each of the n data points to 
estimate the curve for the cumulative probability of 1. The following plot (Figure 5) 
displays the cumulative probability distribution of weighted-Variances.  

Figure 5:  Empirical Cumulative Probability Distribution (ecdf) of Weighted Variances with Boxplots

The superimposed ecdf plots of the weighted variances for 

all 5 comparison groups (May 2004-May 2008) show that 

their cumulative probability distributions are almost 

identical. Superimposed boxplots identify few outliers 

among comparison groups. Performance target variance 

(0.0625) is shown in a dashed line.  

The two magnified plots provide a microscopic view of the 

data, and the quantiles (from boxplots) corresponding to 

cumulative probability (ecdf).  e.g., Magnified plot 

confirms that  P(σ2
wgt. basic indexes ≤ 10-6) ≈ 0.90. 

Median lines for May 2006 were plotted with May 2007 

(lowest) and May 2004 (highest).  

Magnified 

0.0625  (Performance Threshold) 

Magnified 

5. Detection Mechanism for Anomalous Behavior using Probabilistic Quality
Control 

Based on the above assessment on the weighted-variance distributions, it is observed that 
only a handful of basic indexes out of 8,018 may contribute most of the “All U.S. – All 
Items” aggregate variance. Understanding these area/items allow us to see if there are 
underlying data issues that may be addressable through the sample design. As other 
federal agencies with their mission and goals, CPI program is also dedicated to meet its 
performance goal. It is to ensure that the “All U.S. – All Items” aggregate SE (σ 

All US, All 

item) is less than 0.25 i.e., the Variance (σ2
All US, All item) is less than 0.0625. 

The ecdf, often known as the cumulative probability density curve, is a very robust tool 
for practical application in the field of probabilistic quality control in a production 
setting. For a given sample of (x1, x2, … xn),  𝒏(𝑽𝒂𝒓) is the fraction of observations less 
than or equal to the Var value, i.e., the ecdf is defined by:  

http://en.wikipedia.org/wiki/Step_function


5.1  Result Summary and Conclusions 
The superimposed ecdf of weighted-Variances for all 5 years indicate that their 
cumulative probability distributions are identical and cover similar density region for 
item-area indexes. Graphically, it confirms that about 90% of basic level indexes have 
less than or equal to 10-6 weighted-Variance for any of the 5 years. In other words, there 
is a 90% probability that a randomly picked weighted-Variances among any 5 years may 
have a less than or equal to 10-6 weighted-Variances, 
i.e., P (σ2

wgt. basic indexes ≤ 10-6) ≈ 0.90.

Based on the historic data, if there is indeed such a high probability for a basic level 
weighted-Variance to be so small, what drives the increase in the aggregate variance? 
Superimposed boxplots on the same data visualization with the superimposed ecdf plots 
may provide guidance for interpretation. Outliers are observed looking at the boxplots, 
such as, May 2006 shows about 0.035 weighted-Variances for a data point (basic index); 
May 2007 shows about 0.0115 weighted-Variances for a basic index. “All U.S. – All 
Items” aggregate Variance (σ2

All US, All item) for May 2006 is 0.04214 and for May 2007 is 
0.02299 (Table 1). Thus, this single index in May 2006 is attributable to ~ 83% of 
aggregate Variance (~ 0.035 / 0.04214), and the single index in May 2007 is attributable 
to ~ 50% of aggregate variance (~ 0.0115 / 0. 02299). 

Based on the analysis and data visualization, we learn that although the probability is 
very low for a basic index to display anomalous behavior (i.e., handful indexes out of 
8,018), the impact may be very high if this takes place due to its overwhelming 
contribution to the “All U.S. – All Items” aggregate variance. 

Superimposed data visualizations of ecdf and boxplots provide a coherent and 
meaningful representation of large datasets for an intuitive understanding and 
interpretation. Additionally, boxplots guide us to assess the quantiles with the 
corresponding cumulative probability on the ecdf plot. Magnification of the axis provides 
a microscopic view of data points for assessment. A useful application of the 
superimposed boxplots and ecdf plot is to monitor the basic level indexes for anomalous 
behavior by comparing contrasting with previous or relevant months, or from a 
hypothetical target.  

6. Odds, Relative Risk, and Odds Ratio:
Different Likelihoods and Probabilities of Events 

Based on the above analysis, we observe that few weighted-variances out of 8,018 
indexes act as the top players to increase the “All U.S. – All Items” aggregate variance. 
This observation creates another premise to look at this data from a count-data 
perspective. It enables one to discover additional properties, such as, how many or what 
proportion of indexes contribute the most variation in percent change of prices in U.S.; or 
a range of common likelihoods in general. 

To investigate these questions, categorical data analysis was used. First, contingency 
tables are produced as follows: 



Table 4a Table 4b 

Number of Indexes Contributed in  
Decomposed Variance (All U.S. -All Items) 

Proportion of Indexes Contributed  
in Decomposed Variance (All U.S. -All Items) 

Mo-YY 
 # of Index in  
Higher 99% 

 # of Index in  
Lower 1% 

Total Mo-YY 
 Prop of Index 
in Higher 99% 

 Prop of Index 
in Lower 1% 

Total 
Odds of Index 
in Higher 99% 

May 2004 1785 6233 8,018 May 2004 0.22262 0.77738 1 0.28638 
May 2005 2039 5979 8,018 May 2005 0.25430 0.74570 1 0.34103 
May 2006 734 7284 8,018 May 2006 0.09154 0.90846 1 0.10077 
May 2007 1188 6830 8,018 May 2007 0.14817 0.85183 1 0.17394 
May 2008 2129 5889 8,018 May 2008 0.26553 0.73447 1 0.36152 

To produce the contingency tables, the approximate decomposition equation of “All U.S. 
– All Items” variance into its 8,018 basic index components is used.

 𝜎𝐴𝑙𝑙 𝑈𝑆,𝐴𝑙𝑙 𝐼𝑡𝑒𝑚
2 ≈ 𝜎𝑤𝑔𝑡.1

2 + 𝜎𝑤𝑔𝑡.2
2 + ⋯ + 𝜎𝑤𝑔𝑡.8,018

2

= ( 𝑟𝑖1 ∗  𝜎1)2 +  ( 𝑟𝑖2 ∗  𝜎2)2 + ⋯ + ( 𝑟𝑖8,018 ∗  𝜎8,018)2 
Once the aggregate variance is decomposed into its mutually exclusive components 
followed by ranking of the weighted-variances, binomial count data is produced using a 
few meaningful benchmarks. In this context, the benchmarks are chosen as 80-20 and 99-
1 to meet the goal of the question of interest.  

Table 3 shows the number of ranked indexes that are attributable to 80% of the “All U.S. 
– All Items” variance, while remaining indexes are only attributable to 20% of the
variance. Similarly, Table 4 shows the number of ranked indexes that are attributable to
99% of the variance, while remaining indexes are only attributable to 1% of the variance.
These tables also show the associated proportion tables (probabilities) and corresponding
odds.

Odds ratio, relative risk and difference in proportion can be employed for statistical 
inference on these contingency tables (Aho, K. 2014). In practice, when proportions are 
small, it is useful to compare groups with odds ratio or relative risk.   
In probability, the odds of an event A is defined as:  

𝛀(𝑨) =
𝑷(𝑨)

𝟏 − 𝑷(𝑨)
=  

𝝅

𝟏 − 𝝅

If P(A) < 0.5, then Ω(A) < 1, and as P(A) increase from 0.5 to 1, then Ω(A) increase from 
1 to ∞. A suitable interpretation is as follows: the event A is Ω(A) times more likely to 
occur than to not occur. 

The ratio of odds for two outcomes is their odds ratio and is defined as: 
𝜽𝟏,𝟐 =

𝛀𝟏

𝛀𝟐

Table 3a Table 3b 

Number of Indexes Contributed in  
Decomposed Variance (All U.S. -All Items) 

Proportion of Indexes Contributed  
in Decomposed Variance (All U.S. -All Items) 

Mo-YY 
 # of Index in  
Higher 80% 

 # of Index in  
Lower 20% 

Total Mo-YY 
 Prop of Index 
in Higher 80% 

 Prop of Index 
in Lower 20% 

Total Odds of Index 
in Higher 80% 

May 2004 88 7930 8,018 May 2004 0.01098 0.98902 1 0.01110 
May 2005 162 7856 8,018 May 2005 0.02020 0.97980 1 0.02062 
May 2006 1 8017 8,018 May 2006 0.00012 0.99988 1 0.00012 
May 2007 15 8003 8,018 May 2007 0.00187 0.99813 1 0.00187 
May 2008 181 7837 8,018 May 2008 0.02257 0.97743 1 0.02310 



If the odds ratio is greater than 1, this indicates that the odds of success for one event (Ω1) 
are greater than the odds of success for the other event (Ω2). For empirical estimation 
from data, the estimator for θA,B is 

�̂�𝟏,𝟐 =
�̂�𝟏 (𝟏 − �̂�𝟏)⁄

�̂�𝟐 (𝟏 − �̂�𝟐)⁄
=  

(𝒚𝟏/𝒏𝟏) (𝟏 −  𝒚𝟏/𝒏𝟏)⁄

(𝒚𝟐/𝒏𝟐) (𝟏 −  𝒚𝟐/𝒏𝟐)⁄

Similar to odds ratio, relative risk is another measure and is defined as the ratio of two 
probabilities. Relative risk is used to contrast the relative probabilities for “success” 
between different groups or treatments.   

𝑹�̂�𝟏,𝟐 =
�̂�𝟏

�̂�𝟐
 =  

(𝒚𝟏/𝒏𝟏)

(𝒚𝟐/𝒏𝟐)

Multiple pairwise comparison between five groups (May 2004 - May 2008) can be 
conducted using a recently published methodology (Agresti, Alan et all. 2008) for odds 
ratio, relative risk and difference in proportion. A useful feature of this method is to 
construct a simultaneous confidence interval for statistical significance instead of ad hoc 
approaches, such as Bonferroni correction, to account for familywise error rate (FWER). 
Once the confidence bounds of odds ratios are obtained (Agresti, Alan et all. 2008), 
corresponding conversions are computed for relative risk confidence bound using 
Schmidt and Kohlmann (2008); Zhang and Yu (1998); and Holland (1989). The 
following tables (6 and 7) and the graph summarize the pairwise odds ratio, relative risk, 
difference in proportion and the corresponding 95% simultaneous confidence intervals 
for both benchmarks (80-20 and 99-1).  

Table 5 
Rank 

Variance  
σ2

All U.S., All item 
SE  
σAll U.S., All item Odds Odds 

Month-Year 

calculated from 
approximation 
formula 

calculated from 
approximation 
formula 

80-20
benchmark

99-1 
benchmark

May 2006 1 0.04214 0.20529 0.00012 0.10077 

May 2007 2 0.02299 0.15162 0.00187 0.17394 

May 2004 3 0.01256 0.11208 0.01110 0.28638 

May 2005 4 0.00856 0.09252 0.02062 0.34103 

May 2008 5 0.00732 0.08557 0.02310 0.36152 
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Figure 6: The odds display an inverse functional form with the “All US-

All Items” variance for May 2004-2008 for both benchmarks (80-20 and 99-

1). Each benchmark was separately plotted due to different scales in odds, 

and also superimposed in a single scale plot.  



Table 6: Pairwise Comparisons Between All Groups with corresponding 95% simultaneous confidence intervals  
for 80%-20% Benchmark on ranked order (based on OR) 

Comparison 
Groups  

Lower 
Bound 
(OR) 

Odd Ratio 
(OR) 

Upper 
Bound (OR) 

Lower 
Bound 
(RR) 

Relative 
Risk (RR) 

Upper 
Bound (RR) 

Lower 
Bound 
(DiffP) 

Difference 
in 
Proportion 
(DiffP) 

Upper 
Bound 
(DiffP) 

2008-2005 0.832 1.120 1.508 0.830 1.117 1.504 -0.00350 0.00237 0.00850 

2005-2004 1.294 1.858 2.669 1.282 1.841 2.644 0.00450 0.00923 0.01449 

2008-2004 1.458 2.081 2.972 1.440 2.057 2.937 0.00650 0.01160 0.01649 

2004-2007 2.808 5.921 12.484 2.782 5.867 12.370 0.00650 0.00910 0.01249 

2005-2007 5.345 11.002 22.648 5.246 10.800 22.232 0.01449 0.01833 0.02249 

2008-2007 6.004 12.322 25.290 5.879 12.067 24.765 0.01649 0.02070 0.02549 

2007-2006 1.526 15.026 147.823 1.523 15.000 147.564 0.00150 0.00175 0.00350 

2004-2006 9.441 88.965 838.391 9.338 88.000 829.293 0.00850 0.01085 0.01449 

2005-2006 17.613 165.320 1551.723 17.259 162.000 1520.561 0.01649 0.02008 0.02449 

2008-2006 19.727 185.157 1737.919 19.284 181.000 1698.899 0.01849 0.02245 0.02649 

 

 

 

 

Figure 7: 80-20 benchmark. The OR and RR for pairwise

comparison are plotted with their corresponding 95% CI based on 

ranked order (small to large). OR[85] implies odds(2008)/odds(2005). 

Ranking provides additional feature for interpretation, i.e., which 

pair is smaller or larger compare to other. Magnified plot shows a 

microscopic view of OR and distance between pairs. The dashed line 

at x=1 is to assess the statistical significance for ratio.    

The Difference in Proportion plot shows pairwise differences with CI 

in ranked order. D[76] implies odds(2007) — odds(2006). The dashed 

line at x=0 is to assess the statistical significance for difference.      



Table 7: Pairwise Comparisons Between All Groups with corresponding 95% simultaneous confidence intervals  
for 99%-1% Benchmark on ranked order (based on OR) 

Comparison 
Groups  

Lower 
Bound 
(OR) 

Odd Ratio 
(OR) 

Upper 
Bound (OR) 

Lower 
Bound 
(RR) 

Relative 
Risk (RR) 

Upper 
Bound (RR) 

Lower 
Bound 
(DiffP) 

Difference 
in 
Proportion 
(DiffP) 

Upper 
Bound 
(DiffP) 

2008-2005 0.961 1.060 1.170 0.946 1.044 1.152 -0.00750 0.01122 0.02949 

2005-2004 1.076 1.191 1.318 1.032 1.142 1.264 0.01349 0.03168 0.04948 

2008-2004 1.141 1.262 1.397 1.078 1.193 1.320 0.02449 0.04290 0.06047 

2004-2007 1.470 1.646 1.844 1.342 1.503 1.683 0.05847 0.07446 0.09045 

2007-2006 1.506 1.726 1.978 1.412 1.619 1.855 0.04348 0.05662 0.07046 

2005-2007 1.754 1.961 2.191 1.536 1.716 1.918 0.08946 0.10614 0.12244 

2008-2007 1.861 2.078 2.321 1.605 1.792 2.001 0.10045 0.11736 0.13443 

2004-2006 2.497 2.842 3.234 2.137 2.432 2.768 0.11644 0.13108 0.14643 

2005-2006 2.980 3.384 3.844 2.446 2.778 3.155 0.14743 0.16276 0.17841 

2008-2006 3.162 3.588 4.071 2.556 2.901 3.291 0.15842 0.17398 0.18941 

6.1  Result Summary and Conclusions 
 Contingency Tables: Based on May 2004, 2005, and 2008 datasets (Table 3b), about
1-2% indexes are attributable to 80% of the variance while 98-99% indexes are
attributable to 20% of the variance. May 2006 shows a different behavior—only 0.01%
index (1 index out 8,018) is attributable to 80% of the variance. This anomalous behavior
is reflected on the “All U.S.— All Items” variance of May 2006  that has the largest
variance (0.04214) compare to other years.

Similarly, based on May 2004, 2005, and 2008 datasets (Table 4b), about 22-27% 
indexes are attributable to 99% of the variance while 73-78% indexes are attributable to 
only 1% of the variance. For May 2006, only 9% indexes are attributable to 99% of the 
variance. Similar explanations also hold for May 2007 aggregate variance which is the 
second largest among the group. 

Figure 8: 99-1 benchmark. The OR and RR for pairwise

comparison are plotted with their corresponding CI based in 

ranked order (small to large). OR[85] implies 

odds(2008)/odds(2005). Ranking provides additional feature 

for interpretation, i.e., which pair is smaller or larger 

compare to other. The dashed line at x=1 is to assess the 

statistical significance for ratio.    

The Difference in Proportion plot shows pairwise differences 

with CI on ranked order. D[85] implies odds(2008) — 

odds(2005). The dashed line at x=0 is to assess the statistical 

significance for difference.      



 Odds: May 2006 has the lowest odds relative to other years (2004-2008) for both
benchmarks (Tables 3b & 4b). Among other properties, we observe that the ranks of “All
U.S. – All Items” aggregate variance has an inverse functional form with odds (Table 5
and corresponding graph), i.e., lower the odds, higher the aggregate variance. One likely
explanation of the phenomena could be: lower odds implies only a few indexes
contributed to a large proportion of variance in this context; thus, generating a higher risk
that an anomaly might have taken place in an index level, resulting in a larger disparity in
attributable variances than expected. Additionally, it is also observed as odds are very
similar, aggregate variances are also similar, such as May 2005 and May 2008 (Table 5).

 Pairwise Comparison of Odds: Since odds are systematically lower for the indexes
that contribute the most aggregate variance, it is useful to conduct a pairwise comparison
between all the groups, i.e., odds of one event with another event (odds ratio) for further
examination (Tables 6 & 7; associated graphs).  Odds of 2008 and 2005 are similar (1 is
included within the CI), while all the pairwise comparisons of odds ratio show significant
difference (1 is not within the CI) for both benchmarks. The large sample size (n=8,018)
contributed for significant results in pairwise comparison.

Based on the results of 80-20 benchmark, the odds of the number of indexes attributable 
to 80% variance ranges about 1-12 times the other years across all years except May 
2006. On the other hand, pairwise comparisons with May 2006 reveals a different 
pattern—other years are 15-185 times the odds of May 2006.  Additionally all the 
pairwise comparisons with 2006 show a much wider 95% confidence interval. Similarly, 
for 99-1 benchmark, odds of the number of indexes attributable to 99% variance for 
2004, 2005, and 2008 are 1-1.3 times likely the odds among them, 1.6-2 times the odds of 
May 2007, and about 2.8-3.6 times the odds of May 2006. In other words, a distinct range 
of OR pattern across as well as a larger odds ratios in the behavior May 2006 pairwise 
comparisons are observed. It also provides a baseline information for future reference for 
a range of possible OR.  

 Pairwise Comparison of Difference in Proportion: Pairwise difference between all
groups except 2008-2005 show significant difference (0 is not within the CI) for both
benchmarks (Tables 6 & 7; associated graphs). The large sample size (n=8,018)
contributed for significant results in pairwise comparisons. Because odds are
systematically lower in proportion, difference in proportion is also small. Thus, OR may
have provided a better interpretation than DiffP. DiffP shows a smaller range (0.00175-
0.02245) for 80-20 benchmark, but a larger range (0.01122-0.17398) for 99-1 benchmark.
Pairwise comparisons between May 2006 and 2004, 2005, 2008 show the largest range of
difference (0.13108-0.17398) among all other groups in 99-1 benchmark. The difference
between 2008-2006 is the highest in both benchmark.

In other words, these conditional contingency tables (80-20 and 99-1 benchmarks) 
empirically show that across all the groups, a small proportion of indexes are attributable 
to a large proportion of variance in general. Additionally, in the event that a very few 
indexes contribute to high proportion of aggregate variance, an increase in aggregate 
variance may also be observed compared to other years. Thus, monitoring these outlying 
behavior of basic index variances is once again confirmed from the categorical analysis 
perspective. The result answers the question of interest and provides a technique to 
construct a baseline information for future reference, i.e., what proportion of the basic 
indexes contribute the most variance.      



 R packages used:
 ggplot2    (Wickham, Hadley.  ggplot2: elegant graphics for data analysis. Springer New York, 2009).
 coin (Hothorn, T. et al. The American Statistician, 2006.    see below).  
 asbio (Aho, K. Foundational and applied statistics for biologists using R, 2014.   see below) 

 SAS procedure:
 proc npar1way
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7. Recommendations

All the results converge to a single idea: anomalous behavior in a handful of basic 
indexes may potentially contribute a large proportion of variance, that in turn may pose a 
risk on “All U.S. – All Items” aggregate variance to reach its performance threshold (σ < 
0.25). Thus, monitoring the decomposed weighted-variances using exploratory and data 
visualization techniques may be beneficial for CPI program in the long run. Month-to-
month superimposed data visualization of decomposed weighted-variances may be an 
effective monitoring tool as they provide a reference group(s) for comparison. It may also 
provide additional insights about data issues that may be addressable with future 
improvements to the sample design. 
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