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Abstract 
The Consumer Price Index (CPI) is estimated based on a multistage probability sampling 
design. To collect the optimal number of Items and Outlets across the United States, a non-
linear constrained optimization method, known as the Item-Outlet Optimization Program 
(IOOP), has been used. IOOP calculates optimal sample sizes for the commodities and 
services component of CPI, about 70% of the CPI weight. Previous BLS literature has 
described the mathematical basis of this method. Currently, CPI uses SAS for computation. 
In this study, we provide useful technical details for practical implementation in R, intuitive 
interpretation and infographics. What makes IOOP unique compared to classic methods, 
such as Neyman allocation, is its level of practicality and complexity. IOOP generates 
optimal sample sizes to minimize the overall CPI variance while maintaining fixed budgets 
and scope, as well as other constraints. The fixed scope is essentially the parameters—labor 
hours, travel time, response rates, etc.—to account for the reality of data collection. The R 
implementation provides a validation of SAS results, and the details can be beneficial to 
agencies seeking a method to account for scope. 

Key Words: Consumer Price Index (CPI), nonlinear optimization, optimal sample size, 
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1. Introduction

1.1 Historical Background 
Since its 1978 revision, the Consumer Price Index (CPI) has been estimated through a 
scientific sampling method, a multistage probability sampling design. Meanwhile, 
statisticians at the Bureau of Labor Statistics (BLS) started to brainstorm and develop a 
theoretical framework for optimal sample allocation methodology for the commodities and 
services component of CPI (about 70% of the CPI weight; housing sampling comprises the 
remaining 30%). To collect the optimal number of Items and Outlets across the United 
States, a non-linear constrained optimization method, known as the Item-Outlet

Optimization Program (IOOP), has been used. Richard Valliant, Sylvia Leaver, William 
Johnson, Owen Shoemaker, Thomas Benson, Darin Solk, Curtis Jacobs, William Weber, 
and Michael Cohen contributed in developing the mathematical basis and published 
literatures on mathematical derivations of IOOP design (Leaver et al. 1986, 1999, 2005; 
Johnson et al. 1999; Shoemaker et al. 1999). The first operational implementation of IOOP 



1 Optimization program outputs K’s, which are then inversed (1/K) to produce the Item sample size.   
2 A specific type of item is known as quote. In this paper, item and quote are often used interchangeability for simplicity. 

(as a regular task) employed SAS PROC NLP (1999) for solution, followed by S-PLUS 
NuOPT to ensure that SAS and S-PLUS produce similar results. SAS IML was also 
implemented a few years after SAS NLP. Prior to regular implementation, other expired or 
customized programming languages were used during the development phase, field testing 
and model validation of the procedure. Currently, CPI uses the SAS OPTModel for 
computation. Technical details were not discussed much in previous literature, as the 
discussion typically encompassed the mathematical derivations of IOOP and the sample 
design of CPI.  

1.2 Current Study 
In this study, we take the opportunity to discuss the technical details, challenges and 
mitigation strategies (section 4) as we implement IOOP in R. These technical details may 
be beneficial to other statistical agencies or organizations that are trying to implement a 
large scale optimization model for sample size calculations. We also provide intuitive 
interpretations to promote the merit of IOOP in survey sampling estimation, and 
infographics for conceptual clarity of IOOP. Infographics and data visuals are becoming 
popular tools to communicate scientific findings and methodology to other scientists, 
researchers, stakeholders and executive leaders in the field of research and statistical 
product development.    

2. What Does IOOP Really Do?
The principal research question that IOOP attempts to discover is: 

How many Outlets (M) and Items (1/K)1 should we collect (sample size) for an efficient 
overall CPI estimate (i.e., with minimum variance) across the United States while 
maintaining fixed multipurpose budgets and scope (i.e., labor hours, travel time, response 
rates, modes of collection, number of PSUs, etc.) and other constraints to account for the 
reality to operate a statistical survey program? 

In this perspective, IOOP is a dynamic, complex, and practical sample size calculator to 
aid the field staff for price collection of items2 from different outlets across the United 
States. Another benefit of this method is that it generates a model predicted CPI variance 
estimate every 6 months (commodities and services component (C&S), ~70%) based on 
the optimal sample sizes it generates as output. Additionally, this method provides 
simultaneous solutions to both, item and outlet sample sizes (Leaver et al. 1986), which is 
not typically observed in classic survey sample allocation design due to the design 
complexity and computational challenge. What makes IOOP unique compared to classic 
methods such as Neyman allocation is that IOOP accounts for many parameters including 
multipurpose budgets and differential costs, constraints, and scope that are part of the 
reality to operate a statistical survey program and complex data collection procedures. In 
other words, ignoring scope parameters in the design for the trade-off of simplicity may 
generate unachievable sample sizes. It is because the scope parameters are so vital in 
operating a statistical organization. Hence, IOOP attempts to capture the feasibility of a 
context prior to generating the optimal sample sizes for collection in order to achieve the 
best minimum U.S. level CPI standard error. Neyman allocation “ignores any differential 
costs of data collection and processing among strata” in addition to a fixed overall target 
sample size (Valliant et al. 2013). 
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The projected variance for a single index area or major group (mg) belonging to a PSU 
group (pg) can be written as 
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In the following sections and in Table 1, we discuss the parameters in details. See Leaver 
et al. (1999), Johnson et al (1999, 2016) for the mathematical derivations. 

2.1.2 Decision variables: output the optimal sample sizes  
Sample sizes for Items (1/Kmg, area) and Outlets (Mmg, area) are the decision variables in this 
optimization problem. Because it optimizes two stages of sampling out of three stages, it 
generates 1/Kmg, area and Mmg, area. First stage, PSU structure, is fixed. There are 13 Major 
Groups (mg) of items across 38 Index Areas (area) in the United States (13 x 38 = 494). 
Since samples are collected from each major group and from each index area, IOOP 
simultaneously generates 494 sample sizes for Items (1/Kmg, area) and 494 sample sizes for 
Outlets (Mmg, area). Hence, IOOP estimates 988 optimal samples sizes (decision variables) 
as output. This large variable problem (2 x 13 x 38 = 988) can be reduced into a smaller 
variable problem (2 x 13 x 15 = 2 x 195 = 390) by grouping all the PSUs into 15 PSU 
Groups (pg) based on the similarity of relative importance (weights). We will discuss more 
about this process in the technical detail sections as IOOP solves for 390 decision variables. 

2.1 Nuts and Bolts of IOOP: Accounting Practicality and Complexity 
Four key ingredients formulate an optimization problem—objective function, decision 
variables, parameters, and constraints (Valliant et al. 2013, Gonzalez et al. 2010). The goal 
of an optimization problem is to find (output) the optimal values for the decision variables 
that will enable the minimum (or maximum) value for the objective function while 
maintaining all the constraints. Parameters are the coefficients (constants) nested within 
the objective function, often properties or attributes that have functional relationship with 
the objective function or with a constraint function.  

2.1.1 Objective function: minimize the variance 
The objective function of IOOP is the projected variance  𝜎2(𝑃𝐶𝑡𝑜𝑡𝑎𝑙) for the 6-month 
percent price change of All Items less Shelter (C&S) of the U.S. CPI. The projected 
variance can be written as 
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Table 1 provides the details about the parameters. 

2.1.4.2 Linear constraints: bounds and restrictions for sample sizes 
Maximum or minimum limits on the decision variables (sample sizes) constitute the linear 
constraints of IOOP. There are a total of 195 (13 Major Group x 15 PSU Group) linear 
constraints that restrict the Items and Outlets sample sizes, and 1 linear constraint function. 
A study by Bradley (2005) suggested that small sample size from the lowest sampling unit 
level (area-item) induces an upward bias in the CPI-U measure, and proposed a small 
sample bias adjustment factor by estimating the second order stochastic expansion of the 
index. Hence, IOOP employs a linear function to restrict the output sample size that 
accounts for the small area sample bias in the design level. There are two  

2.1.3 Parameters: scope 
Model parameters (coefficients of the decision variables) are what make IOOP a unique 
sample allocation problem. It enriches IOOP into a pragmatic sample allocation method 
since it accounts for the scope—parameters that are associated with operating a statistical 
survey program, data collection procedure, and outlet-item response rate behaviour. Table 
1 provides all the parameters and associated scope within the context.    

2.1.4.1 Non-linear constraint: realistic cost function 
Another aspect of IOOP that is unique compared to many other allocation models, 
including classic models, is its handling of survey-associated costs as a non-linear 
constraint function. In practice, an overall budget is often itemized into multipurpose 
budgets as a function of office, purpose or other factors that are not controlled by a chief 
survey officer; or simply due to differential costs among strata or data processing. 
Additionally, there are fixed costs and variable costs in the production setting which adds 
complexity to survey sampling. IOOP captures this non-linear functional relationship of 
various costs. The non-linear cost function is the sum of four multipurpose cost functions—
outlet related initiation costs (CIOmg,pg), outlet related repricing costs (CPOmg,pg), quote 
related initiation costs (CIQmg,pg), and quote related repricing costs (CPQmg,pg). Fixed and 
variable costs are accounted within each of the four cost functions. They are: compensation, 
per-diem, mileage, travel time, overlap adjustments, seasonal cost, and differential costs 
for survey modes of collection and response rates. 



Table 1: Optimization Parameters (model coefficients) that formulate IOOP. They account for 
the reality to operate a statistical survey program and data collection procedure (scope) 
Scope Parameter Notation 

1 Item Strata or Area Structure number of PSUs in the index area (referred to as "by area") Narea 
2 Item Strata or Area Structure weighted sum of nonpops categories in major group (mg) NPVmg 

3 Item Strata or Area Structure number of PSUs in PSU group pg (as opposed to the 
number of PSUs in an index area referred to as area) Npg 

4 Item Strata or Area Structure minimum number of non-self representing PSUs in the 
PSU group (pg) Nnsr 

5 Item Strata or Area Structure number of item strata in major group (mg) Nis,mg 
6 Labor Hours compensation initiation cost per outlet (mg) COmg 

7 Labor Hours compensation cost for a personal visit for pricing per 
outlet (mg) CPVOmg 

8 Maximum Grand Cost Cost ceiling for initiation and repricing for 1 year Ctotal 

9 Modes of Collection 
(Differential Cost or Diff Cost) cost of telephone collection of an outlet (mg) CTOmg 

10 Modes of Collection;  Diff Cost cost of internet collection of an outlet (mg) CWOmg 
11 Modes of Collection;  Diff Cost per quote cost for a personal visit for pricing (mg) CPVQmg 
12 Modes of Collection;  Diff Cost per quote cost of telephone collection (mg) CTQmg 
13 Modes of Collection;  Diff Cost per quote cost of internet collection (mg) CWQmg 
14 Modes of Collection;  Diff Cost percent of quotes collected by personal visit (mg) RPVQmg 
15 Modes of Collection;  Diff Cost percent of quotes collected by telephone (mg) RTQmg 
16 Modes of Collection;  Diff Cost percent of quotes collected by internet (mg) RWQmg 
17 Multipurpose Budgets outlet related initiation costs CIOmg,pg 
18 Multipurpose Budgets outlet related repricing costs CPOmg,pg 
19 Multipurpose Budgets quote related initiation costs CIQmg,pg 
20 Multipurpose Budgets quote related repricing costs CPQmg,pg 
21 Multipurpose Budgets initiation cost per quote (mg) CQmg 

22 Overlap Element Adjustment
or Non-Duplication 

linear and quadratic coefficients of the unique outlet 
predictor function for variance projection 

AVmg,area ; 
BVmg,area 

23 Overlap Element Adjustment
or Non-Duplication 

linear and quadratic coefficients of the unique outlet 
predictor function for cost 

ACmg,area ; 
BCmg,area 

24 Overlap Element Adjustment 
or Non-Duplication 

factor to adjust for the monthly/bimonthly mix of outlets 
for PSU group (pg) and major group (mg) MBOmg,pg 

25 Response Rate outlet level response rate (for major group, mg) NROmg 
26 Response Rate quote level response rate (mg) NRQVmg 
27 Response Rate percent of outlets collected by personal visit (mg) RPVOmg 
28 Response Rate percent of outlets collected by telephone (mg) RTOmg 
29 Response Rate percent of outlets collected by internet (mg) RWOmg 
30 Response Rate quote level response rate for projected costs (mg) NRQCmg 
31 Seasonal Cost seasonal items initiation factor (mg) WODmg 

32 Small Sample Bias average number of quotes in the lowest level sampling unit 
(area–item) SSB 

33 Travel Distance or Time perdiem and mileage cost per outlet (mg) COTmg 
34 Travel Distance or Time travel cost for a personal visit for pricing per outlet (mg) CPOmg 

35 Travel Distance or Time Ratio of current expected distance to nearest neighbor 
divided by 1987 distance to nearest neighbor areafactor 



slightly different linear equations depending on self or non-self representing PSU groups. 
These constraints specify that the average number of quotes should be greater than or equal 
to nine in the lowest level sampling unit (area–item) (or mg-pg). 

For self representing PSU groups 
9 ∗ 𝐾𝑚𝑔,𝑝𝑔 − 𝑁𝑅𝑄𝐶𝑚𝑔 ∗

1

𝑁𝑖𝑠,𝑚𝑔
∗ 𝑀𝑚𝑔,𝑝𝑔 ≤ 0 

For non-self representing PSU groups 
9 ∗ 𝐾𝑚𝑔,𝑝𝑔 −

1

3 − 𝑀𝐵𝑄𝑚𝑔,𝑝𝑔 6⁄
∗ 𝑁𝑅𝑄𝐶𝑚𝑔 ∗

𝑁𝑛𝑠𝑟

𝑁𝑖𝑠,𝑚𝑔
∗ 𝑀𝑚𝑔,𝑝𝑔 ≤ 0 

3. Optimization Infographics
Infographics are designed to promote the conceptual clarity of IOOP, and to illustrate the 
complexity of the optimization process. Figure 1 illustrates the IOOP process, and Figure 
3 illustrates the disaggregation process for sample size.  

4. Useful Technical Notes: Challenges and Mitigation

In scientific computing and algorithmic perspective, optimization design can be classified 
into four increasing levels of complexity—unconstrained, linear program, quadratic 
program, and non-linear program optimizations. IOOP is the most complex in this pyramid. 
On the other hand, an optimization algorithm can be classified into three main categories—
analytic gradient based, finite-difference gradient based and non-gradient based 
techniques. Figure 2 (Optimization Designs) provides an infographic to explain the 
properties and trade-offs of these algorithms. 

The first operational implementation of IOOP (1999) employed Windows 95 operating 
system with SAS NLP. Prior to this, a mainframe computer environment was used during 
model development and validation. Fortunately, computing power is no longer a challenge 
in 2016 as it was when IOOP was first implemented, which gives rise to many creditable 
algorithm packages for linear and non-linear optimization in R. To name a few CRAN 
verified packages: nloptr, Alabama, NlcOptim, mopsocd. Additionally, the availability of 
RAM (random access memory)—in order to load, store, and use temporary data—is no 
longer a challenge as it was a decade ago in terms of cost, quality and quantity. 

Another property of IOOP that’s worthy of mention is its improvement to variance 
component estimation methodology (Shoemaker, 1999) by introducing a restricted 
maximum likelihood (REML) in order to reduce the effect of nuisance information. This 
improvement resulted in stability of variance components and the all-aggregate variance. 

We implemented an analytic gradient (partial derivatives) based approach in R using nloptr 
package. nloptr is an interface between R and the NLopt open source library of 
optimization algorithms 3 . Authors of this package also demonstrate their innovative 
research work with optimization algorithms4.The specific algorithm used is the Sequential

Least Squares Quadratic Programming method, referred to as  

3 Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt 
4 Eddelbuettel, D. (2013). Seamless R and C integration with Rcpp. New York: Springer. 

J
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Outlet Initiation Costs 

Item Initiation Costs 

Outlet Repricing Costs 

Item Repricing Costs 



by ½, the total feasible region is thereby reduced to (½) (½)…. (½) = (½)195 = 2 x 10-59 in 
this manifold (topological space). In plain language, it means the cross products of 195 
planes tremendously reduce the feasible region in IOOP. 
(C3) Objective function values at neighbouring points are too close to differentiate the best

value in convergence within machine precision. In algorithmic perspective, converging in 
a single or two iterations may indicate this ill-conditioned behaviour.    
(C4) Item sample size allocated to each index area in a PSU group and in a major group 
𝐾𝑚𝑔,𝑝𝑔 is a non-linear function of the minimum sample size bias constraint (≥ 9). Hence, it 
increases the complexity by introducing additional 195 (15x13) non-linear constraints. 

𝑁𝑅𝑄𝐶𝑚𝑔 ∗
1

𝑁𝑖𝑠,𝑚𝑔
∗ (𝐾𝑚𝑔,𝑝𝑔 ∗ 𝑀𝑚𝑔,𝑝𝑔) ≥ 9   (𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)

4.1.2 What are the Mitigation (M) Strategies? 
(M1) Sufficient RAM and quality computer processors (CPUs) can mitigate C1, although 
longer time may still be a challenge. Gradient based optimization may mitigate the time 
challenge as discussed in the next section.   
(M2) Shrinking of feasible region may result in “no feasible solution” or non-convergence 
errors, or simply the algorithm may not run or continue. To mitigate C2, initial points (988) 
must be a set of points that are very close to the feasible region in order for the optimization 
algorithm to iterate and to find the next best set of points. In practice, using the solution set 
from previous rotation as the initial starting points for the following rotation mitigates this 
challenge. The constraint precision (tolerance level) may also need to be relaxed to avoid 
“no feasible solution” errors (discussed more in the next section).   
(M3) Geometrically, raising the power (𝑛 𝑓𝑜𝑟 𝑓(𝑥) > 1 ;

1

𝑛
 𝑓𝑜𝑟 𝑓(𝑥) < 1) of a positive

valued function often increases the curvature of the function that results in exaggeration of 
the distance between clustered points. To mitigate C3, the overall objective function is 
raised to the 1/5th in order to exaggerate the difference at nearby point values. It results in 
converging to the best possible point (minimum variance) with the corresponding optimal 
output solution points (sample sizes). The premise to mitigate this challenge is the 
monotonically increasing property of our objective function (within given bounds). If a 
function 𝑓(𝑥𝑖) is monotonically increasing, then a set of points (𝑥𝑖) that achieves the 

NLOPT_LD_SLSQP, which can handle non-linear objective functions, and non-linear 
equality and inequality constraints. This algorithm allows the user to specify the analytic 
gradient of the objective function and the Jacobians of the equality and inequality 
constraints that greatly speeds up the algorithm and allows it to converge to a better point 
with less violation of any of the constraints. An advantage of R over other proprietary 
software is that the original source code algorithm by authors can be viewed and stored for 
assessing the details of a method.  

4.1 Challenges and Mitigation for IOOP 

4.1.1 What are the Challenges (C)? 
(C1) IOOP is a large scale non-linear optimization program (Figure 2), thus very complex 
and requires a large amount of computing power.  
(C2) The presence of many constraints (196), linear (195) and non-linear constraints (1), 
and pre-calculated coefficients (model parameters) tremendously shrink the feasible region 
for solution space i.e., sample sizes. For example, a rectangle full of feasible points 
generated by the upper and lower bounds (4 points) would be reduced simply by a line—
formed by a linear constraint equation of K and M—passing through this rectangle. Now, 
shrink this space more by adding 195 of them! Here is an intuitive example: assuming each 
pair of K and M (a linear constraint equation line) reduces the feasible region of the plane 



𝑁𝑅𝑄𝐶𝑚𝑔 ∗
1

𝑁𝑖𝑠,𝑚𝑔
∗ 𝑀𝑚𝑔,𝑝𝑔  ≥ 9 ∗  

1

𝐾𝑚𝑔,𝑝𝑔
 (𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡; 𝑁𝑖𝑠,𝑚𝑔 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

 

Figure 2: Optimization problem classification, in design and in algorithm, based on 
scientific computing and algorithmic perspectives. 

4.2 Trade-Offs in Analytic and Finite Difference Based Gradient Algorithms 
The gradient of a function (1st order derivatives) provides the best direction (steepest 
descent) to travel in order to find the minimum or maximum of a function. Optimization 
algorithms can be classified into gradient and non-gradient based approaches, and within 
the gradient approach, analytic and finite difference based algorithms. An infographic—
Optimization Algorithm (Figure 2)—is designed to clarify the properties and trade-offs in 
each method. One major benefit to an analytic gradient based method in practice is that it 
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      Nonlinear Program Optimization 
  Objective Function: Nonlinear 
  Constraint: Linear or Nonlinear 

  Quadratic Program Optimization 
Objective Function: Quadratic (i.e., squares) 

  Constraint: Linear 

  Unconstrained Optimization 
Objective Function: Linear or Non-Linear 

  Constraint: None 

      Linear Program Optimization 
Objective Function: Linear 

  Constraint: Linear 

CPI 

IOOP 

C
o
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p
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x
it

y
 

Optimization Algorithms 

Analytic Gradient Based 

Must supply:  

Analytic first order derivatives  

𝜕(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛)

𝜕𝐾𝑚𝑔,𝑝𝑔

𝜕(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛)

𝜕𝑀𝑚𝑔,𝑝𝑔

Uses Gradients or Jacobians of 
objective or constraint functions 
with respect to decision variables 
to achieve solution 
 

Trade-offs: More derivations but 
less time for convergence.  

- Computationally less intensive.

- Continuous first derivatives 
(possibly higher derivatives) 

MUST exist for a function.

- Higher constraint precision 

(less violation of constraints) 

Finite Difference Gradient 

Based OR 

Non-Gradient Based  

(Non-derivative approach) 

NO need to supply:  

Analytic first order derivatives  

𝜕(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛)

𝜕𝐾𝑚𝑔,𝑝𝑔

𝜕(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛)

𝜕𝑀𝑚𝑔,𝑝𝑔

Uses numerical approximation 
(finite difference approx. to 
derivatives) or population based 
genetic algorithm or other 
methods to achieve solution.   
 

Trade-offs: Less derivations but 

more time for convergence.  
- Computationally very intensive.

- Continuous first derivatives 

(possibly higher derivatives) may 
NOT exist for a function.

- Lower constraint precision

(more violation of constraints)

minimum value for 𝑔(𝑥𝑖) is the same-set of points (𝑥𝑖) that achieves the minimum for the 
transformed function 𝑓(𝑔(𝑥𝑖)). In other words, the decision variables (sample sizes) are 
invariant with respect to minimum values of the original objective and root transformed 
objective functions due to monotonically increasing property.  
(M4) Dividing both sides of C4 equation by item sample size (1/ 𝐾𝑚𝑔,𝑝𝑔), 195  
non-linear constraints could be expressed as linear constraints (eliminating product of 
𝐾𝑚𝑔,𝑝𝑔 ∗ 𝑀𝑚𝑔,𝑝𝑔) enabling simplicity for IOOP computation.  In this way, IOOP constitutes 
195 linear constraints and 1 non-linear constraint (cost function) instead of 196 non-linear 
constraints.  



takes much less time to converge due to presence of analytic partial derivatives, and it 
converges to a better point with less violation of any of the constraints (i.e. higher constraint 
precision or tolerance level). In this algorithm, the analytic gradient is evaluated in each 
iteration step faster than the finite difference based algorithm. The evaluation of the 
gradient continues until the algorithm achieves its optimal solution points where it no 
longer can descend to minimum or maximum direction. The stopping rule for convergence 
is a trade-off of a few criteria, such as, absolute and relative differences of the objective 
function from one iteration to the next, absolute values of constraint violations, and 
absolute and relative differences of the values of decision variables from one iteration to 
the next. SAS OPTModel and SAS NLP do not require the user to supply any analytic 
gradient. In R, both options are available depending on the package. Fortunately, the IOOP 
functions are continuous and differentiable in first and second order derivatives, which 
allowed us to employ the analytic gradient based approach. 

4.3 Challenges and Mitigation in Implementation 

4.3.1 What are the Challenges (C)? 
(C5) Constraint precision i.e., tolerance for constraint violation may often pose a challenge 
that results in “no feasible solution” errors. The feasible region is a very narrow space in 
IOOP due to 196 constraints.  
(C6) Loops in the R program may pose a runtime challenge, as loops may take a longer 
time to execute and complete all of the algorithmic steps.  
(C7) IOOP not only has one function but multiple functions to be implemented. 
(C8) Partial derivatives for Gradient and Jacobean need to be supplied in order to speed up 
the computation process using the analytic gradient based approach.   
(C9) Computing a large number of decision variables (988) may be a challenge for 
performance time in a production context, as it was the case in the 1999 implementation 
(ran for a week including day and night).  

4.3.2 What are the Mitigation (M) Strategies? 

(M5) Having a control option to experiment with different tolerance level mitigates this 
challenge. A too high precision level may result in not finding any solution, while a too 
low precision level may result in “premature” convergence without the best value for 
objective function (true minimum). R/Nloptr has control options for tolerances. The 
analytic gradient based approach in this implementation indeed provides some advantage 
for higher constraint precision. Table 2 shows tolerance level for this implementation.    
(M6) R is a function friendly language. Functions can run many times faster than a Loop 
(Uyttendaele, 2015). Thus, avoiding loops wherever possible and using vector based 
formulas within a function is a wise choice for faster performance.  
(M7) All the functions—objective, non-linear constraint, linear sample bias constraint—
need to be coded in R, and R/Nloptr has options for all of the functions to be incorporated.  
(M8) Partial derivatives (Gradient and Jacobean) need to be mathematically derived for the 
objective function and non-linear cost function before coding them in R.  
(M9) To get around the severe performance issues with 988 decision variables in 1999, the 
problem was simplified by clustering index areas into PSU groups and giving the same 
sample design to each index area in the PSU group.  This is no longer necessary and at 
some point in the future, IOOP will no longer use PSU groups. Indexing technique in 
coding an algorithm is a useful strategy to mitigate this challenge, as indexing enables 
using large coefficient datasets, clustering them into smaller vectors, running them through 
the loops, and translating the output back to the original dataset size. That is, the indexing 
strategy enables one to turn a large variable problem (2 x 13 x 38 = 988) into a reduced 



To assess the 390 (2 x 13mg x 15pg) sample sizes of Items and Outlets between SAS and 
R solutions, we plotted the difference in corresponding outlet sample sizes 
{𝑀𝑚𝑔,𝑝𝑔(𝑅)−𝑀𝑚𝑔,𝑝𝑔(𝑆𝐴𝑆)} and in corresponding item sample sizes {1/𝐾𝑚𝑔,𝑝𝑔(𝑅) −

1/𝐾𝑚𝑔,𝑝𝑔(𝑆𝐴𝑆)} for the February 2016 projection (Figure 3). (Decimals are allowed in 
optimization since solution points are treated as continuous. Transforming decimal 
sample sizes into integer sample sizes is a post-hoc processing after solving the IOOP 
design problem). 

In summary, this comparison indicates that the optimal sample sizes found by R and SAS 
are very similar, and validates the R implementation of IOOP Program (Figure 3; Table 
2). 

Software 

Objective Function 

(projected minimum 

variance) 

Tolerance Level 

(cost ceiling 

violation) 

Tolerance Level 

(small sample size 

constraint violation) 

SAS/OPTModel 0.05045631 0.042 < 10-6 
R/nloptr 0.05045182 < 10-7 < 10-7 

variable problem (2 x 13 x 15 = 2 x 195 = 390) when performance time for production or 
computing machine creates a technical challenge. 

5. Model Validation using Dataset: R and SAS Solution Comparison
In a statistical survey program, validation using another environment is often a good 
practice to preserve the reliability of solutions or for a backup plan. This R implementation 
provides a validation of SAS results using another computing environment. During the 
developing, testing and validation phases of the R IOOP program, we used actual datasets 
to compare the SAS and R solutions—August 2015 and February 2016 IOOP cycles. Table 
2 summarizes the results for February 2016. R/nloptr produced a slightly better (smaller) 
objective function value, although the difference is so small (0.00889958 %) that it makes 
no practical difference. The final objective function for SAS violated the cost ceiling by 
0.042 for February 2016 dataset, while R violated by less than 10-7. The maximum violation 
of any of the small sample size constraints was also less than 10-7 for R.  

Table 2: February 2016 IOOP results comparison of SAS and R solutions 



Figure 3: Graphical Diagnosis—Assessing the sample size difference between R and SAS 
solutions for 195 indices for February 2016 dataset; 195 mg-pg of Outlets and 195 mg-pg 
of Items. 

5.1 From Optimization Design to Post-Hoc Processing 
The IOOP design problem ends once it outputs the sample sizes, followed by post-hoc 
processing. CPI has 211 Item Strata, 8 Major Groups5, and 38 Index Areas. Solving 170 x 
38 design6 problem (as opposed to 13 x 15) would have been ideal, as it implies to compute 
6,460 decision variables (sample sizes) in the optimization method. Thanks to statistical 
science and its utility of homogeneity principal (similarity) across various contexts 
including IOOP, as it has been reduced to a problem of 13 Major Groups x 15 PSU Groups, 
i.e., 195 decision variables. This is where the post-hoc processing comes in handy to
disaggregate 195 sample sizes into 6,460 sample sizes that are the building blocks of the
CPI (8,018 basic item-area index all inclusive6). An infographic is designed to provide
clarity of this process (Figure 4). Hence, IOOP essentially generates aggregate sample
sizes that are disaggregated in post-hoc processing using various methodologies.

5 Based on similarities of elements, IOOP design uses 13 Major Group (i.e., Item Strata Groups) instead of 8. 
6 IOOP generates sample sizes for 170 Item Strata although CPI has a total of 211 Item Strata that include 31 unpriced, 2 
rent, and 8 fixed-design priced strata.  

195 indices of Item (mg-pg level) 

195 indices of Outlet  (mg-pg level) 



 

 

 

 

Figure 4: Infographics of sample size processing— they display how the sample size 
output from the optimization design phase enters into a post-hoc processing phase for final 
sample size estimation of Outlets and Items, followed by a few complex steps of processing 
before a “unique item” is selected for pricing.   

7 POPS (TOPS + Non-POPS) is the frame for the universe of outlets. 
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15 5 
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Item Sample Size (1/K) Disaggregation 

 Sample Size  

  Decimal sample size is rounded down in first stage. Randomized rounding is applied in second stage in order to preserve the expectation value (mean). 
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e.g.,

20.3 
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20 
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 Sample Size  

Decimal sample size is turned into an integer size using randomized rounding in order to preserve the expectation value (mean) over the entire sample space. 

Further Disaggregation of ELI Selection 

Procedure 
Outside of IOOP Scope 

Additional steps of complex processing 
take place to disaggregate ELI sample size 

up to a “unique item” section level 

e.g., Select 2 item-a and 3 item-b from each of 
the 11 outlets, nested in a PSU-POPS category

ELI-Outlet Merged 
10 

20 
2 3

11 

2 3 2 3 2 3

11Outlets 

Unique Item 

Approximately 80,000 
unique items (quotes)  
are priced per month  

with a total of 1,000,000 
pricing per year for  

the CPI estimate 

𝑀𝑚𝑔,𝑝𝑔— To be precise, the number of outlet hits allocated per POPS7 category for major 
group mg and PSU group pg—is rounded into integer sample size value using randomized 
rounding while preserving the expectation value (mean) over the entire 𝑀𝑚𝑔,𝑝𝑔 sample 
space.  

1/𝐾𝑚𝑔,𝑝𝑔— To be precise, the number of item stratum selections allocated to each index 
area in PSU group pg and major group mg—requires few more steps of post-hoc 
processing. Item strata group (1/𝐾𝑚𝑔,𝑝𝑔) sample size is first disaggregated into Item  
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Strata and then into entry-level items (ELI or quotes) based on the proportion of variance-
weighted-relative-importance. This technique ensures allocation of more sample units to 
items that display high variance and high relative importance in order to reduce the overall 
variance; i.e., it accounts for a trade-off between variance per item and the weight of the 
item. In this post processing, decimal sample sizes are rounded down and the left-over 
sample size (cumulative remainder) is re-distributed based on the proportion of variance-
weighted-relative-importance.   

There are multiple stages of disaggregation methods applied before a unique item is 
selected from the IOOP output of aggregate sample sizes. It is a complex procedure outside 
the scope of the IOOP design problem that employs various allocation methods in different 
stages of disaggregation, such as proportional, rank based, shelf space based, equal 
probability based, etc. (Figure 4).   

6. Conclusions

6.1 Benefits to Other Surveys and Statistical Agencies 
In this study, we have successfully implemented IOOP model in R for a multistage 
probability sampling—the Consumer Price Index. It provides a validation for SAS 
OPTModel results using another computing environment. Classic allocation methods, such 
as Neyman allocation, deliver a high quality technique that minimizes the variance for a 
fixed study budget and a fixed overall sample size (n), and estimates the optimal strata 
sample sizes (nh) (Valliant et al. 2013). However, limitations in accounting many scope 
factors in Neyman allocation (e.g., differential costs (Valliant et al. 2013)) that are 
unavoidable for statistical survey programs foster a need for a more pragmatic, complex, 
and useful model, utilizing mathematical programming. IOOP not only accounts for 
multipurpose budgets, differential costs and the non-linear behaviour of expenditures 
(fixed and variable cost), but also accounts for a range of relevant factors—labor hours, 
travel time and distance, response rate, etc.—including small sample size bias adjustments. 
Additionally, limitations on a closed-form solutions to a complex multistage design is 
another challenge that promotes the need for mathematical programming—linear or non-
linear optimization (Green, J., 2000). Hence, IOOP generates a timely updated 
optimization process as computing power no longer necessitates a simplistic model. The 
infographics (visualizations) of the optimization process foster an effective communication 
among the stakeholders and executive leaders to promote the benefit of a method, and they 
may be used as prototypes for other agencies and surveys. The R code can also be used as 
a prototype and customized for other surveys. It also demonstrates how paradata (e.g., 
labor hours, travel time) from data collection could be utilized in a survey program 
(Wagner et al., 2012) to estimate the optimal sample size. Last and not least, IOOP offers 
a versatility such that, as agency budget proposals (e.g., ± 10%) or other factors change, 
model coefficients (parameters) could be recalculated as many times as needed, which 
enable the option for generating multiple projected plans in advance for each circumstance. 
The final implementation could execute the plan that is within scope for a survey program.   
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