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Abstract

In multiplicative unobserved effects panel models for nonnegative dependent variables, esti-

mation of average marginal effects would seem problematic with a large cross section and few

time periods due to the incidental parameters problem. While fixed effects Poisson consistently

estimates the slope parameters of the conditional mean function, marginal effects generally de-

pend on the unobserved heterogeneity. However, I show that a class of fixed effects averages

is consistent and asymptotically normal with only the cross section growing. This implies re-

searchers can estimate average treatment effects in levels as opposed to settling for average

proportional effects.
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1 Introduction

The multiplicative effects panel model for nonnegative dependent variables is attractive in part

because it is straightforward to handle unobserved cross sectional heterogeneity. Fixed effects

Poisson (FEP) consistently estimates the slope parameters of the conditional mean function without

full distributional assumptions (Wooldridge, 1999). However, it is not immediately clear how to

estimate quantities like average partial effects (APE) and average treatment effects (ATE) as these

depend on the unobserved heterogeneity.

I study the use of estimated individual effects from Poisson quasi maximum likelihood estimation

(QMLE). There is no incidental parameters problem (IPP) with respect to QMLE slope parameter

estimates, which are algebraically equivalent to FEP (Lancaster, 2000). To my knowledge, no

one has formally studied estimators of average marginal effects in this model. These estimators

potentially suffer from the IPP when each fixed effect is estimated using a relatively small number

of observations (Arellano and Hahn, 2007). I show that for the multiplicative model, however, a

class of fixed effect averages is consistent and asymptotically normal with only the cross section

dimension growing.

For thorough discussions of methods for dealing with the IPP, see Lancaster (2000) and Arel-

lano and Hahn (2007). Empirical researchers, of course, have the option to focus on quantities

that do not depend on unobserved heterogeneity. For instance, with an exponential conditional

mean function, the slope coefficients can be interpreted as approximate semi-elasticities, and pro-

portional treatment effects are also identified (Lee and Kobayashi, 2001). In my view, however,

using estimated fixed effects deserves more attention as average partial effects in levels may be

more economically meaningful.

The rest of this paper is organized as follows. Section 2 reviews the model and derives the

asymptotic properties of the proposed average marginal effects estimators. Section 3 presents a

brief Monte Carlo simulation that suggests good finite sample properties of the estimators. Section

4 concludes.
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2 Theory

As in Wooldridge (1999), let {(yi,xi, ci), i = 1, . . . } be a sequence of i.i.d. random variables, where

yi is a T×1 vector of nonnegative dependent variables (not necessarily counts), xi ≡ (x′i1, . . . ,x
′
iT )′,

is a T × K matrix of explanatory variables, and ci is unobserved scalar heterogeneity that may

depend on xi. The multiplicative effects panel model assumes

E(yit|xit, ci) = cim(xit,β0), t = 1, . . . T, (1)

where m(xit,β0) is a known positive function and β0 is an unknown K × 1 parameter vector. I

also assume that the covariates are strictly exogenous conditional on the unobserved heterogeneity,

written as

E(yit|xi, ci) = E(yit|xit, ci). (2)

The most common choice in the empirical literature is m(xit,β) = exp(xitβ), but the main results

of this paper do not require this form. A more flexible option is Wooldridge’s (1992) alternative

to the Box-Cox transformation. For binary or fractional responses (which also require 0 < ci < 1),

Wooldridge (1999) suggests the logistic or normal CDF as convenient choices for m().

The fixed effects Poisson (FEP) estimator derives from the nominal assumption that condi-

tional on xi and ci, the yit are independently distributed as Poisson with mean given by (1).

Conditioning on ni ≡
∑T

t=1 yit yields the multinomial conditional distribution for yi (Hausman,

Hall, and Griliches, 1984). The FEP estimator, denoted β̂, solves max
β∈B

∑N
i=1 `i(β), where `i(β) =∑T

t=1 yit log
[

m(xit,β)∑T
r=1m(xir,β)

]
is the multinomial log-likelihood. Wooldridge (1999) showed that con-

sistent estimation of β0 only requires (1) and (2), meaning the yit need not be distributed Poisson

and may have arbitrary (conditional) serial dependence.

Average marginal effects are often more salient, as β0 may not have any meaningful interpre-

tation apart from the exponential case. The APE of a continuous xj is:

δj,0 = E

[
∂E(yit|xit, ci)

∂xitj

]
= E

[
ciT
−1

T∑
t=1

∂m(xit,β0)

∂xitj

]
≡ E

[
ciT
−1

T∑
t=1

Mj(xit,β0)

]
,

where Mj(xit,β) = ∂m(xit,β)/∂xitj . The ATE for a binary xk is:
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δk,0 =E
[
E(yit|xit(−k), xitk = 1, ci)− E(yit|xit(−k), xitk = 0, ci)

]
≡E

[
ciT
−1

T∑
t=1

(
m(xit(−k), 1,β0)−m(xit(−k), 0,β0)

)]

where the subscript (−k) indicates element k has been omitted, and where m(xit(−k), 1,β) and

m(xit(−k), 1,β) correspond to a 1 or 0 being inserted for xitk in m(xit,β).

The APE and ATE are examples of fixed effect averages of the form λ0 = E [cih(xi,β0)],

where h(xi,β) is a P × 1 random function of the covariates. The APE and ATE use h(xi,β) =

T−1
∑T

t=1Mj(xit,β) and h(xi,β) = T−1
∑T

t=1

(
m(xit(−k), 1,β)−m(xit(−k), 0,β)

)
, respectively.

The candidate estimator of λ0 is given in equation (3). It uses the Poisson QMLE for ci, denoted

c(wi, β̂), when estimating the individual effects along with β0 .

λ̂ = N−1
N∑
i=1

c(wi, β̂)h(xi, β̂), (3)

where c(wi,β) = ni/
∑T

t=1m(xit,β) and wi ≡ {yi,xi} , i = 1, . . . , N . Poisson QMLE and FEP are

algebraically equivalent for β0 , but when N is large, it may be more computationally practical to

estimate ci following FEP estimation of β0 (Cameron and Trivedi, 2013).

While it is already known that there is no IPP in this model in terms of estimating β0 , one

should not generally expect averages over estimated incidental parameters to be consistent in non-

linear models, even if slope parameter estimates are consistent (Arellano and Hahn, 2007). Clearly

c(wi,β) 6= ci, even if evaluated at β0 , and with T fixed, c(wi, β̂) cannot be consistent for ci. How-

ever, Theorem (1) shows for this model, there is no IPP for fixed effect averages over the cross

section like in equation (3).

Theorem 1 Assume (1), (2), and that each element of the P × 1 random vector g(wi,β) ≡

c(wi,β)h(xi,β) satisfies the regularity conditions on q(wi,β) from Theorem 12.2 of Wooldridge

(2010). Then as N →∞,

λ̂
p→ λ0

Proof. By Lemma 12.1 in Wooldridge (2010), consistency of β̂ and the regularity conditions imply
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N−1
∑N

i=1 c(wi, β̂)h(xi, β̂)
p→ E [c(wi,β0)h(xi,β0)]. Then, by the Law of Iterated Expectations,

E [c(wi,β0)h(xi,β0)] =E {E [c(wi,β0)h(xi,β0)|xi, ci]}

=E

[∑T
t=1E(yit|xi, ci)∑T
t=1m(xit,β0)

h(xi,β0)

]

=E

[
ci
∑T

t=1m(xit,β0)∑T
t=1m(xit,β0)

h(xi,β0)

]

=E [cih(xi,β0)]

A priori, one might expect λ̂ to perform well anyway for large enough T , as c(wi, β̂) may approxi-

mate ci better as T grows. The result that λ̂ should perform well with as few as two time periods (the

minimum needed for FEP), is perhaps less intuitive. Furthermore, consistency of N−1
∑N

i=1 c(wi, β̂)

for E(ci) follows from setting h(xi,β) = 1, but one cannot use c(wi, β̂) to learn about other fea-

tures of the distribution of ci except in more restrictive cases. For instance, V ar(ci) is identified

only under additional assumptions. A simple example is when the Poisson variance assumption,

V ar(yit|xi, ci) = E(yit|xi, ci), and zero conditional covariance, Cov(yit, yir|xi, ci) = 0, t 6= r, both

hold. In this case, one can show that V ar(ci) = V ar [c(wi,β0)]− E
[
ci/
∑T

t=1m(xit,β0)
]
.

Asymptotic normality of λ̂ follows from a standard argument similar to the delta method, but

making sure to account for the randomness in wi. The asymptotic variance formula in Theorem

(2) uses that Avar
[√

N(β̂ − β0)
]

= A−1
0
B0A

−1
0

, where A0 = −E
[
∇2
β`i(β0)

]
, B0 = V ar [si(β0)],

and si(β0) = ∇β`i(β0)′ (Wooldridge, 1999).

Theorem 2 Under the assumptions in Theorem (1), as N →∞,

√
N(λ̂− λ0)

d→ N(0,D0),
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where

D0 = V ar
[
g(wi,β0)− λ0 −G0A

−1
0
si(β0)

]
,

G0 = E [∇βg(wi,β0)] = E [c(wi,β0)∇βh(xi,β0) + h(xi,β0)∇βc(wi,β0)] ,

∇βc(wi,β) = −c(wi,β)

(∑T
t=1∇βm(xit,β)∑T
t=1m(xit,β)

)
,

∇βh(xi,β) is the P ×K Jacobian of h(xi,β), and

∇βm(xit,β) is the 1×K gradient of m(xit,β).

The proof is similar to the solution to Problem 12.17 of Wooldridge (2010), and is available from

the author upon request. Consistent estimation of D0 involves plugging in β̂ for β0 and replacing

the expectations and variances with their sample analogs.

2.1 Exponential Models

The exponential conditional mean case is particularly interesting given its prevalence in empirical

research. For example, Lee and Kobayashi (2001) use an exponential model estimate the average

proportional change in health care demand from a treatment (exercise). By construction, the

average proportional effect does not depend on the heterogeneity or the coefficients on time-constant

regressors. While it may be interesting in its own right, my analysis implies the APE and ATE

of time-varying regressors are still identified even if the population model includes time-constant

variables. To see this, suppose the following:

E(yit|xit, zi, vi) = vi exp(xitβ0 + ziγ0), (4)

where xit is time-varying, zi is time-constant, and vi denotes the unobserved heterogeneity. Defining

ci ≡ vi exp(ziγ0), equation (4) is equivalent to the exponential case of equation (1). Now ci

represents the total contribution from all time-constant variables—observed and unobserved. Even

though γ0 is not identified, λ0 still is as long as h() does not depend on γ0 , which is true for the

average marginal effects of the xit.

Furthermore, in the exponential case with linear index, the APE of a continuous variable is
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given by the following:

δj,0 = E

[
∂E(yit|xit, ci)

∂xitj

]
= E

[
T−1

T∑
t=1

ci exp(xitβ)

]
βj,0 =

[
T−1

T∑
t=1

E(yit)

]
βj,0 , (5)

where the last equality is by the Law of Iterated Expectations. Equation (5) shows the APE does

not actually depend on ci and looks similar to the cross section case. Therefore, one can actually

estimate β0 with weakly exogenous xit by using sequential moment restrictions as in Chamberlain

(1992) or Wooldridge (1997).

3 Monte Carlo

To test the theoretical results in this paper, I run a Monte Carlo simulation of a simple count model

with endogenous regressors due to unobserved heterogeneity. Elements of the data generating

process resemble simulations in Greene (2004) and Fernandez-Val and Weidner (2016).

3.1 Design

For i = 1, . . . , N and t = 1, . . . , T , I generate the data as:

yit|(xi,di, ci) ∼ Poisson [ci exp(β1xit + β2dit)] ,

log(ci) ∼ Normal(0, 1/2)

xit = log(ci) + ρxi,t−1 + vit, t > 1

xi1 = log(ci)/(1− ρ) + vi1/
√

1− ρ2, ρ = 0.3, vit ∼ N(0, 1/2),

dit = 1 [xit + log(ci) + hit > 0] , hit ∼ N(0, 1/2)

The conditional marginal distribution of yit is Poisson with an exponential mean function. I

set β1 = 0.5 and β2 = −0.5, magnitudes similar to estimates from Hausman, et. al. (1984). The

continuous covariate x and the binary covariate d are both correlated with the heterogeneity. The

scaling of xi1 is intended to keep V ar(xt) constant across different values of T (Vamoş, Şoltuz, and

Crăciun, 2007). I study panels of dimensions N = 2000 and T ∈ {2, 4, 10} to mimic the large-N ,

small T setting typical in microeconometrics. I draw 2000 replications.
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For each draw, I estimate β1 and β2 using FEP, calculate c(wi, β̂), and estimate the APE and

ATE as described in Section 2. In the results to follow, I denote APE estimate as δ̂1 and the ATE

estimate as δ̂2. True values were estimated from a single draw with N = 10, 000, 000. Though

not reported, I simulated the performance of pooled Poisson QMLE that ignores ci entirely and

found the APE and ATE estimates to have a positive bias of roughly 80% and 55%, respectively.

The asymptotic standard errors are of the form derived in Theorem 2 and based on cluster robust

standard errors for β̂, though technically for this application one could use the nonrobust versions.

3.2 Results

Table 1 reports the results of the simulation exercise. Reported are the mean and standard deviation

of the empirical distribution, the estimated bias, the ratio of the mean standard error to the

empirical standard deviation, and the probability of rejecting a true null hypothesis at the five

percent significance level. Finite sample bias in δ̂1 is less than 0.005 in magnitude for each value of

Table 1: Fixed Effects Poisson Average Marginal Effect Estimators

δ̂1 (APE) δ̂2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

T = 2 0.73 0.00 0.06 1.01 0.05 -0.88 0.00 0.17 1.01 0.05
T = 4 0.73 0.00 0.04 0.97 0.06 -0.88 -0.01 0.10 1.00 0.05
T = 10 0.73 0.00 0.03 0.98 0.05 -0.88 0.00 0.07 0.98 0.05

T . Bias in the ATE estimates is also very small—0.01 or less. The finite sample standard deviations

behave in a predictable way, decreasing as T increases. The variability in δ̂2 seems to be greater

than that of δ̂1, which might be related to the fact that δ̂1 does not actually use c(wi, β̂) in the

exponential case. The asymptotic standard errors derived in this paper perform reasonably well.

At worst, in the T = 4 case, the standard error appears to underestimate the empirical standard

deviation of δ̂2 by about 3 percent. Overall, these simulations support this paper’s theoretical

findings. The asymptotic properties derived in Section 2 for the APE and ATE estimators that use

estimated incidental parameters seem to approximate their finite sample behavior quite well.
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4 Conclusion

It is already well-known that in static multiplicative panel models under strict exogeneity, estimat-

ing the heterogeneity still leads to consistent estimation of the slope parameters of the conditional

mean function. This paper adds the result that APE and ATE estimators that use estimated het-

erogeneity are consistent and
√
N -asymptotically normal. In fact, the results hold for estimating

the mean of a wider class of random quantities where the heterogeneity is multiplicatively separa-

ble from functions of the data. I also derive asymptotic standard errors for these estimators that

perform well in simulations.
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