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Abstract 
The Bureau of Labor Statistics Current Employment Statistics (CES) survey leads to the 
creation of measures which are used to create Principal Federal Economic Indicators. One 
of those measures is the monthly change in establishment jobs, which CES estimates for 
detailed industries as well as geographic domains such as states and metropolitan areas. 
CES calculates sampling errors using Balanced Repeated Replication, but estimates of 
sampling variance can be volatile and may not be available as readily as desired. 
Generalized Variance Functions (GVFs) are fit using regression models to existing direct 
estimates of sampling variance to improve estimates of those variances. A GVF should 
provide good fits for data used to construct the model, and it should provide good estimates 
of variances for other observations not used in the model. This paper develops a GVF 
model for ratio estimators and considers two main characteristics: accuracy in terms of 
confidence interval coverage, and stability. Metrics and tests for each characteristic are 
developed. We also consider and test new model types to further increase coverage and 
stability of the GVF variances. 
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1. Introduction 

 
The Bureau of Labor Statistics Current Employment Statistics (CES) survey provides 
employment estimates based on information reported from business establishments. This 
information leads to the creation of the Principle Federal Economic Indicator on The 
Employment Situation. The CES survey is based on approximately 147,000 businesses and 
government agencies representing approximately 634,000 worksites throughout the United 
States [1].  
 
The CES sample is a stratified, simple random sample of worksites, clustered by 
Unemployment Insurance (UI) account number. The CES program uses a matched sample, 
which measures the change in employment for each establishment, but excludes 
establishments that reported zero employees for either month. With the matched sample, a 
weighted linked estimator is used for both estimates and variances. We use Balanced 
Repeated Replication to determine our variances, ensuring our samples use the same 
stratification of location, industry, and size class [2].  
 
One issue with our estimated variances is that the true monthly variability is hard to 
distinguish from random irregularity of the true variances. True variances are never known 

1 Any opinions expressed in this paper are those of the authors and do not constitute policy of the 
Bureau of Labor Statistics. 



since a researcher can only get estimates of the true variances. If historical data are 
available for the whole population, the “true” variance and the respective coverage 
properties could be investigated based on repeated samples from the population [3]. We 
use GVFs to utilize information about the sampling process that can help create accurate 
variances that are more stable.    
 
CES creates estimates of employment levels and monthly changes in employment for 
various locations and industries every month. As such, we also need to produce measures 
of uncertainty (e.g., variances) for these estimates. Locations could be either Metropolitan 
Statistical Areas (MSAs) or states, whereas industries are broken down into various 
categories by their North American Industry Classification System (NAICS) codes. We 
found that monthly variances changed dramatically from year to year, when we would 
otherwise expect them to stay about the same. This finding led CES to use a 3-year average 
of the median of months in a year as CES’s initial GVF because of its increased stability 
from year to year. This model has its problems such as its inability to account for large or 
monotonous changes in the employment over time, the necessity of multiple years of data 
for stability, less stability than desired even with multiple years of data, and consistent 
underestimation of variance in seasonal changes in employment. For these reasons, we 
looked at other GVFs to replace it. 
 
The results of our models come from the use of statewide data, where industries were the 
estimated super sectors (e.g. all retail NAICS codes) on monthly data. Each estimated super 
sector was modeled separately using R, specifically the rlm function for robust linear 
modeling in the MASS package.  
 
 

2. Model Creation 
 
To create a model that is better than the 3-year average model, we wanted to create a GVF 
using survey information that is available to us before the estimate is even created. For 
each domain d, consider the following variables that were used to create the new GVFs: 
 

1. Employment at benchmark month: 𝑌𝑑,0 
2. Average unweighted sampled employment: 𝑌𝑑,𝑠   
3. Average number of respondents (UI): 𝑛𝑑 
4. Average size of sampled establishments: 𝑌𝑑,𝑠

𝑛𝑑
 

5. Part of Finite Population Correction: (𝑌𝑑,0
𝑌𝑑,𝑠

− 1) 

6. Cluster effect: 𝑋𝑑,𝑠,𝑐  
 
Employment at benchmark month refers to the total number of employees for the strata in 
the Quarterly Census of Employment and Wages at the benchmark month. The variance of 
employment is directly related to the size of employment in the strata. This lead to the 
creation of Model 1 (M1): 
 
M1: log{𝑉𝑎𝑟(𝑅�̂�)} = 𝛽0 + 𝛽1 log(𝑌𝑑,0) + 𝜀𝑑  
 
The average unweighted sample employment and average number of respondents provide 
important information that relate to the finite population correction, but are correlated with 
each other and with the benchmark level of employment. Model 2 is as follows: 



 
M2: log{𝑉𝑎𝑟(𝑅�̂�)} = 𝛽0 + 𝛽1 log(𝑌𝑑,0) + 𝛽2 log(𝑌𝑑,𝑠) + 𝛽3 log(𝑛𝑑) + 𝜀𝑑  
 
The previous model’s multicollinearity is a problem for consistent parameter estimates 
from year to year, so a natural modification was made to the variables relating to the finite 
population correction. Further explanation for this modification can be found in the 
appendix. Model 3 is as follows: 
 
M3: log{𝑉𝑎𝑟(𝑅�̂�)} = 𝛽0 + 𝛽1 log(𝑌𝑑,0) + 𝛽2 log (

𝑌𝑑,𝑠

𝑛𝑑
) + 𝛽3 log (

𝑌𝑑,0

𝑌𝑑,𝑠
− 1) + 𝜀𝑑  

 
One issue that all of our models have is that they are predicting the variance based on 
variables that are not changing from month to month. Our model can’t predict seasonality 
which has been shown to exist in certain industries. Looking at the average confidence 
interval length for transportation and education across time shows a clear seasonal effect: 
 

Figure 1: Average of state wide confidence interval lengths of the transportation and 
education industries employment estimates show seasonal patterns that are typically 
repeated each year.  
 
Initially, we tried models with a monthly effect via dummy variables, but this was not 
successful. The reason this model fit poorly is because the size of the monthly effect is not 
the same in all locations. Likewise, the confidence interval lengths of individual states do 
not always show the same yearly pattern as the average of all states. The patterns of 
individual states are commonly repeated across years, but not always, as Figure 2 shows 
with the transportation industry in 2013 and 2014. 
 
 
 
  



 
 

 
Figure 2: Locations are shown by state FIPS code. The seasonal pattern of transportation 
variance with an increase in January and November appears in both 2013 and 2014, but the 
amount of variance increased differs greatly from state to state. Some states also do not 
follow the same seasonal pattern that others do. 
   
  



This discovery led us to group observations by introducing indicator variables, which we 
called cluster variables. Cluster variables were created to group the relatively higher 
variance months of different locations together, similar to regression trees. There are many 
ways to create cluster variables, but these were created as dummy variables with value 1 if 
the variance was higher the median of its state times some value c and value 0 otherwise. 
As an example, let’s say transportation in Alabama had a variance in January that was more 
than 3 times the median of Alabama’s monthly variances in transportation, and Alaska had 
a variance in November that was more than 3 times the median of Alaska’s monthly 
variances as well. 
 
Alaska’s monthly variances in transportation. The cluster variable, where c=3, would be 1 
for Alabama’s variance in January and Alaska’s variance in November. This would allow 
the increase of variance for these month-state combinations without over fitting.  
 
When using cluster variables, we first use M3 to explain the yearly average of a particular 
state and industry’s variance. As such, we are only predicting the residuals. We tested many 
different ways to utilize more cluster variables than data points, such as elastic net and a 
naïve average of parameters ensemble. The average ensemble was conducted such that 
only one or two of the cluster variables were being modeled at any given time. For example, 
when predicting one variable at a time, with 10 different cluster variables, the end result 
model would have all 10 clusters with 1/10 of the parameter estimate of the one model it 
was used in.   
 
In our use of the naïve average ensemble model, each model of one variable is predicted 
separately and then combined with each of the linear models into another model made from 
the average of the coefficients for each cluster variable.  
 

1

𝑛
∑𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ~ 𝐶𝑖

𝑛

𝑖=1

= Residuals ~
1

𝑛
∑𝐶𝑖

𝑛

𝑖=1

  

 
This would allow us to use a minimum of 1 data point per model (as intercept is not used) 
while allowing us to create n models. That is obviously not ideal, but it allowed us to create 
22 cluster variables in our model (11 per year) even if our data includes only 10 different 
states in any particular industry class. For this data, we have as many as 50 points per 
month, but sometimes a state doesn’t have employment in a particular industry 
classification. 
 
Depending on the goals (stability or accuracy) different sets of cluster variables could be 
used, such as using more than one year’s cluster variables or creating models with more 
than one cluster variable at a time. We will show the results of using 11 cluster variables 
per year for two years (22 variables), where “22 choose 1” variable models were used, and 
where “22 choose 2” variable models were used. Penalized regression models were 
attempted that gave good, but less desirable results, compared to the naïve average 
ensemble. 
 
  



3. Measuring Accurate Variances 
 
 
When making an estimate of the variance with a GVF, we need a way to determine if the 
variance estimate is better. We used 3 different measures to determine how good a variance 
estimate is: coverage properties of confidence intervals, confidence interval length, and 
stability.  
 
In this paper, we do not compute “true” coverage over repeated samples for each domain. 
Instead, we use an approximate method considered by Gershunskaya and Dorfman [3]. The 
method uses one or a few replicates from the Balanced Repeated Replication procedure to 
form certain pivotal quantities. If the variances used to form the pivot are close to true 
sampling variances, the pivot should have the standard normal distribution. Thus, under 
certain assumptions, the pivot allows us to evaluate the characteristics of the variance 
estimates using a set of domains instead of performing full scale simulations by drawing 
repeated samples. Using the replicate estimate, estimate based on the whole sample, and 
the modeled variance estimate, we form the pivot and create respective 95% confidence 
interval assuming the normality of the pivot. Then we compute how many times over the 
set of domains the interval contains zero. Here we would expect 95% of all replicate 
estimates to be within the 95% confidence interval of the whole sample estimate.  
 
With a limited number of subsamples, we will not be able to test each individual GVF 
estimate for 95% coverage. Therefore, the average or total confidence interval length needs 
to be addressed, as we will be estimating the variances for many industries and locations 
at once. If variance estimates were excessively high, we could always have 95% or higher 
coverage. Therefore, when comparing models, it is important to realize that coverage isn’t 
the only factor necessary to compare the accuracy of a model’s predictions.  
 
To simplify the process of comparing models, we compare the coverage percentage of 
models with the same average confidence interval length. To fix the confidence interval 
length to be the same, we multiply all variances by the average confidence interval we want 
divided by the average confidence interval of the model. The average confidence interval 
we want is based on the previous year’s calculated variances. We do this process for each 
industry super sector. The reason we modify each industry separately is because each linear 
model we made was created at the industry level, for all locations. With coverage at a set 
confidence interval length, we now have a way to measure accuracy in a way that is 
comparable to other models. 
 
Fixing the confidence interval length is also a possible solution to consistent 
underestimation of the variance, which we saw in our 3-year average model that uses the 
median of months. If we use the most recent year’s variance estimates to guide the average 
confidence interval length, we can adjust the 3-year average to increase the coverage with 
reasonable assumptions. The adjustment has no change with a multiplicative value of 1. 
Depending on the model method adjustments either increased or decreased them. For 
example, the 3-year average had an average 1.14 multiplicative increase but ranged from 
.77 to 1.51 over all industries for the 4-year period. The other 4 models had average 
adjustment values between .86 and .90, typically lowering their variances. Given those 
adjustments, it may seem like our models overestimated the variance, but the models were 
predicting the next year’s variance that is typically increasing with employment, not the 
previous year.   
 



If we were to use last year’s variances to estimate the next year’s estimates, instead of our 
GVFs, the estimates would change a lot from year to year, much more than we would 
realistically expect them to change. The initial GVF, the 3-year average, reduces the 
amount any particular estimate will change, but can still lead to some dramatic increases. 
We measure the change by using the absolute relative difference with the minimum 
function as the denominator. For example, a variance estimate using the 3-year average can 
differ by over 200% from one year to the next. In other words, the variance estimate could 
increase nine fold, or decrease to 1/9th in size from one year to the next.  
 
We measure stability by looking at the change in a model’s prediction from year to year. 
When calculating the absolute relative difference for many variance estimates, you end up 
with a distribution of the stability. To compare stability, we use measures of the 
distribution, such as the mean, median, or max. We would like to reduce the maximum 
change in predictions, as dramatic changes are not to be expected without an equally drastic 
change in sample size or employment in that industry. 
 
For the same level of accuracy, we would want to have as little change in predictions as 
possible. That being said, the economy and employment is constantly changing, so we 
would not expect the variance of our estimate to be a constant over time, either.   
 
 

4. Comparison of Models 
 
 
Now that we have measures for a comparable accuracy and stability of model predictions, 
we can compare the effectiveness of each model. The coverage of each model and method 
is compared on a fixed CI based on the previous year’s average CI length, for each industry 
super sector. Even the current year’s variance estimate is modified to use the same average 
CI length so that we can compare the model to the coverage of the calculated variances for 
that year. 
 
The first thing we can see is that the sample variance is able to get approximately 95% of 
all subsample variance estimates, as we expected. The sample variance percent did not 
change much when using the previous year’s CI length, which shows that the average super 
sector variance does not change much from year to year, even if individual variances can 
change at a median rate of 38%.  
 
Using the coverage graph in figure 3, the large ensemble had the highest coverage, 
followed by the smaller ensemble, M3, the 3-year average, and then M1. If stability was 
not important, the large ensemble would be the best choice, as it is the most accurate at 
predicting the next year’s variance. When we consider stability as well, we see that the 
order is almost exactly the opposite from coverage. The exception to this would be that the 
3-year average’s max change is larger than any other model.  
 
One fact that shows the natural variation in the calculated variances is that the previous 
year’s variance was the worst predictor of the next year’s variance subsample estimates. 
Since one year’s variance estimates are made from the same year’s subsample variances, 
it makes sense why it is the best predictor. When looking at stability, using last year’s 
variance value to predict the next year’s variance is not stable at all, with a higher median 
change than any other method at 38%.  
 



 
 

 
 
Figure 3: Metrics of model comparison from top to bottom: coverage, coverage 
distribution, and stability distribution. 
 



The coverage distribution chart is important because we want to ensure that each industry 
and state is represented accurately, not just all states being represented more accurately on 
average. The values were cut off around 70% in the graph, but the large and small 
ensembles had a minimum coverage of 59.8% and 58.8% while the other models had 
between 50-55% minimum coverage, and the previous year’s variance had as low as 34.2% 
coverage for any state and industry combination’s yearly average coverage.   
 
 

Conclusion 

 

The use of GVFs allows us to predict the next year’s variance with a high degree 
of accuracy while allowing us to also have more stable variance estimates than the 
use of the calculated sample variances themselves. Depending on importance of 
stability or accuracy, different models are able to provide more accurate or more 
stable results, but in our case, rarely both. The use of cluster variables allows us to 
have a higher degree of accuracy when a seasonal effect exists, but there is too little 
data for each state and industry to have a time series.    
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Appendix 

Generally, consider a model  

   1,...,d d dp dg V f X X   , 

for a set of domains 1,...,d D , where 

 dg V    are direct variance estimates or a function thereof, e.g., log, 

 1,...,d dpf X X  is a function of a vector of auxiliary variables (e.g., sampling 
design characteristics, response rate, other), 

d    are the model residual. 

 
 
Consider stratified design with SRSWOR in each stratum.  
The estimate of the ratio is  
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Assume the superpopulation model: 
, , 1 ,j t t j t j ty y   ,         (2) 

where, for j h :  2
, , 1~ 0,

iid

j t j tN y  
 

for some fixed but unknown 2  and 1   . 
Consider formula (1) under model (2): 
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Thus, under the model, we have  
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If we used simple random sampling (SRS), the variance would be 
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Consider the following analogue (sort of) to design effect: 
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It is expected that 1l  . We assume it is approximately common to all cells 
included in the modeling. 
For some 1k   , 
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We hope that k is approximately constant across States for a given industry. 
From (3): 
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Suppose  
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Thus, the model we consider is 
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Results show that the regression coefficients l   and  2l k   vary by industry. 
But their values are relatively stable over the years. In almost every industry, as 
expected 1l   and 2 0l k   .  
 




