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Abstract 

 
Survey estimates may be susceptible to the influence of sample units having large design 
weights associated with unusual observed values. Especially in smaller samples, these 
sample units can influence estimates disproportionately causing them to be very unstable. 
In this paper, we consider several model-based approaches for weight smoothing where 
the design weights are modeled as a function of observed survey quantities. Using these 
modeled weights, one hopes to reduce volatility in the weights, thus producing better 
estimates. In this paper we extend prior work on the Current Employment Statistics 
Survey (CES). Several prospective models are used for the weights, including LOESS 
curves and Bayesian methods. The new "smoothed" weights are then used to create new 
survey estimates and we compare these estimates to the true value. Analysis of the fitted 
weights is performed in the end to find cases where "smoothed" weights may give worse 
estimates. 
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1. Introduction 

 
Weight smoothing has been proposed as a method of adjusting survey weights to reduce 
variance of survey estimates. In the classical design-based framework, sample weights 
are viewed as fixed non-random quantities reflecting unequal sample inclusion 
probabilities as well as possible adjustments usually related to survey nonresponse or 
frame deficiency. It is well known that survey estimates may be inefficient if the design 
weight is not related to the variable of interest or if this relationship is not strong. 
Alternatively, under the model-based approach to inferences from survey sampling, 
reviewed in Pfeffermann and Sverchkov (2009), or the generalized design-based 
inference approach of Beaumont (2008), the sample weights are viewed as realizations of 
a random vector. The advantage of viewing the problem in this manner is that it gives the 
opportunity to model the survey weights conditioning on observed sample quantities.  
 
With regard to the CES survey, we are interested in estimating the relative over-the-
month change of employment, Rt, defined as the ratio of the total employment in the 
current month, tY , to total employment in the previous month, 1tY  . The variable of 
interest, reflecting the influence of individual measurements on the target estimate, is the 
“residual”,  rj,t = yj,t − Rtyj,t−1, where yj,t and yj,t−1 are the observed unweighted 
employment for the current and previous month of sample unit j.  (For the moment,  we 



suppose that Rt in the above residual is known.) Using these quantities, we are interested 
in models of the form wj = f(rj,t) + ej,t, with wj being the survey weight for unit j, f() is 
some function of the residuals and ej,t is some random error . After modeling, we use 
these new “smoothed weights” to create estimates of Rt, which we hope are more 
efficient than estimates based on the original weights. In previous work on weight 
smoothing for CES, Gershunskaya and Sverchkov (2014) took this approach with some 
success. 
 
In this paper, we expand on the number of models and how their tuning parameters 
considered in the previous CES work. The models include LOESS, Penalized B-Spline 
models with restrictions on their tuning parameters and a Bayesian Model.  We compare 
the results to the currently used CES estimator that employs a two tail Winsorization 
method.  
 
 

2. The CES Survey 
 
 
2.1  CES Frame and Sample Selection 

 
The CES survey derives its frame from Quarterly Census of Employment and Wages 
(QCEW) program. The QCEW is an administrative program that collects employment 
and wage information from all establishments covered under the unemployment 
insurance (UI) on a quarterly basis. 
 
From the derived frame, CES chooses a stratified simple random sample of UI accounts, 
that is, when a UI account is chosen all establishments under that UI account are included 
in the sample. Stratification is performed by state, industry supersector (a grouping of 
North American Industrial Classification System codes), and total employment size. 
Optimal allocation at a fixed constant cost per a unit is used to minimize the variance of 
over the month change is used to allocate a fixed state sample size to the strata. 
 
2.2  CES Estimator 

 
The primary estimate of interest for the CES survey is the over the month change 𝑹𝒕. The 
estimator used is defined as follows: 
 

�̂�𝒕 =
∑ 𝒘𝒋𝒚𝒋,𝒕𝒋∈𝑺𝒕

∑ 𝒘𝒋𝒚𝒋,𝒕−𝟏𝒋∈𝑺𝒕

, 

 
 
where j denotes the establishments, t is the current month, yk,t and yk,t-1 denote the 
employment of sample units in the current and previous months, and 𝑆𝑡 is the “matched 
sample” or the set of sample units reporting positive employment in the current and 
previous months. 
 
 



To produce monthly estimates of levels, we use the annual census value produced from the 
QCEW, 𝑌0,  and apply the ratio with �̂�𝑡=1 = 𝑌0�̂�𝑡=1 and subsequent months estimated as 
 �̂�𝑡 = �̂�𝑡−1�̂�𝑡. For more details see the BLS Handbook of Methods. 
 
 
 
2.3 Challenges of Estimation 

 
As we described above, the optimal allocation used at the CES survey sample design stage 
is aimed to minimize the variance of the over the month change estimate. Ideally, such 
allocation strategy should produce “optimal” weights for the efficient survey weighted 
estimator. However, in the realized sample, a sample unit with a large weight may grow at 
a rate much faster than expected during the design stage; as a result, it may not necessarily 
represent other units in the population to the degree its sampling weight might suggest. 
This large change in employment in conjunction with the large weight overly influences 
the ratio estimate. We can see this in the first order Taylor expansion on the  
 

�̂�𝑡 ≈  𝑅𝑡 + 
1

𝑌𝑡−1
∑ 𝑤𝑗(𝑦𝑗,𝑡 − 𝑅𝑡𝑦𝑗,𝑡−1)𝑗∈𝑆𝑡

, 
 
 
where Yt-1 is total employment in month t-1 and Rt is the change of employment from month 
t-1 to t and  𝑤𝑗 is the design weight. Supposing that there is a large change in employment, 
in the Taylor expansion a single unit can influence the ratio estimate by shifting it  
𝑤𝑗(𝑦𝑗,𝑡−𝑅𝑡𝑦𝑗,𝑡−1)

𝑌𝑡−1
 units, which can be disproportionate in some cases causing large end of the 

year revisions or highly variable over the month changes. 
 
The current solution on the CES survey is a form of Winsorization where the cut offs are 
determined by a method devised by Kokic and Bell (1994) and adapted to CES in 
Gershunskaya and Huff (2004), Gershunskaya (2011). Weights are then either censored to 
the cutoff values or in more extreme cases removed from the ratio altogether.  
 
 

3. Weight Smoothing 
 
In this section, we begin to consider weight smoothing as a solution to the challenges we 
presented in the previous section. We start by considering the survey weights as random 
rather than fixed quantities. We may then model the weights as a function of some 
response variable, 𝑤𝑗 = 𝑓(𝑟𝑗,𝑡) + 𝑒𝑗,𝑡, where f is some function we fit, 𝑟𝑗,𝑡 is the residual 
from the previous section, and  𝑒𝑗,𝑡 is some error term. Our new smoothed weights would 
then be 𝑣𝑗 = 𝑓(𝑟𝑗,𝑡). The hope is that we can produce this new set of “smoothed” weights 
with reduced variation in the weights and better aligned with the survey response to give 
us increased efficiency in our estimates. Theoretical justifications and empirical evidence 
for this approach have been presented in Beaumont (2008).  
   
 
 
 
 



3.1 Application to CES 
 
In our application of weight smoothing to the CES survey, we consider modeling the design 
weights conditioned on our “residuals”, 𝑟𝑗,𝑡 = 𝑦𝑗,𝑡 − 𝑅𝑡𝑦𝑗,𝑡−1. We use an estimate of 
𝑅𝑡 since we do not observe the true value. A typical scatter plot of these two variables 
is presented below. Some observations to make is that the variance of residuals tends to 
decrease as weight increases, some amount of skewness in the scatter plot, and some 
observations have a relatively large change in employment given its weight. 
 
 

 
 
 
For CES, the weight smoothing approach was first considered by Gershunskaya and 
Sverchkov (2014). Their work considered using non-parametric LOESS models fit to the 
data with encouraging results; the new smoothed weights produced estimates with 
typically lower revisions and tracked the “true” changes in employment closer. We use 
the values from the QCEW as a proxy for truth.  

 

 
3.2 Models 

 
Below is a survey of the models we used in our application of weight smoothing 
and a brief description. 
 
3.2.1 LOESS  

 
LOESS, or locally weighted regressions (Cleveland 1979), is a non-parametric model that 
creates regressions at each point using q nearest neighbors. The regressions are weighted 
as a function of the distances from that point to its q nearest neighbors. To fit the model, a 



few tuning parameters must be chosen. In general a “smoothing” parameter s ∈ (0,1] 
must be chosen. s is the percentage of data to be used in each regression. 
 
As stated in the previous section, these models were first considered in the original CES 
work performed by Gershunskaya and Sverchkov (2014). The models were fit in SAS 
using their automatic parameter selection technique. 
 
We will consider some restrictions on the smoothing parameter. The SAS Proc LOESS 
procedure gives the user the option to set an upper and lower bound on the potential 
smoothing parameter. SAS will perform its model selection based on the restricted 
domain of smoothing parameters, choosing the one that minimizes some criteria. Please 
see the SAS website for more details 
 
 
3.2.2 Penalized B-Splines 

 
Penalized B-splines (Eilers and Marx 1996) are another non-parametric model we tested 
in our weight smoothing application. B-splines are piecewise polynomials connected at x 
values called knots. We demand that adjacent polynomials be continuous at knots. 
Furthermore with Penalized B-Splines we add a penalty on the estimates of coefficients 
to not over fit the data. This penalty is controlled by the tuning parameter λ, with larger 
values of λ producing smoother curves.  
 
We fit the splines to the data using the SAS Transreg procedure letting SAS choose the 
smoothing parameter with its automatic selection procedure. We consider different upper 
bounds on the smoothing parameter λ in our research.  
 
3.2.3 Bayesian Model  

 
We finally consider one Bayesian model to condition our weights on residuals using the 
typical Bayesian formulation 
 

𝑃(𝜔𝑗|𝑟𝑗) ∝ 𝑃(𝑟𝑗|𝜔𝑗)𝑃(𝜔𝑗) 
 
Where 𝑃(𝜔𝑗) is our prior distribution holding our beliefs about the design weight of unit 
𝑗. 𝑃(𝑟𝑗|𝜔𝑗) is our likelihood function for the residuals deciding how likely a residual is 
given our weight. We placed a truncated normal prior on our weights with mean of the 
design weight. 
 

𝜔𝑗~𝑁(𝑤𝑗, 𝜏)  𝜔𝑗𝜖[1,100] 
 
Where 𝑤𝑗 is the original design weight and 𝜏 is its precision. We use precision, defined as 
the inverse of variance 1

𝜎2, in lieu of variance as is tradition with much Bayesian statistics. 
We place a prior on 𝜏 as 𝜏~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(.1,1). The idea is that the design weight 𝑤𝑗 is a good 
initial guess and this information should be included into the prior. 
 
We define our likelihood on the residuals as a Student’s t-distribution, once again using 
precision for the scale parameter. 
 



𝑟𝑗,𝑡~𝑡(𝜇,
𝜔𝑗

𝛼

𝜎
, 𝜈) 

 
We finally attempted to fit flat priors on the other parameters 𝜇,  𝜈 with some trial and error 
done to decide the parameters.  

𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0, .001) 
𝜈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(20,100) 

𝜎~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(.01, .01) 
𝛼~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(.01, 2.5) 

         
We finally used the JAGS (Just Another Gibbs Sampler) software package to perform our 
MCMC (Markov chain Monte Carlo) sampling from the posterior distribution, 𝑃(𝜔𝑗|𝑟𝑗), 
for each of the weights. From the samples we took the mean for each weight as our new 
smoothed weight.  
 
 
 

4. Results 

 
4.1 Evaluation Criteria 
 
Estimates were made for publication cells at the State, MSA, and Industry Classification 
for the 2011,2012 and 2013 benchmark years. There were 2351 publication cells for 2011 
and 2012 and there were 2199 publication cells for the 2013 benchmark year.   
 
We fit models monthly by state and industry classification. We did not fit at MSA level 
due to small sample sizes. Using the smoothed weights from the models, we produced 
CES estimates as described in section 2.2. To evaluate the performance of our estimators 
we used the following criteria. We use the QCEW as our proxy for truth in evaluation. 
We denote �̂�i,12 as our estimator at month 12 for publication cell i and 𝑌i,12 as the QCEW 
value at month 12 for publication cell i.  First we consider the end of the year benchmark 
revision. 
 

𝒓𝒆𝒗𝒊 = (�̂�i,12 −  𝑌i,12) 

 
We also consider the relative benchmark revisions for publication 
 

𝒓𝒆𝒍𝑹𝒆𝒗𝒊 =
(�̂�i,12 −  𝑌i,12)

𝑌i,12
 

Denoting �̂�𝑖,𝑡 as our estimator of month t for publication cell i and 𝑌𝑖,𝑡 as the QCEW 
value at month t for publication cell i, we consider the average absolute difference in over 
the month change to see how well the estimator matched changes in the QCEW.  
 

𝒄𝒊 =
𝟏

𝟏𝟐
∑|(�̂�𝑖,𝑡 − �̂�𝑖,𝑡−1) − (𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1)|

𝟏𝟐

𝒕=𝟏

 

 
We calculate these criteria for all publication cells and present summary statistics of them 
in the next section. 



 
 
 
4.2 Model Results  
 
We tried different models and restrictions on their tuning parameters, however for the 
sake of brevity, we only include selected models that performed well. There also did not 
appear to be a significant improvement by using one set of tuning parameters versus 
another, Most differences were between types of models. We did note worse results for 
2011 and 2013 for LOESS when restricting the lower bound of the smoothing parameter. 
 
In the tables below we label the LOESS model as LOESS (LB, UB) where LB is the 
lower bound on the tuning parameter and UB is the upper bound on the tuning parameter. 
We label the Penalized B-Spline as Spline Lambda < UB where UB is the upper bound 
of the smoothing parameter. No other variations on the Bayes model were attempted due 
to time constraints, we simply label it Bayes. 
 
Table 1 below contains summary statistics of benchmark revisions. One can see that in 
most cases the absolute mean of the LOESS model is the smallest. 
 
Table 1: Benchmark Revision Summary Statistics for Chosen Models 

2011 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -27140 -863 -101 -161 601 16970 

LOESS (0, 0.8) -17770 -649 -14 2 558 35210 

Spline Lambda < 1000 -19220 -650 -32 -96 462 23570 

Bayes  -21890 -897 -177 -368 357 11020 

2012 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -48470 -1008 -109 -340 592 25500 

LOESS (0, 0.8) -50200 -950 -128 -480 491 33540 

Spline Lambda < 1000 -50160 -952 -165 -589 404 27110 

Bayes -49540 -932 -179 -462 381 24610 

2013 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -15490 -816 -81 -111 650 14270 

LOESS (0, 0.8) -20820 -599 10 11 622 64350 

Spline Lambda < 1000 -18000 -640 -32 -138 499 21030 

Bayes -14080 -776 -121 -283 386 10090 
 
 
 
On the next page we include the summary statistics for Relative Benchmark Revision and 
Average Absolute Difference of Over the Month Change Summary Statistics. … 
 
 
 



 
 
Table 2: Relative Benchmark Revisions Summary Statistics for Chosen Models 
 

2011 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -38.97% -3.47% -0.45% -0.36% 2.50% 96.97% 

LOESS (0, 0.8) -43.73% -2.58% -0.10% 0.08% 2.33% 208.50% 

Spline Lambda < 1000 -43.73% -2.53% -0.16% -0.09% 2.01% 192.50% 

Bayes -35.75% -3.25% -0.82% -0.69% 1.61% 73.25% 

2012 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -65.14% -3.77% -0.58% -0.49% 2.40% 121.90% 

LOESS (0, 0.8) -64.75% -3.58% -0.60% -0.61% 2.31% 114.60% 

Spline Lambda < 1000 -64.23% -3.58% -0.80% -0.88% 1.90% 108.00% 

Bayes -63.97% -3.40% -0.82% -0.67% 1.58% 133.90% 

2013 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator -48.58% -2.92% -0.44% -0.27% 2.39% 46.97% 

LOESS (0, 0.8) -48.24% -2.07% 0.05% 0.19% 2.37% 48.37% 

Spline Lambda < 1000 -47.84% -2.24% -0.17% -0.08% 1.96% 49.92% 

Bayes -48.14% -2.67% -0.55% -0.49% 1.65% 37.56% 
 
 
Table 3: Average Absolute Difference of Over the Month Change Summary Statistics for 
Chosen Models 

2011 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator 7 183 341 454 574 8930 

LOESS (0, 0.8) 7 149 264 396 472 18040 

Spline Lambda < 1000 6 151 282 479 542 7457 

Bayes  8 161 272 377 462 4474 

2012 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator 6 206 389 653 725 13920 

LOESS (0, 0.8) 5 162 309 601 641 13710 

Spline Lambda < 1000 4 150 294 581 629 13540 

Bayes 6 173 322 594 636 13750 

2013 Benchmark Year 

  Min 1st Quartile Median Mean 3rd Quartile Max 

Robust Estimator 5 200 378 566 666 8353 

LOESS (0, 0.8) 5 160 300 504 570 7507 

Spline Lambda < 1000 6 151 282 479 542 7457 

Bayes 5 174 315 497 564 7945 



 
 
We will briefly look at some of the extreme cases to see where improvements could be 
made. Below is a monthly time series of all our estimates including the QCEW labeled as 
ES202 in graph below. We can see that the LOESS, the blue line in Figure 1, model 
tended to overestimate over the month change, with one extreme happening in August. 
 

Figure 1: Bad LOESS Estimate 
 

 
 

 
 
To understand why this occurred, we plotted the model fit of weight vs residual for each 
of our three models below. The black dots are the design weights and the red line is our 
model fit. One should note that the LOESS model up-weighted large positive residuals in 
this model fit causing over estimation of the ratio. This is a model problem that would 
need to be remedied in some manner either through weight trimming or analyst review. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 2: Model Fits for Bad LOESS Model 

 
 
The next example is one where the Bayes estimator fails to perform well. We will look at 
the change between October to November due to it estimating a gain in employment rather 
than a drop. You can see this in the time series below.  
 

Figure 3: Time Series of Estimators, Bad Bayes Estimate 
 

 
 

 



 
 
 
 
 
We can once again look at the graph of the model fit. We can see the one outlier circled 
in green that failed to be down weighted by the Bayes model, unlike the other models. 
This caused the positive jump in employment rather than decline reported by the other 
models. 

 
 

Figure 4: Model Fits for Bad Bayes Model 
 

 
 

 

5. Conclusions 

 
We make the following observations and conclusions about our results: 
 

 Fitting a model to our weights generally reduced benchmark revisions, reduced 
the variance of revisions across estimation cells, and better estimated over-the-
month change than the robust estimator. 

 We consider the LOESS model the best due to it outperforming the robust 
estimator in most evaluation statistics.  

 Penalized B-Splines and the Bayes Model generally under estimated the true 
employment value though still reducing the variance of the revisions across 
estimation cells. 

 The Bayesian Model mitigated large outliers the best and reduced variance of 
estimates the best. However a large consistent negative bias and large 
computation time make the model impractical.  



 Idiosyncrasies of the model fits can cause large outliers and would need to be 
mitigated through some process as seen in the time series of estimates. 

 
 
 
 

 
5. Future Work 

 
Although current results look promising, some work still remains to be done before one 
considers using a process such as this in production. This work includes:   
 

 Current work is being done on calculating the variance of estimates from weight 
smoothed weights. 

 Is there any benefit to an MSA level “effect”? If an MSA is different than the 
others the modeled weights may give poor results for that MSA.  

 Can we check to see how well two models agree on their estimates of weights to 
detect poor fits? As in the case of the bad LOESS model we presented, perhaps 
this problem can be caught by checking against the Spline model in some 
fashion. 

 Is there any benefit to further trimming weights or removing them from the ratio 
either before or after model fitting? 
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