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Abstract

This paper shows that accounting for life cycle behavior substantially affects
optimal public debt in the presence of incomplete markets. In a calibrated model,
we find that the life cycle changes optimal policy from public debt equal to 24% of
output to public savings equal to 61% of output because it introduces two features
that are observed in the data: (i) young individuals have little wealth and accu-
mulate savings during their lifetimes, and (ii) average consumption and hours
worked vary over individuals’ lifetimes. Public debt affects welfare by crowding
out productive capital and increasing the interest rate, which encourages more
self-insurance against labor market risk through private saving. Without the life
cycle, the welfare benefits of public debt are larger since individuals simply have
more wealth on average. With the life cycle, the welfare benefit is smaller because
even though public debt leads to more private savings, individuals must accumu-
late this savings over their lifetimes. Instead, public savings improves welfare by
yielding a lower interest rate that encourages a flatter allocation of consumption
and leisure over individuals’ lifetimes. Additionally, the life cycle makes optimal
policy far less sensitive to wealth inequality because wealth is now correlated not
only with income, but also with age.
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1 Introduction

Motivated by the prevalence of government borrowing across advanced economies,
previous work demonstrates that government debt can be optimal in a standard in-
complete markets model with infinitely lived agents. For example, in their seminal
work, Aiyagari and McGrattan (1998) find that a large quantity of public debt is op-
timal when such an economic environment is calibrated to the U.S. economy. Public
debt is optimal because it crowds out the stock of productive capital and leads to a
higher interest rate that encourages households to save more. As a result, households
are better self-insured against idiosyncratic labor earnings risk and are, therefore,
less likely to be liquidity constrained. Yet, while household savings behavior is cen-
tral to public debt being optimal, previous work largely examines optimal policy in
economies inhabited by infinitely lived agents. Such economic environments abstract
from empirically relevant life cycle characteristics that can affect optimal debt policy
as a result.

This paper characterizes the effect of a life cycle on optimal public debt and in-
spects the mechanisms through which a life cycle affects optimal policy. In order
to determine the effect of the life cycle, we contrast optimal policy in two model
economies: (i) the standard incomplete markets model with infinitely lived agents,
and (ii) a life cycle model. We find that the optimal policies are strikingly different
between the two models. In the infinitely lived agent model, it is optimal for the
government to be a net borrower with public debt equal to 24 percent of output. In
contrast, in the life cycle model, we find that it is optimal for the government to be a
net saver, not a net borrower, with public savings equal to 61 percent of output.

Accounting for life cycle behavior leads to the optimality of public savings, not
public debt, through two features that are also observed in the data: (i) young in-
dividuals have little wealth and accumulate savings during their lifetimes, and (ii)
average consumption and hours worked vary over individuals’ lifetimes. The first
feature, that life cycle agents accumulate savings during their lifetimes, dampens the
main welfare benefit of public debt. In particular, public debt can improve welfare by
inducing a higher interest rate that encourages agents to save. Without a life cycle,
agents will live in an economy that has more private savings on average, which im-
proves agents’ self-insurance against idiosyncratic labor earnings risk. With a life cy-
cle, although public debt also increases the average amount of private savings, agents
enter the economy with little or no wealth and must accumulate savings over their
lifetimes. Thus, public debt has a smaller welfare benefit from self-insurance in the
life cycle model because agents only experience improved self-insurance after they
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have accumulated savings.
The second feature, that average consumption and hours worked vary over the

life cycle instead of remaining constant, leads public savings to be optimal. This is
because public savings promotes a better allocation of agents’ consumption and hours
over their lifetimes. Life cycle agents tend to increase their consumption over most of
their lifetimes because the return on savings under the public debt policy is high rela-
tive to their discount factors.1 Holding total lifetime consumption fixed, a public debt
or savings policy that results in agents allocating consumption more equally through-
out their lifetimes maximizes expected lifetime utility. Therefore, public savings can
improve welfare in the life cycle model by inducing a lower interest rate that reduces
consumption growth over most of the lifetime and leads to a flatter consumption
profile.

In contrast to these two features that lead to a divergence, income inequality re-
duces the difference between the two models’ optimal policies. Underlying this re-
duction are three relationships: (i) a change in public debt moves the interest rate
and wage in opposite directions, (ii) income inequality is due to inequality in both
asset and labor income, and (iii) generally, asset income inequality increases with the
interest rate while labor income inequality increases with the wage. Put together,
these three relationships imply that optimal policy trades-off decreasing income in-
equality from one income source with increasing income inequality from the other.
Comparing the two models, the infinitely lived agent model features a larger ratio of
asset income inequality to labor income inequality compared to the life cycle model.2

Accordingly, in the infinitely lived agent model, a reduction in public debt improves
welfare because the lower return to savings leads to a decrease in asset income in-
equality. Conversely, in the life cycle model, a decrease in public savings improves
welfare because the lower return to labor income reduces labor income inequality.
Despite its countervailing impact, we find that the effect of inequality on optimal pol-
icy is quantitatively smaller than the effect from the improved lifetime allocation of
consumption and hours in the life cycle model. Thus, public savings is optimal in the

1Life cycle agents’ discount factors not only include the standard time preference but also account
for mortality risk. In our baseline calibration of the life cycle model, mortality rates are sufficiently
low relative to the interest rate to generate rising consumption over most of the lifetime. However,
mortality risk increases after age 70, which generates falling consumption over the remainder of the
lifetime. A similar mechanism governs the non-constant labor allocation over the life cycle.

2Asset income inequality is smaller in the life cycle model due to a finite lifetime. As agents live
longer, there are more opportunities for agents to receive a long string of positive or negative labor
productivity shocks, which generate greater dispersion in savings between lucky and unlucky agents.
In the life cycle model, the finite lifetime means there are fewer opportunities for labor productivity
shocks to propagate into the wealth distribution and create more variance in wealth.
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life cycle model and public debt is optimal in the infinitely lived agent model.
Our results demonstrate that studying optimal policy in an infinitely lived agent

model, which abstracts from the realism of a life cycle in order to render models
more computationally tractable, is not without loss of generality. Not only is the op-
timal policy quite different when one ignores life cycle characteristics, but the welfare
consequences of ignoring them are economically significant. In the life cycle model,
we find that if a government is a net borrower (as is optimal in the infinitely lived
agent model) instead of being a net saver (as is optimal in the life cycle model), then
an average life cycle agent would be worse off by 0.6 percent of expected lifetime
consumption.

This paper is related to an established literature that uses the standard incomplete
market model with infinitely lived agents, originally developed in Bewley (1986), İm-
rohoroğlu (1989), Huggett (1993), Aiyagari (1994) and others, to study the optimal
level of steady state government debt. Unlike this paper, previous work has mostly
utilized infinitely lived agent models and finds that public debt is optimal. Aiyagari
and McGrattan (1998) is the seminal contribution to the study of optimal debt in the
standard incomplete market model and finds that public debt is optimal in an econ-
omy calibrated to resemble the U.S. Floden (2001) finds that increasing government
debt can improve welfare if transfers are below optimal levels. Similarly, Dyrda and
Pedroni (2016) find that it is optimal for the government to be a net borrower. How-
ever, they find that optimizing both taxes and debt at the same time leads to a smaller
level of optimal debt than do previous studies. Relative to these papers, we focus
on how optimal policy changes when one considers a life cycle model as opposed to
an infinitely lived agent model, and find that including life cycle features has large
effects on optimal policy.3

Using variants of incomplete market models, Röhrs and Winter (2017) and Vo-
gel (2014) also find that it can be optimal for the government to be a net saver. In
both papers, the government’s desire for redistribution partially explains the optimal-
ity of public savings, as public savings leads to a lower interest rate and therefore
redistributes welfare from wealth-rich agents to wealth-poor agents.4 Similarly, this

3Using infinitely lived agent models, Desbonnet and Weitzenblum (2012), Açikgöz (2015), Dyrda and
Pedroni (2016), Röhrs and Winter (2017) find quantitatively large welfare costs of transitioning be-
tween steady states after a change in public debt. Moreover, Heinemann and Wulff (2017) demon-
strate that debt-financed government stimulus after an aggregate shock can be welfare improving.
Additional papers examining the transition path include Chien and Wen (2017) and Açikgöz, Holter,
Hagedorn, and Wang (2018). We do not consider these transitional costs and instead focus on steady
state comparisons to more sharply highlight the effect of the life cycle on optimal debt policy.

4This motive to redistribute is enhanced in both of these papers since the models are calibrated to
match the upper tail of the U.S. wealth distribution, which leads to a small mass of wealth-rich agents
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paper finds that the redistribution motive affects optimal policy. However, we find
that whether the effect moves optimal policy towards public savings or public debt
depends on whether a life cycle is included.5 However, we find that the existence of
the accumulation phase and the government’s desire to induce agents to more equally
allocate their consumption over their lifetime are quantitatively dominant, leading to
the optimality of public savings in the life cycle model and the optimality of public
debt in the infinitely lived agent model.6 Moreover, we find that optimal policy is
much less sensitive to inequality in the life cycle model than in the infinitely lived
agent model because wealth is correlated not only with income, but also with age
when the life cycle is included.

This paper is also related to a strand of literature that examines the effects of life
cycle features on optimal fiscal policy but generally focuses on taxation instead of
government debt. For example, Garriga (2001), Erosa and Gervais (2002) and Conesa
et al. (2009) show that life cycle characteristics create a motive for positive capital
taxation, in contrast to the seminal work by Judd (1985) and Chamley (1986) that
finds optimal capital taxation is zero in the long-run of a class of infinitely lived agent
models.7 With a life cycle, if age-dependent taxation is not feasible then a positive
capital tax may be optimal since it can mimic an age-dependent tax on labor income.
Instead of focusing on optimal taxation in a life cycle model, this paper quantifies the
effects of life cycle features on optimal government debt.8 We find that introducing
life cycle features changes optimal policy from public debt to public savings because
agents must accumulate savings at the beginning of their lifetimes, not because the
government would like to mimic age-dependent policy.

and a larger mass of wealth-poor agents.
5Specifically, we find that the ratio of asset income inequality relative to lifetime labor income inequality
increases with the length of the lifetime (see Dávila et al. (2012) for discussion). Thus, in the infinitely
lived agent model, there is a stronger desire for the government to reduce lifetime interest income
inequality, which it can accomplish through public savings that lowers the interest rate. In contrast, in
the life cycle model, there is more desire for the government to reduce lifetime labor income inequality,
which it can accomplish by increasing public debt and thereby lowering the wage.

6In characterizing optimal public debt, this paper additionally abstracts from aggregate uncertainty
(i.e., Barro (1979), Lucas and Stokey (1983), Aiyagari, Marcet, Sargent, and Seppälä (2002), Shin (2006)),
political economy distortions (i.e., Alesina and Tabellini (1990), Battaglini and Coate (2008), and Song,
Storesletten, and Zilibotti (2012)), and international capital flows (i.e., Azzimonti, de Francisco, and
Quadrini (2014)).

7In addition, Aiyagari (1995) and İmrohoroğlu (1998) demonstrate that incomplete markets can over-
turn the zero capital tax result with uninsurable earnings shocks and sufficiently tight borrowing
constraints.

8Instead of isolating the effects of life cycle features on optimal debt, Garriga (2001) allows the gov-
ernment to choose sequences for taxes (capital, labor and consumption) as well as government debt.
In contrast, our paper explicitly measures how including life cycle features alters optimal debt policy
while holding other fiscal instruments constant.
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Finally, this paper is related to Dávila, Hong, Krusell, and Ríos-Rull (2012), whose
work defines constrained efficiency in a standard incomplete markets model with
infinitely lived agents. Constrained efficient allocations account for the effect of indi-
vidual behavior on market clearing prices, while satisfying individuals’ constraints.
The authors show that the price system in the standard incomplete market model does
not efficiently allocate resources across agents and that welfare improving equilibrium
prices could be attained if agents were to systematically deviate from individually
optimal savings and consumption decisions. While this paper does not characterize
constrained efficient allocations, this paper’s Ramsey allocation improves welfare for
similar reasons: since it understands the relationship between public debt and prices,
the government can implement a welfare improving allocation that individual agents
cannot attain through private markets. Because of this common mechanism, both of
our papers find that a higher capital stock improves welfare. However, Dávila et al.
(2012) obtains this result through matching top wealth inequality in an infinitely lived
agent model, while our paper does so through adding life cycle features.9

The remainder of this paper is organized as follows. Section 2 illustrates the un-
derlying mechanisms by which optimal government policy interacts with life cycle
and infinitely lived agent model features. Section 3 describes the life cycle and in-
finitely lived agent model environments and defines equilibrium. Section 4 explains
the calibration strategy, Section 5 presents quantitative results, and Section 6 performs
robustness exercises. Section 7 concludes.

2 Illustration of the Mechanisms

In this section, we illustrate the mechanisms that lead the government to an optimal
public debt or savings policy. We discuss why optimal government policy may differ
between the life cycle and infinitely lived agent models.

2.1 Life Cycle Phases

In order to highlight how the life cycle may impact optimal debt policy, it will be
useful to define three distinct phases of an agent’s life cycle. Agents enter the economy
with little or no wealth and begin the accumulation phase, which is characterized by
the accumulation of wealth for precautionary motives and to finance post-retirement

9If we increase the amount of wealth inequality in the life cycle model using the same modeling
strategy as Dávila et al. (2012), then we find wealth inequality leads to a larger quantity of optimal
public savings than in the baseline life cycle model that does not explicitly match top wealth inequality.
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consumption. While accumulating a stock of savings, agents may choose to work
more and consume less.

Once wealth provides sufficient insurance against labor productivity shocks, agents
have entered the stationary phase.10 This phase is characterized by savings, hours and
consumption that remain constant on average.11

Finally, agents enter the deaccumulation phase in old age. Late in the life cycle,
agents deaccumulate assets because they no longer want to hold as much savings for
precautionary reasons. As a result, the average level of savings decreases, average
consumption may increase, and average hours worked may decrease.

In comparison, infinitely lived agents only experience the equivalent of a station-
ary phase. On average, infinitely lived agents’ consumption, hours and savings allo-
cations remain constant.

2.2 Welfare Channels and Life Cycle Features

We identify four main channels through which public debt policy affects welfare: the
direct effect, the insurance channel, the inequality channel and the age-allocation channel.
We heuristically characterize how these channels affect optimal policy, and how these
channels’ effects can differ in the life cycle and infinitely lived agent models.

Direct Effect: The direct effect is the partial equilibrium change in the productive cap-
ital stock, aggregate consumption, and aggregate output with respect to a change in
public debt, when holding constant the aggregate labor supply and aggregate private
savings. Mechanically, increased public debt crowds out (e.g., decreases) productive
capital, thereby generating less output and decreasing aggregate consumption.12 Gen-
erally, decreased aggregate consumption reduces welfare, which causes this mecha-
nism to push optimal policy toward public savings. Absent any general equilibrium

10The stationary level of average savings is related to the "target savings level" in Carroll (1992, 1997).
Given the primitives of the economy, an agent faces a tradeoff between consumption levels and
consumption smoothing. The agent targets a level of savings that provides sufficient insurance while
maximizing expected consumption.

11However, underlying constant averages for the cohort are individual agents who respond to shocks
by choosing different allocations, thereby moving about various states within a non-degenerate dis-
tribution over savings, hours and consumption. If mortality is stochastic and the probability varies
over the lifetime, then the cohort averages for savings, hours, and consumption will not be constant
in this phase.

12By assuming that a representative firm operates a standard Cobb-Douglas production technology, ag-
gregate output is a increasing function of capital and labor inputs. Standard parameter assumptions
ensure that steady state aggregate investment decreases by less than aggregate output decreases upon
capital crowd out. Therefore, the resource constraint implies that aggregate consumption decreases.
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effects, this mechanism should operate similarly in both the life cycle and infinitely
lived agent economies.

Indirect Effects: While the direct effect is a partial equilibrium effect of policy on
aggregate resources, the remaining channels affect welfare in general equilibrium,
that is, by impacting market clearing prices. In particular, decreasing public savings
or increasing public debt will crowd out productive capital and lead to an increase in
the market clearing interest rate and a reduction in the market clearing wage rate.

An increase in the interest rate encourages agents to save. The higher level of
savings improves welfare because agents are less likely to face binding liquidity con-
straints and are, therefore, better insured against labor earnings risk. We refer to this
channel as the insurance channel.

The insurance channel’s welfare benefit varies substantially between the life cycle
and infinitely lived agent models. In the infinitely lived agent model, agents exist in
a perpetual stationary phase. This implies that since public debt encourages agents
to save, it leads to an equilibrium in which agents have more savings on average.
Thus, increased public debt improves insurance for the average agent because he
lives with more ex ante savings. In the life cycle model, in contrast, agents enter the
economy with little or no wealth and immediately begin the accumulation phase.13

While increased public debt may encourage agents to save more over their lifetime,
agents need to accumulate this savings in the first place which reduces the benefit
from public debt.14

The second indirect effect concerns how changes in the interest rate affect the al-
location of consumption over the life cycle. The lower interest rate associated with
public savings will lead agents to prefer using more resources for consumption today
as opposed to saving resources for consumption at a later age. Thus, if consumption

13If life cycle features were introduced in a dynastic model, instead of a life cycle model, where old
agents bequeath wealth to agents entering the economy, then the accumulation phase may be more
responsive to public policy. Consistent with Fuster, İmrohoroğlu, and İmrohoroğlu (2008), the op-
timal policy differences between a dynastic model and the infinitely lived agent model could be
smaller than the difference between the optimal policies in the life cycle model and infinitely lived
agent model since agents would receive some initial wealth through bequests. Nevertheless, given
that we find that the insurance channel is not the main quantitative reason for the differences in op-
timal policies between life cycle and infinitely lived agent models, the notable difference in optimal
policies would likely persist.

14Savings accumulation mitigates the welfare benefit from the insurance for two reasons. First, life
cycle agents only realize the insurance benefit from precautionary savings after accumulating that
savings. Second, although the higher interest rate associated with public debt may encourage agents
to accumulate a higher level of savings by the time they enter the stationary phase, agents will need
to work more and consume less during the accumulation phase in order to reach a higher level of
stationary savings.
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tends to increase over the lifetime, then the lower interest rate associated with public
savings will induce a flatter consumption profile. Similarly, if consumption tends to
decline over the lifetime, then public savings and the associated lower interest rate
would lead to steeper fall in consumption. In a standard consumption-savings prob-
lem, abstracting from changes to the level of total lifetime consumption, public debt
or public savings policy that results in agents allocating consumption more equally
throughout their lifetimes maximizes expected lifetime utility.15 We refer to this as
the age-allocation channel. The age-allocation channel only exists in the life cycle model
since there is no meaningful concept of age in the infinitely lived agent model.

The final indirect channel describes the welfare effect of income inequality arising
from price changes. Income inequality is composed of both asset and labor income
inequality, and the amount of asset income inequality increases with the interest rate
while the amount of labor income inequality increases with the wage. Since changing
public debt has opposite effects on the wage and interest rate, optimal policy trades-
off decreasing income inequality from one income source with increasing income
inequality from the other. Therefore, the optimal tradeoff depends on the relative
amount of inequality that arises from each source of income. We refer to this channel
as the inequality channel.

Since the relative inequality deriving from labor income and asset income varies
across the two models, so too will the optimal policy tradeoff. As demonstrated in
Dávila, Hong, Krusell, and Ríos-Rull (2012), inequality depends on agents’ lifespan.
As agents live longer, lifetime labor income inequality increases because there is a
greater chance that agents receive a long string of either positive or negative labor
productivity shocks. However, asset income inequality will also develop because
agents reduce (increase) their wealth in response to a string of negative (positive)
shocks. Generally, as each agent’s lifespan increases, asset income inequality increases
relative to labor income inequality. Accordingly, the ratio of asset income inequality to
labor income inequality is larger in the infinitely lived agent model, and smaller in the
life cycle model. Therefore, the inequality channel pushes optimal policy in the life
cycle model toward more public debt (less public savings) and pushes optimal policy
in the infinitely lived agent model toward more public savings (less public debt).

Overall, given these competing mechanisms, it is a quantitative issue whether pub-
lic debt or public savings is optimal in either model. Put together, higher public debt
lowers welfare through the direct effect and raises welfare through the insurance chan-

15Similarly, changes in the interest rate can change how agents choose to allocate their leisure and labor
over their lifetime and how a smooth allocation of labor/leisure will maximize utility. However, for
simplicity, we choose to focus on describing the intuition with the allocation of consumption.
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nel, while the age-allocation channel and inequality channel have ambiguous effects.
Comparing the effects of the channels in the two models, the inequality channel’s
effect differs, pushing the life cycle model’s optimal policy toward public debt and
the infinitely lived agent model’s optimal policy toward public savings. Likewise,
the insurance channel is weaker in the life cycle model than in the infinitely lived
agent model because the existence of the accumulation phase, while the infinitely
lived agent model does not have an age-allocation effect. Thus, it is unclear whether
introducing a life cycle will move optimal policy towards more public debt or to-
wards public savings. In the next section, we turn to a quantitative model in order to
determine the relative strength of these mechanisms.

3 Economic Environment

In this section, we present both the life cycle model and the infinitely lived agent
model. Given that there are many common features across models, we will first focus
on the life cycle model in detail before providing an overview of the infinitely lived
agent model.

We study a stationary recursive competitive equilibrium around a balanced growth
path. For ease of explication, we will now present the detrended stationary recursive
competitive equilibrium and suppress time-dependence in our notation. However, we
will make explicit any primitives that require additional assumptions for the model
to be consistent with balanced growth. Appendix A presents the construction of the
balanced growth path equilibrium of the economy.

3.1 Life Cycle Model

3.1.1 Production

We assume there exists a large number of firms that sell a single consumption good in
a perfectly competitive product market, purchase inputs from perfectly competitive
factor markets, and each operate an identical constant returns to scale production
technology, Y = ZF(K, L). These assumptions on primitives admit a representative
firm that chooses capital (K) and labor (L) inputs in order to maximize profits, given
an interest rate r, a wage rate w, a level of total factor productivity Z, and capital
depreciation rate δ ∈ (0, 1). Following Aiyagari and McGrattan (1998), we will further
assume that total factor productivity, Z, grows over time at rate gz > 0.
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3.1.2 Consumers

Demographics: Let time be discrete and let each model period represent a year. Each
period, the economy is inhabited by J overlapping generations of individuals. We
index agents’ age in the model by j = 1, . . . , J, where j = 1 corresponds to age 21 in
the data and J is an exogenously set maximum age (set to age 100 in the data). Before
age J all living agents face mortality risk. Conditional on living to age j, agents have
a probability ψj of living to age j + 1, with a terminal-age survival probability given
by ψJ = 0. Each period a new cohort is born and the size of each successive newly
born cohort grows at a constant rate gn > 0.

Preferences: Agents enjoy lifetime paths of consumption and labor hours, denoted
{cj, hj}J

j=1, according to the following preferences:

E1

J

∑
j=1

βj−1 [u(cj)− v(hj, dj)
]

where β is the time discount factor, and u(c) and v(h) are instantaneous utility func-
tions over consumption and labor hours, respectively, satisfying standard conditions.
This definition of preferences embeds the assumption that the disutility of labor,
v(h, d), grows over time (e.g., along a balanced growth path it will grow at the same
rate as the utility over individual consumption, for more detail see Appendix A).
Furthermore, expectations are taken with respect to survival risk and the stochastic
processes governing labor productivity.

Finally, dj denotes a retirement status. Agents choose their retirement age, which
is denoted by Jret, in the interval j ∈ [

¯
Jret, J̄ret] and are forced to retire after age J̄ret.

Therefore, let dj ≡ 1(j < Jret) be an indicator variable that equals one when an agent
chooses to continue working and zero upon retirement. A retired agent cannot sell
labor hours and the retirement decision is irreversible.

Labor Earnings: Agents are endowed with one unit of time per period, which they
split between leisure and market labor. During each period of working life, an agent’s
labor earnings are wejhj, where w is the wage rate per efficiency unit of labor, ej is the
agent’s idiosyncratic labor productivity drawn at age j, and hj is the time the agent
chooses to work at age j.

Following Kaplan (2012), we assume that labor productivity shocks can be decom-
posed into four sources:

log(ej) = κ + θj + νj + εj
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where (i) κ
iid∼ N (0, σ2

κ ) is an individual-specific fixed effect that is drawn once at
birth and remains fixed, (ii) {θj}J

j=1 is an age-specific fixed effect that evolves in a
predetermined manner, (iii) νj is a persistent shock that follows an autoregressive

process given by νj+1 = ρνj + ηj+1 with η
iid∼ N (0, σ2

ν ) and η1 = 0, and (iv) εj
iid∼

N (0, σ2
ε ) is a transitory shock that is drawn each period.

For notational compactness, we denote the relevant state as a vector ε j = (κ, θj, νj, εj)

that contains each element necessary for computing contemporaneous labor earn-
ings, ej ≡ e(ε j), and forming expectations about future labor earnings. Denote the
Markov process governing the process for ε by πj(ε j+1|ε j) for each ε j, ε j+1 and for
each j = 1, . . . , J̄ret.

Assets: Agents have access to a single asset, a non-contingent one-period bond de-
noted aj with a market determined rate of return of r. Agents may take on a net debt
position, in which case they are subject to a borrowing constraint that requires their
debt position be bounded below by

¯
a ∈ R. The parameter

¯
a grows at a constant rate

along a balanced growth path.
Agents are endowed with zero initial wealth, such that a1 = 0 for each agent.

Agents who die before age J may hold wealth when they die since mortality is uncer-
tain. This wealth is treated as an accidental bequest and is equally divided across each
living agent in the form of a lump-sum transfer, denoted Tr, including those agents
newly entering the economy.

3.1.3 Government Policy

The government (i) consumes an exogenous amount of resources G, (ii) collects lin-
ear Social Security taxes τss on all pre-tax labor income below an amount m̄, (iii)
distributes lump-sum Social Security payments bss to retired agents, (iv) distributes
accidental bequests as lump-sum transfers Tr, and (v) collects income taxes from each
individual.

Social Security: The model’s Social Security system consists of taxes and payments.
The social security payroll tax is given by τss with a per-period cap denoted by m̄.
We assume that half of the social security contributions are paid by the employee
and half by the employer. Therefore, the consumer pays a payroll tax given by:
(1/2) τss min{weh, m̄}. Social security payments are computed using the averaged
indexed monthly earnings (AIME) that summarizes an agents lifetime labor earn-
ings. Following Huggett and Parra (2010) and Kitao (2014), the AIME is denoted by
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{mj}J
j=1, has an initial value m1 = 0 and evolves as follows:

mj+1 =


1
j
(
min{wejhj, m̄}+ (j− 1)mj

)
for j ≤ 35

max
{

mj,
1
j
(
min{wejhj, m̄}+ (j− 1)mj

)}
for j ∈ (35, Jret)

mj for j ≥ Jret


The AIME is a state variable for determining future benefits. Benefits consist of a base
payment and an adjusted final payment. The base payment, denoted by bss

base(mJret), is
computed as a piecewise-linear function over the individual’s average labor earnings
at retirement mJret :

bss
base(mJret) =



τr1mJret for mJret ∈ [0, bss
1 )

τr1bss
1 + τr2(mJret − bss

1 ) for mJret ∈ [bss
1 , bss

2 )

τr1bss
1 + τr2bss

2 + τr3(mJret − bss
1 − bss

2 ) for mJret ∈ [bss
2 , bss

3 )

τr1bss
1 + τr2bss

2 + τr3bss
3 for mJret ≥ bss

3


Lastly, the final payment requires an adjustment that penalizes early retirement and
credits delayed retirement. The adjustment is given by:

bss(mJret) =


(1− D1(Jnra − Jret))bss

base(mJret) for
¯
Jret ≤ Jret < Jnra

(1 + D2(Jret − Jnra))bss
base(mJret) for Jnra ≤ Jret ≤ J̄ret


where Di(·) are functions governing the benefits penalty or credit,

¯
Jret is the earliest

age agents can retire, Jnra is the "normal retirement age," and J̄ret is the latest age an
agent can retire.

We assume a cost of living adjustment (COLA) on Social Security taxes and pay-
ments. In particular, the cap on eligible income, m̄, and base payment bend points,
{bss

1 , bss
2 , bss

3 }, grow at a constant rate along a balanced growth path.

Income Taxation: Taxable income is defined as labor income and capital income net
of social security contributions from an employer:

y(h, a, ε, d) ≡

 we(ε)h + r(a + Tr)− τss
2 min{we(ε)h, m̄} if d = 1

r(a + Tr) if d = 0
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The government taxes each individual’s taxable income according to an increasing
and concave function, Υ(y(h, a, e, d)). The tax function grows at a constant rate along
the balanced growth path such that individuals’ after-tax income also grows at the
same rate.

Public Savings and Budget Balance: Each period, the government has a debt balance
B and saves or borrows B′ at the market interest rate r. If the government borrows,
then B′ < 0 and the government repays rB′ next period. If the government saves,
then B′ > 0 and the government collects asset income rB′ next period. The resulting
stationary government budget constraint is,

G + (1 + gy)B′ − B = rB + R (1)

where R is aggregate revenues from income taxation and G is an unproductive level
of government expenditures.16 The model’s Social Security system is self-financing
and therefore does not appear in the governmental budget constraint.

3.1.4 Consumer’s Problem

The agent’s state variables consist of asset holdings a, labor productivity shocks ε ≡
(κ, θ, ν, ε), Social Security contribution (AIME) variable m, and retirement status d−1.
The age-j agent’s stationary recursive problem prior to retirement is:

Vj(a, ε, m, 1) = max
c,a′,h,d

[u(c)− v(h, d)] + [β(1 + gw)
1−σ]ψj ∑

ε′
πj(ε

′|ε)Vj+1(a′, ε′, m′, d) (2)

s.t. c + (1 + gw)a′ ≤ we(ε)h + (1 + r)(a + Tr)− τss
2 min{we(ε)h, m̄} − Υ(y(h, a, ε, d))

a′ ≥ a

where gw is the steady state rate of wage growth. The construction of the stationary
Bellman equation is presented in Appendix A.

An agent retires when they choose d = 0 between ages
¯
Jret and J̄ret or face manda-

tory retirement after age J̄ret. The retired agent’s stationary recursive problem is:

Vj(a, 1, m, 0) = max
c,a′,h

[
u(c)− v(h, 0)

]
+ [β(1 + gw)

1−σ]ψjVj+1(a′, 1, m, 0) (3)

16Two recent papers, Röhrs and Winter (2017) and Chaterjee, Gibson, and Rioja (2016) have relaxed the
standard Ramsey assumption that government expenditures are unproductive. Both papers show
that public savings is optimal with productive government expenditures, intuitively because there is
an additional benefit to aggregate output.
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s.t. c + (1 + gw)a′ ≤ (1 + r)(a + Tr) + bss(m)− Υ (r(a + Tr))

a′ ≥ a

3.1.5 Stationary Recursive Competitive Equilibrium

We study a stationary equilibrium along a balanced growth path in which all aggre-
gate variables grow at the same rate as output. Denote the growth rate of output as
gy. Refer to Appendix A for a formal construction of the balanced growth path.

Agents are heterogeneous with respect to their age j ∈ J ≡ {1, . . . , J}, wealth
a ∈ A, labor productivity ε ∈ E, average lifetime earnings m ∈ X, and retirement
status d ∈ D ≡ {0, 1}. Let S ≡ A × E × X × D be the state space and B(S) be
the Borel σ-algebra on S. Let M be the set of probability measures on (S,B(S)).
Then (S,B(S), λj) is a probability space in which λj(S) ∈ M is a probability measure
defined on subsets of the state space, S ∈ B(S), that describes the distribution of
individual states across age-j agents. Denote the fraction of the population that is
age j ∈ J by µj. For each set S ∈ B(S), µjλj(S) is the fraction of age j ∈ J and type
S ∈ S agents in the economy. We can now define a stationary recursive competitive
equilibrium of the economy.

Definition (Equilibrium): Given a government policy (G, B, B′, R, τss, bss), a stationary
recursive competitive equilibrium is (i) an allocation for consumers described by policy
functions {cj, a′j, hj, dj}J

j=1 and consumer value function {Vj}J
j=1, (ii) an allocation for

the representative firm (K, L), (iii) prices (w, r), (iv) accidental bequests Tr, and (v)
distributions over agents’ state vector at each age {λj}J

j=1 that satisfy:

(a) Given prices, policies and accidental bequests, Vj(a, ε, m, d−1) solves the Bellman
equation (2) and (3) with associated policy functions cj(a, ε, m, d−1), a′j(a, ε, m, d−1),
hj(a, ε, m, d−1) and dj(a, ε, m, d−1).

(b) Given prices (w, r), the representative firm’s allocation minimizes cost, r = ZFK(K, L)−
δ and w = ZFL(K, L).

(c) Accidental bequests, Tr, from agents who die at the end of this period are dis-
tributed equally across next period’s living agents:

(1 + gn)Tr =
J

∑
j=1

(1− ψj)µj

∫
a′j(a, ε, m, d−1)dλj(a, ε, m, d−1). (4)
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(d) Government policies satisfy budget balance in equation (1), where aggregate in-
come tax revenue is given by:

R ≡
J

∑
j=1

µj

∫
Υ
(
y
(
hj(a, ε, m, d−1), a, ε, dj(a, ε, m, d−1)

))
dλj(a, ε, m, d−1). (5)

(e) Social security is self-financing:

J

∑
j=1

µj

∫
dj(a, ε, m, d−1)τss min{we(ε)hj(a, ε, m, d−1), m̄}dλj(a, ε, m, d−1)

=
J

∑
j=1

µj

∫
(1− dj(a, ε, m, d−1))bss(m)dλj(a, ε, m, d−1). (6)

(f) Given policies and allocations, prices clear asset and labor markets:

K− B =
J

∑
j=1

µj

∫
a dλj(a, ε, m, d−1) (7)

L =
J

∑
j=1

µj

∫
dj(a, ε, m, d−1)e(ε)hj(a, ε, m, d−1) dλj(a, ε, m, d−1) (8)

and the allocation satisfies the resource constraint (guaranteed by Walras’ Law):

C + (1 + gy)K′ + G = ZF(K, L) + (1− δ)K (9)

where

C =
J

∑
j=1

µj

∫
cj(a, ε, m, d−1)dλj(a, ε, m, d−1).

(g) Given consumer policy functions, distributions across age j agents {λj}J
j=1 are

given recursively from the law of motion T∗j : M→ M for all j ∈ J such that T∗j is
given by:

λj+1(A× E ×X ×D) = ∑
d−1∈{0,1}

∫
A×E×X

Qj ((a, ε, m, d−1),A× E ×X ×D)dλj

where S ≡ A × E × X × D ⊂ S, and Qj : S × B(S) → [0, 1] is a transition
function on (S,B(S)) that gives the probability that an age-j agent with current
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state s ≡ (a, ε, m, d−1) transits to the set S ⊂ S at age j+ 1. The transition function
is given by:

Qj ((a, ε, m, d−1),S) =

 ψj · πj(E|ε)d−1 if a′j(s) ∈ A, m′j(s) ∈ X , dj(s) ∈ D

0 otherwise


where agents that continue working and transition to set E choose dj(s) = 1,
while agents that transition from working life to retirement choose dj(s) = 0. For
j = 1, the distribution λj reflects the invariant distribution πss(ε) of initial labor
productivity over ε = (κ, θ1, 0, ε1).

(h) Aggregate capital, governmental debt, prices and the distribution over consumers
are stationary, such that K′ = K, B′ = B, w′ = w, r′ = r, and λ′j = λj for all j ∈ J.

3.2 Infinitely Lived Agent Model

The infinitely lived agent model differs from the life cycle model in three ways. First,
agents in the infinitely lived agent model lifetimes are infinite (J → ∞) and agents
have no mortality risk. Second, labor productivity no longer has an age-dependent
component (θj = θ̄ for all j ≥ 1). Lastly, there is no retirement (

¯
Jret → ∞ such that

dj = 1 for all j ≥ 1) and there is no Social Security program (τss = 0 and bss(m) = 0
for all x).

Accordingly, we study a stationary recursive competitive equilibrium along a bal-
anced growth path in which the initial endowment of wealth and labor productivity
shocks no longer affects individual decisions and the distribution over wealth and
labor productivity is time invariant.

Definition (Equilibrium): Given a government policy (G, B, B′, R), a stationary re-
cursive competitive equilibrium is (i) an allocation for consumers described by policy
functions (c, a′, h) and consumer value function V, (ii) an allocation for the represen-
tative firm (K, L), (iii) prices (w, r), and (v) a distribution over agents’ state vector λ

that satisfy:

(a) Given prices and policies, V(a, ε) solves the following Bellman equation:

V(a, ε) = max
c,a′,h

[
u(c)− v(h)

]
+ β(1 + gw)

1−σ(1 + gn)∑
ε′

π(ε′|ε)V(a′, ε′) (10)

s.t.
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c + (1 + gw)(1 + gn)a′ ≤ we(ε)h + (1 + r)a− Υ(y(h, a, ε))

a′ ≥ a

with associated policy functions c(a, ε), a′(a, ε) and h(a, ε).

(b) Given prices (w, r), the representative firm’s allocation minimizes cost.

(c) Government policies satisfy budget balance in equation (1), where aggregate in-
come tax revenue is given by:

R ≡
∫

Υ
(
y(h(a, ε), a, ε)

)
dλ(a, ε) (11)

(d) Given policies and allocations, prices clear asset and labor markets:

K− B =
∫

a dλ(a, ε) (12)

L =
∫

e(ε)h(a, ε) dλ(a, ε) (13)

and the allocation satisfies the resource constraint (guaranteed by Walras’ Law):∫
c(a, ε)dλ(a, ε) + (1 + gy)K′ + G = ZF(K, L) + (1− δ)K (14)

(e) Given consumer policy functions, the distribution over wealth and productivity
shocks is given recursively from the law of motion T∗ : M → M such that T∗ is
given by:

λ′(A× E) =
∫

A×E
Qj ((a, ε),A× E)dλ

where S ≡ A × E ⊂ S, and Q : S × B(S) → [0, 1] is a transition function on
(S,B(S)) that gives the probability that an agent with current state s ≡ (a, ε)

transits to the set S ⊂ S in the next period. The transition function is given by:

Q ((a, ε),S) =

 π(E|ε) if a′(s) ∈ A,

0 otherwise


(f) Aggregate capital, governmental debt, prices and the distribution over consumers

are stationary, such that K′ = K, B′ = B, w′ = w, r′ = r, and λ′ = λ.
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4 Calibration

In this section we calibrate the life cycle model and then discuss the parameter values
that are different in the infinitely lived agent model. Overall, one subset of parameters
are assigned values without needing to solve the model. These parameters are gener-
ally the same in both models. The other subset of parameters are estimated using a
simulated method of moments procedure that minimizes the distance between model
generated moments and empirical ones. We allow these parameters to vary across the
models while matching the same moments in the two models. Table 1 summarizes
the target and value for each parameter.

Demographics: Agents enter the economy at age 20 (or model age j = 1) and ex-
ogenously die at age 100 (or model age J = 81). We set the conditional survival
probabilities {ψj}J

j=1 according to Bell and Miller (2002) and impose ψJ = 0. We set
the population growth rate to gn = 0.011 to match annual population growth in the
US.

Production: We assume that the aggregate production function is Cobb-Douglas of
the form F(K, L) = KαL1−α where α = 0.36 is the income share accruing to capital.
Total factor productivity is normalized to one, Z = 1. The depreciation rate is set to
δ = 0.0833 which allows the model to match the empirically observed investment-to-
output ratio.

Preferences: The utility function is separable in the utility over consumption and
disutility over labor (including retirement):

u(c)− v(h, d) =
c1−σ

1− σ
−
(

χ1
h1+ 1

γ

1 + 1
γ

+ dχ2

)
.

Utility over consumption is a CRRA specification with a coefficient of relative risk
aversion σ = 2, which is consistent with Conesa et al. (2009) and Aiyagari and Mc-
Grattan (1998). Disutility over labor exhibits a constant intensive margin Frisch elas-
ticity. We choose γ = 0.5 such that the Frisch elasticity consistent with the majority of
the related literature as well as the estimates in Kaplan (2012).

We calibrate the labor disutility parameter χ1 so that the cross sectional average
of hours is one third of the time endowment. Finally, χ2 is a fixed utility cost of not
being retired. The fixed cost generates an extensive margin decision through a non-
convexity in the utility function. We choose χ2 to match the empirical observation
that seventy percent of the population has retired by the normal retirement age.
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Labor Productivity Process: We take the labor productivity process from the esti-
mates in Kaplan (2012).17 The deterministic labor productivity profile, {θj} J̄ret

j=1, is (i)
smoothed by fitting a quadratic function in age, (ii) normalized such that the value
equals unity when an agent enters the economy, and (iii) extended to cover ages 20
through 70, which we define as the last period in which agents are able to participate
in the labor activities ( J̄ret).18 The permanent, persistent, and transitory idiosyncratic
shocks to individual’s productivity are normally distributed with zero mean. The
remaining parameters are also set in accordance with the Kaplan’s (2012) estimates:
ρ = 0.958, σ2

κ = 0.065, σ2
ν = 0.017 and σ2

ε = 0.081.

Government: Consistent with Aiyagari and McGrattan (1998) we set government
debt equal to two-thirds of output. We set government consumption equal to 15.5
percent of output consistent. This ratio corresponds to the average of government
expenditures to GDP from 1998 through 2007.19

Income Taxation: The income tax function and parameter values are from Gouveia
and Strauss (1994). The functional form is:

Υ(y) = τ0

(
y−

(
y−τ1 + τ2

)− 1
τ1

)
The authors find that τ0 = 0.258 and τ1 = 0.768 closely match the U.S. tax data.
When calibrating the model we set τ2 such that the government budget constraint is
satisfied.

Social Security: We set the normal retirement age to 66. Consistent with the min-
imum and maximum retirement ages in the U.S. Social Security system, we set the
interval in which agents can retire to the ages 62 and 70. The early retirement penalty
and delayed retirement credits are set in accordance with the Social Security program
and define the functions D1(·) and D2(·). In particular, if agents retire up to three

17For details on estimation of this process, see Appendix E in Kaplan (2012). A well known problem
with a log-normal income process is that the model generated wealth inequality does not match
that in the data, primarily due to missing the fat upper tail of the distribution. However, Röhrs
and Winter (2017) demonstrate that when the income process in an infinitely lived agent model is
altered to match the both the labor earnings and wealth distributions (quintiles and gini coefficients),
the change in optimal policy is relatively small, with approximately 30 percentage points due to
changing the income process and the remaining 110 percentage points due to changing borrowing
limits, taxes and invariant parameters (such as risk aversion, the Frisch elasticity, output growth rate
and depreciation).

18The estimates in Kaplan (2012) are available for ages 25-65.
19We exclude government expenditures on Social Security since they are explicitly included in our

model.
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Table 1: Calibration Targets and Parameters for Baseline Life Cycle Economy.

Description Parameter Value Target or Source
Demographics
Maximum Age J 81 (100) By Assumption
Min/Max Retirement Age

¯
Jret, J̄ret 43, 51 (62, 70) Social Security Program

Population Growth gn 1.1% Conesa et al (2009)
Survival Rate {ψj}J

j=1 — Bell and Miller (2002)

Preferences and Borrowing
Coefficient of RRA σ 2.0 Kaplan (2012)
Frisch Elasticity γ 0.5 Kaplan (2012)
Coefficient of Labor Disutility χ1 56.2 Avg. Hours Worked = 1/3
Fixed Utility Cost of Labor χ2 1.048 70% retire by NRA
Discount Factor β 1.012 Capital/Output = 2.7
Borrowing Limit

¯
a 0 By Assumption

Technology
Capital Share α 0.36 NIPA
Capital Depreciation Rate δ 0.0833 Investment/Output = 0.255
Productivity Level Z 1 Normalization
Output Growth gy 1.85% NIPA

Labor Productivity
Persistent Shock, autocorrelation ρ 0.958 Kaplan (2012)
Persistent Shock, variance σ2

ν 0.017 Kaplan (2012)
Permanent Shock, variance σ2

κ 0.065 Kaplan (2012)
Transitory Shock, variance σ2

ε 0.081 Kaplan (2012)
Mean Earnings, Age Profile {θ} J̄ret

j=1 — Kaplan (2012)

Government Budget
Government Consumption G/Y 0.155 NIPA Average 1998-2007
Government Savings B/Y -0.667 NIPA Average 1998-2007
Marginal Income Tax τ0 0.258 Gouveia and Strauss (1994)
Income Tax Progressivity τ1 0.786 Gouveia and Strauss (1994)
Income Tax Progressivity τ2 4.648 Balanced Budget

Social Security
Payroll Tax τss 0.103 Social Security Program
SS Replacement Rates {τri}3

i=1 See Text Social Security Program
SS Replacement Bend Points {bss

i }3
i=1 See Text Social Security Program

SS Early Retirement Penalty {Di}2
i=1 See Text Social Security Program

years before the normal retirement age, then agents’ benefits are reduced by 6.7 per-
cent for each year they retire early. If they choose to retire four or five years before
the normal retirement age, then benefits are reduced by an additional 5 percent for
these years. If agents choose to delay retirement past normal retirement age, then
their benefits are increased by 8 percent for each year they delay. The marginal re-
placement rates in the progressive Social Security payment schedule (τr1, τr2, τr3) are
also set at their actual respective values of 0.9, 0.32 and 0.15. The bend points where
the marginal replacement rates change (bss

1 , bss
2 , bss

3 ) and the maximum earnings (m̄)
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are set equal to the actual multiples of mean earnings used in the U.S. Social Security
system so that bss

1 , bss
2 and bss

3 = m̄ occur at 0.21, 1.29 and 2.42 times average earnings
in the economy. We set the payroll tax rate, τss such that the program’s budget is bal-
anced. In our baseline model the payroll tax rate is 10.3 percent, roughly equivalent
with the statutory rate.20

Infinitely Lived Agent Model: The infinitely lived agent model does not have an
age-dependent wage profile. For comparability across models, we replace the age-
dependent wage profile with the population-weighted average of θj’s, such that θ̄ =

∑ J̄ret
j=1(µj/ ∑ J̄ret

j=1 µj)θj ≈ 1.86.21 In the absence of a retirement decision, we set χ2 = 0.
Lastly, we recalibrate the parameters (β, χ1) to the same targets as in the life cycle
model and choose τ2 to balance the government’s budget, obtaining β = 0.967, χ1 =

34.7 and τ2 = 3.133.

5 Quantitative Effects of the Life Cycle on Optimal Pol-
icy

This section computes optimal public debt policy in the life cycle and infinitely lived
agent models and quantifies the contribution of the life cycle to policy differences.
We quantify the effect of each life cycle feature through the construction of a series of
counterfactual models that systematically removes life cycle features until recovering
the infinitely lived agent model. Therefore the counterfactual models isolate the re-
sponse of optimal policy to each life cycle model component. We conclude this section
by computing the welfare effect from implementing a public savings policy instead of
a public debt policy. Moreover, we decompose this welfare effect in order to further
highlight the implications of life cycle features for optimal policy.

20Although the payroll tax rate in the U.S. economy is slightly higher than our calibrated value, the
OASDI program includes additional features outside of the retirement benefits.

21When calibrating the stochastic process for idiosyncratic productivity shocks, we use the same pro-
cess in the both the life cycle and infinitely lived agent models. Using the same underlying process
will imply that cross-sectional wealth inequality will be different across the two models. One reason
is that the life cycle model will have additional cross-sectional inequality due to the humped shaped
savings profiles, which induces the accumulation, stationary, and deaccumulation phases. We view
these difference in inequality as a fundamental difference between the two models and, therefore,
choose not to specially alter the infinitely lived agent model to match a higher level of cross-sectional
inequality.
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5.1 Optimal Public Policy

In both the life cycle and infinitely lived agent models, the government is a benevolent
Ramsey planner that fully commits to fiscal policy. The planner maximizes social
welfare by choosing a budget feasible level of public savings (B > 0) or public debt
(B < 0) subject to allocations being a stationary recursive competitive equilibrium.
We consider an ex-ante Utilitarian social welfare criterion that evaluates the expected
utility of an agent in the steady state economy.22

For the life cycle model, the Ramsey planner chooses public savings to maximize
the expected lifetime utility of newborn agents as follows,

SJ(V1, λ1) ≡ max
B

{ ∫
V1(a, ε, m, d−1; B) dλ1(a, ε, m, d−1; B) s.t. (1), (6)

}
where the value function V1(·; B), distribution function λ1(·; B), and policy functions
embedded in equations (1) and (6) are determined in competitive equilibrium and
depend on the planner’s choice of public savings. Furthermore, B′ = B in steady
state. Since the distribution of taxable income and tax revenues depend on public
savings, we adjust the income tax parameter τ0 and the payroll tax rate τss to ensure
that the government budget is balanced and Social Security is self-financing.23

For the infinitely lived agent model, the Ramsey planner chooses public savings to
maximize the expected utility of infinitely lived agents as follows,

S∞(V, λ) ≡ max
B

{ ∫
V(a, ε; B) dλ(a, ε; B) s.t. G = (r− gy)B + R(τ0, B)

}
The welfare maximization problem is nearly identical to that of the life cycle model’s,
except that the value function and distribution function do not depend on age and
there is no Social Security program, so that equation (6) does not characterize the
feasible set.

We find that the two models generate starkly different optimal policies, which
are reported in Table 2. In the infinitely lived agent model, the government is a net
borrower with optimal public debt equal to 24 percent of output.24 On the other

22Our analysis focuses on welfare across steady states. This analysis omits the transitional costs be-
tween steady states, which can be large. See Domeij and Heathcote (2004), Fehr and Kindermann
(2015) and Dyrda and Pedroni (2016) for a discussion of these transitional costs.

23We choose to use τ0 to balance the government budget instead of the other income taxation param-
eters (τ1, τ2) so that the average income tax rate is used to clear the budget, as opposed to changing
in the progressivity of the income tax policy. The average tax rate is the closest analogue to the flat
tax that Aiyagari and McGrattan (1998) use to balance the government’s budget in their model.

24This is generally consistent with Aiyagari and McGrattan’s (1998) optimal policy. The differences in
optimal policy are due to this paper’s assumption of a different stochastic process governing labor
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Table 2: Aggregates and Prices Across Models

Life Cycle Infinitely Lived
Baseline Optimal Baseline Optimal

Public Savings/Output -0.67 0.61 -0.67 -0.24

Consumption 0.53 0.54 0.66 0.66
Hours 0.33 0.33 0.33 0.34

Output 0.92 1.00 1.16 1.18
Productive Capital 2.50 3.03 3.13 3.23
Labor 0.53 0.54 0.66 0.67

Private Savings 3.11 2.41 3.90 3.51
Public Savings -0.62 0.61 -0.77 -0.28

Interest Rate 5.0% 3.6% 5.0% 4.8%
Wage 1.12 1.19 1.12 1.13

hand, in the life cycle model, the government’s optimal policy is public savings equal
to 61 percent of output. Thus, including life cycle features causes optimal policy to
switch from public debt to savings, with approximately an 85 percentage point swing
in optimal policy.

We quantify the welfare gain from implementing optimal policy. In particular, we
compute consumption equivalent variation (CEV) – the percent of lifetime consumption
that a life cycle model agent would be willing to pay ex ante – from inhabiting an
economy with an optimal public savings policy of 61 percent of output instead of
an economy with the infinitely lived agent model’s optimal public debt policy of 24
percent of output. We find that the 85 percentage point difference in optimal poli-
cies corresponds to a welfare gain of 0.64 percent of expected lifetime consumption.
The welfare gain is economically significant, demonstrating that ignoring life cycle
features when determining optimal debt policy can have nontrivial welfare effects.

5.2 The Effect of Life Cycle Features on Optimal Policy

The 85 percentage point difference in optimal policies is due to the three main dif-
ferences between the life cycle and infinitely lived agent models: (i) agents in the life
cycle model experience all three life cycle phases, including an accumulation phase,
while agents in the infinitely lived agent model experience a perpetual stationary
phase, (ii) other age-dependent features in the life cycle model, such as mortality risk,

productivity, a different utility function, non-linear income taxation and different parameter values.
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Table 3: Optimal Public Savings-to-Output (Percent)

Counterfactual Models
Life No Age Infinitely Lived Infinitely

Cycle Features with Accumulation Lived

61% 201% 248% -24%

an age-dependent wage profile, retirement and Social Security, do not exist in the
infinitely lived agent model, and (iii) agents’ lifespans differ between the two models.

In order to characterize the individual effects of these three differences on optimal
policy we compute optimal policy in two counterfactual economies that systemati-
cally remove life cycle features (see Table 3).25 The first counterfactual model is the
"No Age-Dependent Features" economy, which is similar to the life cycle model but
excludes all age-dependent features (e.g., mortality risk, age-dependent wage profile,
retirement and Social Security system) while maintaining the maximum lifespan of
J = 81 periods. Comparing the life cycle model with the "No Age-Dependent Fea-
tures" economy primarily isolates the effect of increasing expected working lifetime,
due to removing retirement and mortality, on optimal policy. We find that optimal
public savings increases from 61 percent of output in the life cycle model to 200 per-
cent of output in the "No Age-Depend Features" economy.

The second counterfactual economy is the "Infinitely Lived with Accumulation"
economy, which also excludes the age-dependent model features but additionally
extends each agent’s lifespan to J = 1000 periods. Extending lifespan from 81 periods
to 1000 periods yields an approximation to an infinite lifespan, and comparing the "No
Age-Dependent Features" and "Infinitely Lived with Accumulation" counterfactual
economies isolates the direct effect of further increasing agents’ lifespans. This effect
additionally increases optimal public savings from 201 to 248 percent of output.

In the "Infinitely Lived with Accumulation" economy, agents enter the economy
with no wealth. However, an agent’s lifespan is long enough that this economy ap-
proximates the ex ante expected lifetime utility of an infinitely lived agent, yet still
includes an accumulation phase.26 Thus, comparing the "Infinitely Lived with Accu-
mulation" counterfactual economy with the infinitely lived agent model isolates the
effect of the accumulation phase on optimal policy, which changes optimal policy

25In order to make quantitative comparisons across models, each counterfactual model’s parameters
are recalibrated to match all relevant the targets described in Section 4.

26We select J = 1000 for the lifespan in the "Infinitely Lived with Accumulation" economy because it
is sufficiently large to ensure that a newborn’s expected present value of the flow of utility from the
end of the lifetime is essentially zero.
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Table 4: Effect of Lifespan on Inequality (Coefficient of Variation)

Life No Age Infinitely Lived Infinitely
Cycle Features w/ Accumulation Lived

Asset Income Inequality 0.63 0.61 0.79 1.05
Labor Income Inequality 0.31 0.28 0.28 0.35
Asset Income Inequality
Labor Income Inequality 2.03 2.15 2.89 2.98

from public savings to public debt equal to 24 percent of output.
The optimal policies across these four models yield two notable results. First, re-

moving life cycle features creates counterfactual models (e.g., the "No Age-Dependent
Features" and "Infinitely Lived with Accumulation" counterfactual economies) that
become increasingly similar to the infinitely lived agent model, yet optimal policy
diverges from that in the infinitely lived agent model. In particular, removing life
cycle features generates more optimal public savings relative to the life cycle model,
instead of generating public debt (or less public savings) as is optimal in the infinitely
lived agent model. Second, by comparing optimal policies from the "Infinitely Lived
with Accumulation" economy and the infinitely lived agent model, we observe that
removing the accumulation phase accounts for a 272 basis point change in optimal
policy, between 248% public savings to 24% public debt. These results highlight two
competing effects on optimal policy from life cycle features: (i) the differential effect
of the inequality channel across models, and (ii) the effect of life cycle phases, which
are absent from infinitely lived agent model. We next discuss these competing effects
in turn.

First, the inequality channel has a differential effect on optimal policy in the two
models because the amount of labor income inequality relative to asset income in-
equality generally depends on agents’ lifespans. As agents live and work longer,
asset income inequality tends to rise relative to labor income inequality because there
is more time for labor productivity shocks to propagate into the wealth distribution
and enlarge the difference in wealth between lucky and unlucky agents. Note that rel-
ative to the life cycle model, agents in the "No Age-Dependent" and "Infinitely Lived
with Accumulation" counterfactual models work for a longer length of time (e.g., due
to removing mortality and retirement, or mechanically extending lifespan). Table 4
confirms that with the longer working lifetime, asset income inequality relative to
labor income inequality is larger in both counterfactual economies than it is in the
standard life cycle model under the baseline public debt policy of 67% of output.
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Table 5: Lifetime Total Income Inequality (Coefficient of Variation)

Life No Age Infinitely Lived Infinitely
Cycle Features w/ Accumulation Lived

Baseline Policy 0.36 0.33 0.32 0.50
Optimal Policy 0.35 0.31 0.28 0.48

Percent Change -0.7% -6.3% -12.7% -3.4%

Since government policy affects the returns from labor and capital in opposite
directions, optimal policy trades off reducing income inequality from the source for
which the factor price decreases with increasing income inequality from the source
for which the factor price increases. Thus, the counterfactual models have higher
levels of optimal public savings than does the life cycle model, because asset income
inequality rises relative to labor income inequality as we remove life cycle features
and extend agents’ expected working lifetimes. The percent change in lifetime total
income inequality in Table 5 confirms that, in fact, adopting optimal policy reduces
total income inequality relative to the baseline public debt policy of 67% of output.27

Thus, the inequality channel causes the optimal level of public savings to increase
after eliminating life cycle features but while retaining the accumulation phase.

The second competing effect, due to the existence of the accumulation phase in
the life cycle model, is the primary model feature that leads to the optimality of
public savings instead of public debt in the life cycle model. Comparing optimal
policies in the "Infinitely Lived with Accumulation" with the infinitely lived agent
models isolates the effect of accumulation phase, which leads to a 272 percentage
point difference in optimal policy (as reported in Table 3). To further isolate this
effect, we conduct a computational experiment in which we compute the optimal
policy of the "Infinitely Lived with Accumulation" counterfactual model according
to an alternative social welfare function that only incorporates the expected present
value of utility after a given age j∗ > 1, and ignores the flow of utility from ages
1 to j∗ − 1. Thus, as j∗ increases, the social welfare function ignores more of the
accumulation phase.28

The computational experiment demonstrates that as the accumulation phase mat-

27In the baseline life cycle model, in which asset income inequality is relatively smaller compared
to labor income inequality, we find that adopting public savings reduces total income inequality.
However, we find in Section 5.3 that in terms of welfare, this change increases inequality.

28Specifically, government policy maximizes agents’ expected lifetime utility as of age j∗, subject to
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ters less for social welfare, optimal policy tends toward more public debt, as shown
in Figure 1. The left panel in Figure 1 plots the optimal policy of the "Infinitely
Lived with Accumulation" counterfactual model under the alternative welfare crite-
rion, while the right panel plots the percentage of the accumulation phase that is
ignored when computing optimal policy. On the x-axis, both graphs vary the percent
of lifetime that the threshold age j∗ represents. We observe that optimal policy mono-
tonically decreases from public savings of 248 percent of GDP when all of the lifetime
is considered, to an optimal public debt policy when the social welfare function ig-
nores at least 5.2 percent of agents’ early lifetime, or approximately 45 percent of the
accumulation phase.29

There are two reasons why eliminating the accumulation phase leads to the op-
timality of public debt. First, the accumulation phase mitigates the welfare benefit
from the insurance channel, since agents only experience improved self-insurance af-
ter they have accumulated the additional savings associated with a higher interest
rate. In contrast, by eliminating the accumulation phase, agents experience a per-
petual stationary phase in which increased public debt simply increases their ex ante
wealth. Therefore, eliminating the accumulation phase strengthens the welfare benefit
from public debt through the insurance channel. Second, when agents only experi-
ence the stationary phase, average consumption and hours are constant instead of
varying systematically with age. As a result, there is no longer a welfare benefit from
public savings leading agents to more equally allocate consumption and hours over
their lifetimes. Therefore, as the accumulation phase is eliminated, it is optimal to
reduce public savings and eventually adopt a public debt policy.

To summarize, we find that extending agents’ working lifetime increases the amount
of asset income inequality relative to labor income inequality, thereby pushing opti-
mal policy toward public savings. However, eliminating the accumulation phase en-
hances the welfare benefit from public debt by strengthening the insurance channel
and weakening the age-allocation channel. Overall, we find that the effects of the
accumulation phase dominate the effects of other life cycle model features on optimal

allocations being determined in competitive equilibrium, as follows:

S̃(Vj∗ , λj∗) ≡ max
B

{ ∫
Vj∗(a, ε; B) dλj∗(a, ε; B) s.t. G = (r− gy)B + R(τ0, B)

}
.

29Similarly, we find public savings is optimal in the infinitely lived agent model when the government
only considers the welfare agents that closely resemble life cycle agent entering the accumulation
phase. Specifically, if the government only places Pareto weight on the set of borrowing constrained
agents with the median persistent component of the labor productivity shock, then optimal public
savings equals 300 percent of output. This result reinforces the notion that wealth accumulation
reduces the welfare benefit from public debt.
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Figure 1: Optimal Policy and Eliminating Accumulation

Notes: The left panel graphs the optimal public savings to output ratio (y-axis) associated with ignoring
a given percent of early life utility flows (x-axis). The percent of "Lifetime Ignored" is measured
as 100 · (j∗/J), using the given value of j∗ and J = 1000. The right panel graphs the percent of
accumulation that is eliminated under the optimal policy associated with ignoring a given percent of
early life utility flows. The percent of eliminated wealth accumulation is defined as the average private
savings of j∗-age agents (given a particular optimal public savings policy) relative to the peak average
savings (under the baseline public debt policy) and converted to a percent. The vertical dashed line
demarcates the percent of early lifetime utility ignored at which optimal policy switches from public
savings to debt.

policy, ultimately resulting in the optimality of public savings in the life cycle model
and the optimality of public debt in the infinitely lived agent model.

5.3 Welfare Decomposition

In order to quantify the effects of the main channels (see Section 2.2) that lead public
debt to be optimal in the infinitely lived agent model and public savings to be optimal
in the life cycle model, we examine the welfare implications from adopting public
savings instead of public debt. Specifically, we quantify the welfare effects from the
85 percentage point change, from the optimal public debt policy in the infinitely lived
agent model to the optimal public savings policy in the life cycle model.

The welfare effects from changing public policy reflect the change in aggregate
resources available to agents and the allocation of those resources across agents and
across their lifetimes. Thus, we decompose the consumption equivalent variation
(denoted ∆CEV) into a level effect (∆level), an age effect (∆age) and a distribution effect
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Table 6: Welfare Decompositions

Life Cycle Infinitely Lived
(% Change) (% Change)

Overall CEV 0.64 -0.12

Level (∆level) -0.23 -0.17

Age (∆age) 1.08 0

Distribution (∆distr) -0.20 0.05

Notes: The life cycle and infinitely lived agent model wel-
fare decompositions compare allocations under a 24% public
debt policy with a 61% public savings policy.

(∆distr).30 The decomposition is defined as

(1 + ∆CEV) = (1 + ∆level) · (1 + ∆age) · (1 + ∆distr).

The overall CEV, ∆CEV , is explicitly defined in equation (B5), while ∆level, ∆age and
∆distr are explicitly defined in equation (B1) and equation (B6) through equation (B11)
of Appendix B.

The level effect captures the welfare change for a fictitious "representative agent,"
absent any idiosyncratic or life cycle variation in consumption or hours. The age ef-
fect measures agents’ change in welfare as a result of changing age-specific average
levels of consumption and hours, net of changes in aggregate consumption and hours.
Accordingly, the age effect captures the welfare effect of a change in the slope of the
average consumption and hours age-profiles. Note that the age effect does not exist in
the infinitely lived agent model and therefore infinitely lived agents attain zero wel-
fare change through age effects. Lastly, the distribution effect measures the remaining
change in welfare that results from a change in the distribution of consumption and
hours across agents.

The welfare decomposition presented in Table 6 demonstrates that the age effect,
which is closely tied to the age-allocation channel, is crucial for explaining why public
savings increases welfare in the life cycle model but not in the infinitely lived agent

30Floden (2001) decomposes the CEV into a level effect, an insurance effect, a redistribution effect
and an hours effect. Relative to Floden’s (2001) decomposition, (i) we combine the insurance and
redistribution effects to form the "distribution effect", (ii) we add an age effect, which only exists in
the life cycle model, and (iii) because an extensive margin retirement decision is unique to the life
cycle model, we incorporate both intensive and extensive margins into the welfare decomposition of
the life cycle model’s hours allocation. Appendix B formally derives the decomposition.
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model. In particular, the 0.64 percent welfare improvement from implementing public
savings in the life cycle model is due to a 1.08 percent increase from the age effect that
is partially offset by a 0.23 percent decrease from the level effect and a 0.20 percent
decrease from the distribution effect. In contrast, the small 0.12 percent CEV loss in
the infinitely lived agent model can be attributed to a larger negative level effect (0.17)
than a positive distribution effect (0.05). There is no effect from the age-allocation
channel in the infinitely lived agent model.

The life cycle model’s positive age effect from adopting public savings is closely
tied to the age-allocation channel and, accordingly, indicates an improved allocation
of consumption and hours across ages. Agents possess standard concave utility func-
tions and prefer flat lifetime consumption and hours allocations. As shown in Fig-
ure 2, consumption tends to increase over a majority of the lifetime because agents
choose to use more of their available resources for savings and delay consumption to
later in their lifetimes. Similarly, labor hours decline over an average agent’s working
lifetime as agents choose to delay consumption of leisure. When deciding whether to
consume today or save for tomorrow’s consumption, agents must receive a sufficiently
large interest rate to compensate for time preference, β, and mortality risk, ψj.31 Thus,
over a majority of the lifetime, the interest rate is sufficiently large to generate an up-
ward sloping consumption profile.32 However, the lower interest rate associated with
pubic savings diminishes the returns to savings, thereby inducing agents to consume
more while young. This change leads to a more equal allocation of consumption and
hours over the lifetime, which improves welfare as seen in Figure 2. This channel does
not exist in the infinitely lived agent model.

Adopting public savings leads to a welfare loss from the level channel. One reason
that public savings reduces welfare through the level channel is that the lower interest
rate associated with public savings means that agents hold less savings and thus are
more likely to experience binding liquidity constraints. Constrained agents tend to
experience a lower level of welfare since they tend to consume less and work more.

Finally, the distribution effect from adopting a public savings policy partially off-
sets the level and age effects in each model, leading to a welfare reduction in the life
cycle model and a welfare improvement in the infinitely lived agent model. The dif-
ference in the distribution effect across models corresponds to the inequality channel.
The higher wage and lower interest rate from public savings have different effects on
inequality in the life cycle and infinitely lived agent models. As discussed in Sec-

31Additionally, liquidity constraints can lead agents to consume less early in their lifetime. This effect
is accentuated in the counterfactual infinitely lived with accumulation phase model in Section 5.2.

32The downward slopping labor supply profile is also affected by the age-dependent wage profile.
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Figure 2: Life Cycle Model: Consumption, Savings and Hours Profiles

Public Savings, 61%
Public Debt, -24%

Notes: Solid lines are cross-sectional averages for consumption, savings, and hours by age in the life
cycle economy under its optimal public savings policy of 61%. The dashed lines are cross-sectional
averages by age for the optimal debt policy from the infinitely lived agent economy of 24%.

tion 2.2, a longer working lifetime in the infinitely lived agent model leads to more
asset income inequality relative to labor earnings inequality. Thus, a higher wage
and lower interest rate can reduce existing total income inequality. In the life cycle
model, the opposite holds true; since asset income inequality relative to labor income
inequality is smaller, a lower interest rate and higher wage exacerbate lifetime total
income inequality.33

33In contrast to the age and distribution effect, the level effect from adopting public savings is similar
in both models. In particular, there is a welfare increase from the consumption level effect and a
welfare decrease from the hours level effect. Public savings leads to more productive capital so both
output and consumption increase. However, the larger stock of productive capital leads to a higher
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To summarize, the welfare effects highlight the competing mechanisms that lead
to different optimal policy across the life cycle and infinitely lived agent models. In
the life cycle model, public savings encourages agents to more equally allocate their
consumption and labor over their lifetime. However, the inequality channel decreases
the difference in optimal policies across models, since adopting public savings in-
creases wealth inequality in the life cycle model but reduces it in the infinitely lived
agent model. On net, we find the quantitative magnitude of the benefits from public
savings dominate in the life cycle model.

6 Wealth Inequality

While Section 5 quantifies the main channels that determine optimal debt policy, those
results abstract from features that shape the bottom of the wealth distribution. This
section reexamines optimal debt policy in the life cycle and infinitely lived agent mod-
els after introducing model ingredients that change the number of low wealth agents
and the resources available to them. Specifically, this section shows how optimal pol-
icy responds to (i) allowing agents to borrow and (ii) varying the mass of agents with
little or no wealth by altering the labor productivity process. We demonstrate that
these features affect optimal policy quite differently in the life cycle and infinitely
lived agent models.

6.1 Liquidity Constraints

In the benchmark model, we assumed that agents faced a no-borrowing constraint.
In this section, we examine whether optimal policy is sensitive to allowing agents to
borrow since borrowing may change the strength of the insurance channel and the
age-allocation channel. To do this, we compute optimal policy in the life cycle and
infinitely lived agent models when agents can borrow up to an exogenously set limit
of 30 percent of each economy’s aggregate private savings.34 We find that allowing
agents to borrow increases the difference between the optimal policies in the life cycle
and infinitely lived agent models. While the infinitely lived agent model’s optimal

wage which encourages more labor. Overall, the disutility from more labor dominates the increase in
utility from more consumption because the lower interest rate associated with public savings reduces
the incentives for agents to save so they are more likely to face binding liquidity constraints (i.e. a
reduction in the benefit from the insurance channel).

34We calculate the limit as 30 percent of aggregate private savings under the baseline calibration.
We choose to use the rest of the calibration parameters from the benchmark model since allowing
borrowing has a very small quantitative impact on aggregate variables in both models.
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level of public debt remains approximately the same (28 percent of output), the life
cycle model’s optimal level of public savings is now twice as large (109 percent of
output).

Allowing private borrowing leads to a large increase in optimal public savings
in the life cycle model since it enables agents to more easily intertemporally smooth
their consumption. In particular, young agents expect a sharp increase in their labor
productivity during the beginning of their working lifetime due to the age-specific
component ({θj} J̄ret

j=1). Since they enter the economy with low labor productivity and
little to no wealth, agents would like to borrow against future income in order to
flatten consumption and hours profiles over their lifetimes. When faced with a lower
interest rate associated with greater public savings, agents would like to borrow even
more. Therefore, in order to not further exacerbate liquidity constraints, optimal
public savings is limited to 61% of output when agents cannot borrow. However,
when borrowing is allowed, agents are better able to intertemporally substitute con-
sumption, which mitigates the negative effect of a lower interest rate on liquidity
constraints. As a result, the optimal level of public savings doubles.

While life cycle agents’ incentives to borrow derive from their increasing average
labor productivity profile, infinitely lived agents experience a constant average labor
productivity profile, θj = θ̄ for all j. As a result, we find a minimal effect on optimal
policy from allowing borrowing for these infinitely lived agents. Therefore, the main
mechanism by which government debt improves welfare in the infinitely lived agent
model is robust to changes in borrowing limits. However, in the case of the life
cycle model, allowing borrowing strengthens the dominant mechanism and provides
greater scope for public savings to improve welfare.

6.2 Labor Productivity Process

In this section, we match the fraction of agents with little or no wealth in the life cycle
and infinitely lived agent models to what we observe in the Survey of Consumer Fi-
nances. Relative to the benchmark model, the wealth distribution will be more skewed
(e.g., there will be a smaller fraction of agents holding a majority of the wealth and
a larger fraction of the population that possesses little or no wealth). Increasing the
fraction of low-wealth agents may alter optimal policy because the Ramsey planner
will be more willing to implement a policy that benefits agents with little lifetime
wealth, even at the expense of high-wealth agents.

Our quantitative implementation follows Castañeda, Díaz-Giménez, and Ríos-Rull
(2003), and more recently Kindermann and Krueger (2014), by augmenting the stan-
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dard log-normally distributed persistent labor productivity process (ν) in Section 4
with the addition of an extremely high labor productivity state.35 We refer to this
additional high labor productivity state as a superstar shock. We parameterize the
superstar shock to make it unlikely but highly persistent. Accordingly, in the life
cycle model, we set the probability of receiving the superstar shock to 1% and the
per-period persistence to 90%.36 In the infinitely lived agent model, we set these two
probabilities to match the duration and hazard rate of the superstar state that are im-
plied by the life cycle model. We obtain a probability of receiving a superstar shock
that is just over 1% and a probability of a superstar remaining a superstar in the next
period equal to 86%. For both the life cycle and infinitely lived agent models, we
choose the value of the superstar shock so that the bottom 60% of the population
holds 5.4% of total wealth or, equivalently, the top 40% of the population holds 94.6%
of total wealth (see Krueger, Mitman, and Perri (2016)). Since adding the superstar
shock has large effects on the models, we calibrate all other model parameters to
match the same targets used in the benchmark model (see Section 4).

When superstar shocks are included, we find that a large amount of public savings
is optimal in both the infinitely lived and life cycle models. The life cycle model’s
optimal public savings equals 95% of output, which is a 34 percentage point change
from the benchmark optimal policy of public savings equaling 61% of output. The
infinitely lived agent model’s optimal public saving policy equals 86% of output,
which constitutes an even larger change from the benchmark optimal policy of public
debt equaling 24% of output. Furthermore, Table 7 shows that there is a large welfare
gain in both the life cycle and infinitely lived agent models from implementing the
optimal public savings policies, relative to an economy with public debt equaling
two-thirds of output.

Examining Table 7, although public savings is optimal in both the life cycle and
infinitely lived agent models, the main welfare effect that leads to the optimality of
public savings is different between models. In the life cycle model, the age effect still
contributes the most to the overall welfare gain from implementing the optimal public
savings policy. In the infinitely lived agent model, the strongly positive distribution
effect leads public savings to be optimal.

35Preference heterogeneity is an alternate way to introduce a skewed wealth. However, there are two
downsides to using preference heterogeneity. First, it is unclear what discount rate should be used
to measure social welfare. Second, in a model similar to ours that excludes altruism, Hendricks
(2007) demonstrates that matching the wealth distribution requires including a large mass of both
patient and impatient agents with a considerably larger gap in patience between these groups than
is consistent with empirical estimates.

36We assume that upon exiting the superstar state, agents transition to the median persistent labor
productivity state. We further assume that no life cycle agent enters the economy as a superstar.
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Table 7: Welfare Decompositions with Superstar Shocks

Life Cycle Infinitely Lived
(% Change) (% Change)

Overall CEV 3.49 1.18

Level (∆level) -1.16 -1.16

Age (∆age) 3.95 0

Distribution (∆distr) 0.72 2.36

Notes: The welfare decompositions compare allocations un-
der a 67% public debt policy with the life cycle model and
infinitely lived agent model optimal public savings policy of
95% and 86%, respectively.

Although different welfare effects dominate in each model, the distribution ef-
fect is now welfare improving in both the life cycle and infinitely lived agent models
with superstar shocks. This stands in contrast to the benchmark life cycle model
that excludes superstar shocks, in which the distribution effect reduces welfare (see
Table 6).37 Generally, superstars derive more of their total income from interest on
savings than non-superstars and, therefore, a lower interest rate induced by public
savings redistributes from superstars to non-superstars.38 On net, this redistribution
from superstars to non-superstars raises welfare for two reasons. First, superstars
have a very low marginal utility of consumption relative to non-superstars so re-
distributing between these types of agents leads to an increase in ex ante welfare.39

Second, because receiving the superstar shock is a low probability event, there are far
more agents who do not receive the superstar shock than there are agents who do.
Therefore, redistribution benefits a significantly larger share of agents than it hurts.

Yet, while the addition of superstar shocks generates a positive welfare effect from
redistribution in both models, the welfare effect is much stronger in the infinitely
lived agent model than in the life cycle model. This is because agents may possess
a large stock of wealth for different reasons in the two models. In the infinitely lived

37Note that the CEV calculations in Table 7 and Table 6 compare different changes in policy. While this
makes a comparison of magnitudes inappropriate, we can compare signs and shares since both CEV
calculations compare a change from public debt to public savings policy.

38Superstars derive more income from savings because they tend to save a very high fraction of their
income in order to maintain an elevated level of consumption even after reverting to non-superstars.

39In the life cycle model, young agents have little wealth and the low probability of being a superstars
implies that there are few young superstars. Therefore, redistribution from high-wealth to low-wealth
agents also intertemporally redistributes resources from agents’ middle to early lifetime. As such,
this intertemporal redistribution would be captured in the age effect in the welfare decomposition.
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agent model, a large stock of wealth indicates that agents have recently experienced
a superstar shock. Thus, public savings is effective at increasing the welfare of non-
superstars relative to superstars through redistribution. In contrast, life cycle model
agents can have a large stock of wealth either because they have recently experienced
a superstar shock or because they are middle aged (i.e., have accumulated a lifetime
of savings in preparation for retirement). As a result, public savings is less effective
at isolating superstars in the life cycle model, which dampens the welfare gain from
redistribution. Because public savings redistributes from superstars to non-superstars
more effectively in the infinitely lived agent model than in the life cycle model, in-
cluding superstar shocks generates a much larger change in optimal policy in the
infinitely lived agent model (from 24% public debt to 86% public savings) than in the
life cycle model (from 61% public savings to 95% public savings).

In both models adding superstar shocks means that optimal policy will decrease
inequality through public savings. However, the potential welfare gain from reducing
inequality due to public savings is overstated in the infinitely lived agent model. In
particular, the infinitely lived agent model overstates welfare gains because it lacks
the dampening effect from age-dependence that breaks the correlation between pos-
sessing high wealth and having received superstar shocks. Therefore, we find that
the infinitely lived agent model is very sensitive to increased inequality, while the life
cycle model’s more realistic assumptions on age-dependence mean that the life cycle
model is far less responsive to increased inequality through superstar shocks. In this
respect, although optimal policy might be similar, the benefits from redistribution
are overstated in the infinitely lived agent model while the benefits from enhanced
intertemporal smoothing are underestimated.

7 Conclusion

This paper characterizes the effect of a life cycle on optimal public debt and evaluates
the mechanisms by which a life cycle affects optimal policy. We find that the optimal
policies are strikingly different between life cycle and infinitely lived agent models.
We find that it is optimal for the government to be a net saver with savings equal to
61% of output when life cycle features are included. In contrast, it is optimal for the
government to be a net debtor with debt equal to 24% of output when these life cycle
features are excluded.

Furthermore, there are economically significant welfare consequences from not
accounting for life cycle features when determining the optimal policy. We find that
if a government implemented the infinitely lived agent model’s optimal 24% debt-to-
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output policy in the life cycle model, then life cycle agents would be worse off by
more than 0.6% of expected lifetime consumption.

We show that two salient empirical regularities in the life cycle model lead to pub-
lic savings, not public debt, being optimal: (i) young individuals have little wealth and
accumulate savings during their lifetimes, and (ii) instead of being constant, average
consumption and hours worked vary over individuals’ lifetimes. In the infinitely lived
agent model, higher public debt implies that an average agent lives with more savings
and is, therefore, better insured against labor earnings risk. In the life cycle model,
in contrast, agents enter the economy with little or no wealth and must accumulating
savings. While a higher level of public debt might encourage life cycle agents to hold
more savings during their lifetimes, the fact that agents must accumulate this savings
stock mitigates the welfare benefits from public debt. Moreover, the lower interest rate
associated with public savings improves welfare in the life cycle model since it leads
agents to more equally allocate their consumption across their lifetime. In contrast,
this channel does not exist in the infinitely lived agent model since, from an ex ante
perspective, expected consumption is flat over time.

We show that the particular progression of individual savings, consumption, and
labor throughout the lifetime is the predominant reason for the drastically different
optimal policies in the life cycle and infinitely lived agent models. In the infinitely
lived agent model, higher public debt implies that an average agent begins each pe-
riod of time with more savings and is, therefore, better insured against labor earnings
risk. In the life cycle model, in contrast, agents enter the economy with little or no
wealth and must accumulating savings. While a higher level of public debt might
encourage life cycle agents to hold more savings during their lifetime, the fact that
agents must accumulate this savings stock mitigates the welfare benefits from pub-
lic debt. Moreover, the lower interest rate associated with public savings improves
welfare in the life cycle model since it leads agents to more equally allocate their con-
sumption across their lifetime. In contrast, this channel does not exist in the infinitely
lived agent model since, from an ex ante perspective, expected consumption is flat
over time.

When using quantitative models to answer economic questions, economists con-
stantly face a trade-off between tractability and realism. Our results demonstrate that
when examining the welfare consequences of public debt, it is not without loss of
generality to utilize the more tractable infinitely lived agent model instead of a life
cycle model.
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Appendix

A Construction of the Balanced Growth Path

This appendix provides a formal construction of the Balanced Growth Path for the
set of economies described in Section 3. We construct the Balanced Growth Path in
multiple parts. First we construct the Balanced Growth Path using aggregates from
the models. Then, we construct the Balanced Growth Path using individual agents’
allocations. The last two sections develop the Balanced Growth Path for any features
unique to the infinitely lived agent or life cycle models.

A.1 Aggregate Conditions

Balanced Growth Path: A Balanced Growth Path (BGP) is a sequence

{Ct, At, Yt, Kt, Lt, Bt, Gt}∞
t=0

such that (i) for all t = 0, 1, . . . Ct, At, Yt, Kt, Bt, Gt grow at a constant rate gy,

Yt+1

Yt
=

Ct+1

Ct
=

At+1

At
=

Kt+1

Kt
=

Bt+1

Bt
=

Gt+1

Gt
= 1 + gy

(ii) per capita variables all grow at the same constant rate gw:

Yt+1/Nt+1

Yt/Nt
=

Ct+1/Nt+1

Ct/Nt
=

At+1/Nt+1

At/Nt
=

Kt+1/Nt+1

Kt/Nt
=

Bt+1/Nt+1

Bt/Nt
=

Gt+1/Nt+1

Gt/Nt
= 1+ gw

and (iii) effective labor per capita is constant:

Lt+1

Nt+1
=

Lt

Nt
=

L0

N0

Denote time 0 variables without a time subscript, for example L ≡ L0.

Growth Rates: Let all growth derive from TFP gz > 0 and population gn > 0 growth.
Then on a balanced growth path we assume:

Zt = (1 + gz)
tZ

Nt = (1 + gn)
tN
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where Z and N are steady state values. Then, from part (iii) of the definition, growth
in labor is:

Lt+1

Lt
=

Lt+1/Nt+1

Lt/((1 + gn)Nt)
= 1 + gn

In steady state Y = ZKαL1−α. Let output growth be given by gy > 0. Therefore the
production function gives:

Yt = ZtKα
t L1−α

t =⇒ (1 + gy) = (1 + gz)
1

1−α (1 + gn)

Lastly, from parts (ii) and (iii) of the Balanced Growth Path definition, we can solve
for the growth of per capita variables:

Yt+1/Nt+1

Yt/Nt
=

Zt+1

Zt

(
Kt+1/Nt+1

Kt/Nt

)α (Lt+1/Nt+1

Lt/Nt

)1−α

=⇒ (1 + gw) = (1 + gz)
1

1−α

Prices: From Euler’s theorem we know:

Yt = αYt + (1− α)Yt = (rt + δ)Kt + wtLt

Accordingly, the wage and interest rate depend on the capital-labor ratio. Growth in
the capital-labor ratio is:

Kt+1/Lt+1

Kt/Lt
= (1 + gz)

1
1−α = 1 + gw

Therefore, the growth rate for the wage is:

wt+1

wt
=

Zt+1

Zt
·
(

Kt+1/Lt+1

Kt/Lt

)α

= 1 + gw

and the growth rate for the interest rate is:

rt+1 + δ

rt + δ
=

Zt+1

Zt
·
(

Kt+1/Lt+1

Kt/Lt

)α−1

= 1

Therefore wages grow while interest rates do not.

Equilibrium Conditions: The detrended asset market clearing condition is:

Kt = At + Bt =⇒ K = A− B
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The detrended resource constraint is:

Ct + Kt+1 + Gt = Yt + (1− δ)Kt =⇒ C + (gy + δ)K + G = Y

and the detrended government budget constraint is:

Gt + rBt = Rt + Bt+1 − Bt =⇒ G + (r− gy)B = R

A.2 Individual Conditions

Preferences: We assume that labor disutility has a time-dependent component. Specif-
ically, we assume labor disutility grows at the same rate as the utility over consump-
tion, such that vt+1(h, d) = (1 + gw)1−σvt(h, d). Therefore, total utility is:

Ut(ct, ht) = u(ct)− vt(ht, dt) =
[
(1 + gw)

1−σ
]t
(u(c)− v(h, d)) .

Social Security: In order for the AIME to grow at the same rate as the wage, we
assume a cost of living adjustment (COLA) on Social Security taxes and payments.
For social security taxes, the cap on eligible income grows at the rate of wage growth,
m̄t = (1 + gw)tm̄. Furthermore, base payment bend points also grow at the rate of
wage growth, bss

i,t = (1 + gw)tbss
i for i = 1, 2, 3.

Tax Function: On a Balanced Growth Path, (ct, a′t+1, at) and ỹt must all grow at the
same rate as the wage. Furthermore, the tax function must grow at the same rate as
the wage. Recalling the tax function, Υt(ỹt), τ2 must grow at the same rate as ỹ−τ1

t .
Rewrite as:

Υt(ỹt) = τ0

(
(1 + gw)

tỹ−
(
[(1 + gw)

t]−τ1 ỹ−τ1 + [(1 + gw)
t]−τ1τ2

)− 1
τ1

)
= (1 + gw)

t Υ(ỹ)

Individual Budget Constraint: Let the function T(·) contain income taxes and social
security taxes or payments than an agent faces. An agent’s time t budget constraint
is:

ct + a′t+1 ≤ wtεtht + (1 + rt)at − Tt(·)

c + (1 + gw)a′ ≤ wεh + (1 + r)a− T(·)

A-3



where {c, a′, a, h, w, r, ε} are stationary variables. Given that the tax function Υ(ỹ)
grows at rate gw, so will the transfer function T(h, a, ε) in the infinitely lived agent
model. Furthermore, given that the Social Security program {m̄, bss

i , τr,i} grows at rate
gw, so will the transfer T(h, a, ε, m, d) function in the life cycle model. Finally, the
borrowing constraint

¯
a grows at the same rate as the wage.

A.3 Life Cycle Model

Individual Problem: On the balanced growth path of the life cycle model, the sta-
tionary dynamic program of a working age agent is:

Vj(a, ε, m, 1) = max
c,a′,h,d

[u(c)− v(h, d)] + [βψj(1 + gw)
1−σ]∑

ε′
πj(ε

′|ε)Vj+1(a′, ε′, m′, d)

s.t. c + (1 + gw)a′ ≤ we(ε)h + (1 + r)(a + Tr)− τss
2 min{we(ε)h, m̄} − Υ(y(h, a, ε, d))

a′ ≥ a

An agent retires when they choose d = 0 between ages
¯
Jret and J̄ret, or face mandatory

retirement after age j > J̄ret. The retired agent’s stationary dynamic program is:

Vj(a, 1, m, 0) = max
c,a′,h

[
u(c)− v(h, 0)

]
+ [βψj(1 + gw)

1−σ]Vj+1(a′, 1, m′, 0)

s.t. c + (1 + gw)a′ ≤ (1 + r)(a + Tr) + bss(m)− Υ (r(a + Tr))

a′ ≥ a

Distributions: For j-th cohort at time t, the measure over (a, ε, m, d−1) is given by:

λj,t(at, ε, xt, d−1) = λj,t−1

(
at

1 + gw
, ε,

xt

1 + gw
, d−1

)
(1 + gn)

= λj,t−m

(
at

(1 + gw)m , ε,
xt

(1 + gw)m , d−1

)
(1 + gn)

m ∀ m ≤ t

= λj(a, ε, m, d−1)Nt−j+1.

Therefore, λj(a, ε, m, d−1) is a stationary distribution over age j agents that integrates
to one.
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Aggregation: Aggregate consumption in the life cycle model is constructed as follows.
Define the relative size of cohorts as µ1 = 1 and:

µj+1 =
Nt−j

Nt
·

j

∏
i=1

ψi = (1 + gn)
−j

j

∏
i=1

ψi =
ψjµj

1 + gn
∀ j = 1, . . . , J − 1

Let Cj,t be aggregate consumption per age-j agent, which is derived from the age-j
agent’s allocation:

Cj,t =
∫
(1 + gw)

tcj(a, ε, m, d−1)dλj = (1 + gw)
t
∫

cj(a, ε, m, d−1)dλj = (1 + gw)
tCj

where Cj is the stationary aggregate consumption per age-j agent. Accordingly, ag-
gregate consumption is:

Ct = Nt

(
C1,t + ψ1(1 + gn)

−1C2,t + · · ·+
(

J−1

∏
i=1

ψi

)
(1 + gn)

−(J−1)CJ,t

)

= (1 + gw)
tNt

J

∑
j=1

µjCj

= (1 + g)tC

where C is the stationary level of aggregate consumption and where we have normal-
ized N = 1.

We can similarly construct the remaining aggregates {A, K, Y, B, G} on the bal-
anced growth path. Notably, however, labor per capita does not grow. Aggregate
labor per capita is constructed as:

Lt = Nt

J

∑
j=1

µjLj =⇒ L =
Lt

Nt
=

J

∑
j=1

µj

∫
dj(a, ε, m, d−1)εhj(a, ε, m, d−1)dλj

which is the sum over ages of aggregate labor per age-j agent.

A.4 Infinitely Lived Agent Model

In order to isolate the effects on optimal policy due to fundamental differences in the
life cycle and infinitely lived agent models, and not due to differences in balanced
growth path constructs, we want sources of output growth (e.g. TFP and population
growth) to be consistent across models. Thus, we incorporate population growth into
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the infinitely lived agent model. To be consistent with the life cycle model, we con-
struct a balanced growth path in which the infinitely lived agent model’s income and
wealth distributions grow homothetically. Our representation of this growth concept
is consistent with a dynastic model in which population growth arises from agents
producing offspring and valuing the utility of their offspring.

To elaborate in more detail, two additional assumptions admit a balanced growth
path with population growth. First, agents exogenously reproduce at rate gn and
next period’s offspring are identical to each other. Second, the parent values each
offspring identically, and furthermore values each offspring as much as they value
their self. Formally, if the parent has continuation value βE[V(a′, ε′)], then the parent
values all its offspring with total value of gnβE[V(a′, ε′)].

These two assumptions imply two features. First, each offspring is identical to
its parent. That is, if the parent’s state vector is (a′, ε′) next period, then so is each
offspring’s state vector. As a result, the value function of each offspring upon birth is
V(a′, ε′). Second, since the parent values each offspring equal to its own continuation
value, it is optimal for the parent to save save (1 + gn)a′ in total. The portion gna′ is
bequeathed to offspring, and the portion a′ is kept for next period.

Individual Problem: On the balanced growth path of the Infinitely Lived Agent
Model, the stationary dynamic program is:

V(a, ε) = max
c,a′,h

[u(c)− v(h)] + [β(1 + gw)
1−σ](1 + gn)∑

ε′
π(ε′|ε)V(a′, ε′)

s.t. c + (1 + gn)(1 + gw)a′ ≤ we(ε)h + (1 + r)a− Υ(y(h, a, ε))

where y(h, a, ε) ≡ we(ε)h + ra.

Distribution: The distribution evolves according to:

λt+1(at+1, εt+1) = ∑
εt

π(εt+1|εt)
∫

A
1
[
a′t+1(at, εt) = at+1

]
λt(at, εt)dat

The stationary distribution λ(a, ε) has measure 1 over A× E but the mass of agents
grows at rate gn:

λt(at, ε) = λt−1

(
at

1 + gw
, ε

)
(1 + gn)

= λt−s

(
at

(1 + gw)s , ε

)
(1 + gn)

s ∀ s ≤ t
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= λ(a, ε)Nt

Aggregation: To construct aggregate consumption, wealth, savings and labor, mul-
tiply individual allocations by the size of the population (Nt) and sum using the
stationary distribution λ. For example, aggregate consumption is:

Ct = Nt

∫
(1 + gw)

tc(a, ε)dλ = (1 + g)t
∫

c(a, ε)dλ = (1 + g)tC

We can similarly construct the remaining aggregates {A, K, Y, B, G} on the balanced
growth path. Notably, however, aggregate labor per capita does not grow:

Lt

Nt
=
∫

εh(a, ε)dλ

where again N0 = 1 by normalization.

B Welfare Decomposition

This appendix constructs the welfare decomposition in Section 5.3 of the main text:

(1 + ∆CEV) = (1 + ∆level)(1 + ∆age)(1 + ∆distr).

We will construct the three components (the levels effect, the age effect and the distri-
bution effect) as a composite of consumption and hours effects, as follows:

(1 + ∆CEV) = [(1 + ∆Clevel )(1 + ∆Hlevel )︸ ︷︷ ︸
≡(1+∆level)

] · [(1 + ∆Cage)(1 + ∆Hage)︸ ︷︷ ︸
≡(1+∆age)

] · [(1 + ∆Cdistr )(1 + ∆Hdistr )︸ ︷︷ ︸
≡(1+∆distr)

]. (B1)

These terms are explicitly defined in equation (B6) through equation (B11) below.
In the remainder of the section, we will first define the CEV in the context of

the model. Then we will define and decompose the consumption and hours welfare
effects. Finally, we will verify that the decomposition in fact holds.

B.1 Preliminaries

Consider two economies, i ∈ {1, 2}. Define ex ante welfare in economy i ∈ {1, 2}
derived from consumption, hours and retirement allocations {ci

j(s), hi
j(s), di

j(s)}
J
j=1
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over states s ≡ (a, ε, m, d−1) distributed with λi
j(s) as:

Si = U(ci)−Vh(hi)−Vd(di)

where

U(ci) ≡
∫

E0

[
J

∑
j=1

βj−1ψju
(

ci
j

)]
dλi

1

Vh(hi) ≡
∫

E0

[
J

∑
j=1

βj−1ψjv
(

hi
j

)]
dλi

1

Vd(di) ≡
∫

E0

[
J

∑
j=1

βj−1ψj χ2 di
j

]
dλi

1.

Denote the Consumption Equivalent Variation (CEV) by ∆CEV , which is defined as
the percent of expected lifetime consumption that an agent inhabiting economy i = 1
would pay ex ante in order to inhabit economy i = 2:

(1 + ∆CEV)
1−σU(c1)−Vh(h1)−Vd(d1) = U(c2)−Vh(h2)−Vd(d2). (B2)

B.2 Consumption Effect Decomposition

First we decompose the CEV into levels, age and distribution effects for consumption
allocations. The overall consumption effect is:

(1 + ∆C)
1−σU(c1)−Vh(h1)−Vd(d1) = U(c2)−Vh(h1)−Vd(d1). (B3)

For the level effect, note that aggregate consumption in economy i is

Ci =
J

∑
j=1

µj

∫
S

ci
j(s)dλi

j(s).

We follow Conesa et al. (2009) in defining the level effect, in a different but equivalent
way to Floden (2001), by

(1 + ∆Clevel)
1−σU(c1)−Vh(h1)−Vd(d1) = U(

(
C2/C1

)
c1)−Vh(h1)−Vd(d1),
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or more succinctly,

(1 + ∆Clevel) =
C2

C1 .

For the age effect, note that age-specific average consumption in economy i is

Ci
j =

∫
S

ci
j(s)dλi

j(s),

and utility over age-cohort average level of consumption at each age is,

U(Ci
j) ≡

∫
E0

[
J

∑
j=1

βj−1ψj

∫
u
(

Ci
j

)]
dλi

1.

Then define the consumption age effect in economy i by

U
(
(1−ωi

Cage
)Ci
)
= U(Ci

j),

such that

(1−ωi
Cage

) =

 ∑J
j=1 βj−1ψju

(
Ci

j

)
[
∑J

j=1 βj−1ψj

]
u(Ci)


1

1−σ

,

which gives the overall consumption age effect,

(1 + ∆Cage) ≡
1−ω2

Cage

1−ω1
Cage

=

(
∑J

j=1 βj−1ψju
(

C2
j

)) 1
1−σ /C2(

∑J
j=1 βj−1ψju

(
C1

j

)) 1
1−σ /C1

.

Lastly, again following Floden (2001) and Conesa et al. (2009), define the consumption
distribution effect in economy i as the residual of the overall consumption effect:

U
(
(1−ωi

distr)C
i
j

)
= U

(
ci
)

such that

(1−ωi
Cdistr

) =

 ∑J
j=1 βj−1ψju(ci)

∑J
j=1 βj−1ψju(Ci

j)

 1
1−σ

,
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which gives the overall consumption distribution effect,

(1 + ∆Cdistr) ≡
1−ω2

Cdistr

1−ω1
Cdistr

=

(
U(c2)/U(C2

j )
) 1

1−σ

(
U(c1)/U(C1

j )
) 1

1−σ

.

B.3 Hours Effect Decomposition

Likewise we define the overall hours effect by

(1 + ∆H)
1−σU(c2)−Vh(h1)−Vd(d1) = U(c2)−Vh(h2)−Vd(d2). (B4)

For the level effect, note that aggregate hours and the mass of working agents in
economy i is

Hi =
J

∑
j=1

µj

∫
S

hi
j(s)dλi

j(s),

Ii =
J

∑
j=1

µj

∫
S

di
j(s)dλi

j(s).

We follow Conesa et al. (2009) in defining the hours level effect. However, since our
economy features both an intensive and extensive margin labor decision, we simulta-
neously decompose welfare arising from hours and retirement decisions,

(1 + ∆Hlevel)
1−σU(c2)−Vh(h1)−Vd(d1) = U(c2)−Vh

(
H2

H1
h1
)
−Vd

(
I2

I1 d1
)

For the age effect, note that age-specific average hours and average mass of working
agents in economy i is

Hi
j =

∫
S

hi
j(s)dλi

j(s),

Ii
j =

∫
S

di
j(s)dλi

j(s),
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and expected lifetime utility over age-cohort average level of hours and working at
each age is,

Vh(Hi
j) ≡

∫
E0

[
J

∑
j=1

βj−1ψjv
(

Hi
j

)]
dλi

1,

Vd(Ii
j) ≡

∫
E0

[
J

∑
j=1

βj−1ψjχ2 Ii
j

]
dλi

1,

Then define the hours age effect in economy i by

(1+∆Hage)
1−σU(c2)−Vh

(
H2

H1
h1
)
−Vd

(
I2

I1 d1
)
= U(c2)−Vh

(
Vh(H2

j )

Vh(H1
j )

h1

)
−Vd

(
Vd(I2

j )

Vd(I1
j )

d1

)

Following Floden (2001) and Conesa et al. (2009), the hours distribution effect is then
a residual of the overall hours effect:

(1+∆Hdistr)
1−σU(c2)−Vh

(
Vh(H2

j )

Vh(H1
j )

h1

)
−Vd

(
Vd(I2

j )

Vd(I1
j )

d1

)
= U(c2)−Vh(h2)−Vd(d2)

B.4 Verification of Decomposition

Overall CEV: From equation (B2), the CEV can be rewritten as:

(1 + ∆CEV) =

((
U(c2)−Vh(h2)−Vd(d2)

)
+ Vh(h1) + Vd(d1)

U(c1)

) 1
1−σ

. (B5)

Consumption Effect: From equation (B3), the consumption effect can be rewritten as:

(1 + ∆C) =

(
U(c2)

U(c1)

) 1
1−σ

.

Explicitly define each component of the consumption welfare decomposition as fol-
lows:

(1 + ∆Clevel) =
C2

C1 (B6)

(1 + ∆Cage) =
(U(C2

j )/U(C1
j ))

1
1−σ

C2/C1 (B7)
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(1 + ∆Cdistr) =

(
U(c2)/U(c1)

) 1
1−σ

(U(C2
j )/U(C1

j ))
1

1−σ

(B8)

Accordingly, the consumption effect decomposition is verified as follows,

(1 + ∆C) = (1 + ∆Clevel) · (1 + ∆Cage) · (1 + ∆Cdistr)

= (C2/C1) ·
(U(C2

j )/U(C1
j ))

1
1−σ

C2/C1 ·
(
U(c2)/U(c1)

) 1
1−σ

(U(C2
j )/U(C1

j ))
1

1−σ

X
=

(
U(c2)

U(c1)

) 1
1−σ

Hours Effect: From equation (B4), the hours effect can be rewritten as:

(1 + ∆H) =

(
U(c2)−Vh(h2)−Vd(d2) + Vh(h1) + Vd(d1)

U(c2)

) 1
1−σ

It is easy to show that:

(1 + ∆H) =
1 + ∆CEV

1 + ∆C
.

Next, we wish to show that the hours effect decomposition holds:

(1 + ∆H) = (1 + ∆Hlevel)(1 + ∆Hage)(1 + ∆Hdistr)

Explicitly define each component of the hours welfare decomposition as follows:

(1 + ∆Hlevel ) =

1 +

1−
(

H2

H1

)1+ 1
γ

 Vh(h1)

U(c2)
+

(
1− I2

I1

)
Vd(d1)

U(c2)

 1
1−σ

(B9)

(1 + ∆Hage) =

1 +

(H2

H1

)1+ 1
γ

−
(

Vh(H2
j )

Vh(H1
j )

)1+ 1
γ

 Vh(h1)

U(c2)
+

(
I2

I1 −
Vd(I2

j )

Vd(I1
j )

)
Vd(d1)

U(c2)


1

1−σ

(B10)

(1 + ∆Hdistr ) =

1 +

(
Vh(H2

j )

Vh(H1
j )

)1+ 1
γ

Vh(h1)

U(c2)
− Vh(h2)

U(c2)
+

(
Vd(I2

j )

Vd(I1
j )

)
Vd(d1)

U(c2)
− Vd(d2)

U(c2)


1

1−σ

(B11)

The decomposition can be verified using a first order approximation of the i = 2
allocation around the i = 1 allocation and therefore a first order approximation of
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∆Hlevel , ∆Hage , ∆Hdistr around zero. Noting that u′(c)c/u(c) = (1− σ) and v′(h)h/v(h) =
1 + 1/γ, the first order approximations yield the following expressions for the hours
welfare decomposition:

∆H ≈
1

1− σ

(
U(c2)−Vh(h2)−Vd(d2) + Vh(h1) + Vd(d1)

U(c2)
− 1

)

∆Hlevel ≈
1

1− σ

((
1−

(
1 +

1
γ

)
H2

H1

)
Vh(h1)

U(c2)
+

(
1− I2

I1

)
Vd(d1)

U(c2)

)

∆Hage ≈
(

1 + 1
γ

1− σ

)(
H2

H1 −
Vh(H2

j )

Vh(H1
j )

)
Vh(h1)

U(c2)
+

1
1− σ

(
I2

I1 −
Vd(I2

j )

Vd(I1
j )

)
Vd(d1)

U(c2)

∆Hdistr ≈
1

1− σ

((
1 +

1
γ

)(Vh(H2
j )

Vh(H1
j )

)
Vh(h1)

U(c2)
− Vh(h2)

U(c2)
+

(
Vd(I2

j )

Vd(I1
j )

)
Vd(d1)

U(c2)
− Vd(d2)

U(c2)

)

Since log(1 + ∆) ≈ ∆,

log(1 + ∆H) = log(1 + ∆Hlevel) + log(1 + ∆Hage) + log(1 + ∆Hdistr)

implies
∆H ≈ ∆Hlevel + ∆Hage + ∆Hdistr .

The approximation above can be directly verified.
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