
Creation of Two R Shiny Applications to Illustrate and
Accompany the growClusters Package November 2019

Randall Powers, Terrance Savitsky and Wendy Martinez

Office of Survey Methods Research, U.S. Bureau of Labor Statistics

Powers.Randall@bls.gov

Abstract: GrowClusters is an R package that estimates a clustering or partition structure
for multivariate data. Estimation is performed under a penalized optimization derived from
Bayesian non-parametric formulations. This is done either under a Dirichlet process (DP)
mixing measure or a hierarchical DP (HDP) mixing measure in the limit of the global
variance (to zero). The latter set-up allows for a collection of dependent, local partitions.
This paper describes the growClusters algorithm, but will focus on the creation of an R
Shiny application designed to visually illustrate the operation and functionality of the
growClusters package. Examples of the utility and functionality of the R Shiny application
will be highlighted.

Key words: clustering; R Shiny; partition structure; multivariate data

1. Introduction

Cluster analysis is the grouping of data in a way such that data records assigned
to the same group (or cluster) are more similar to each other than data in other
groups. Clustering is often used for dimension reduction and to perform inference.
It is an iterative process that can be achieved using a number of algorithms.

The growClusters package for R is a package designed to estimate a clustering
or partition structure for relatively high-dimensional multivariate data. Estimation
is performed under a penalized optimization derived from Bayesian non-
parametric formulations in the limit that the model noise variance of a hierarchical
Dirichlet process (HDP) process model goes to 0.

Given that clustering is exploratory data analysis, creation of an interactive
data visualization tool to accompany the package seemed an obvious goal and was
the inspiration for this project. Building an R Shiny application that would allow
growClusters package users to visualize clustering outcomes was determined to be
the best solution to achieve this goal.

The project is ongoing; currently we have designed two applications to
accompany the package. The first, currently called gendata, allows the user to
create a customized input dataset to be used in the second application, called
clustering. The remainder of this paper will describe the functionality of these
two applications in detail.

2. The gendata Application

There may be occasional times where the growClusters package user may wish
to generate synthetic data under a clustering structure to explore the performance
of growClusters to utilize for other purposes, but may not have a properly

mailto:Powers.Randall@bls.gov

formatted dataset to use as input. In this case, it would be helpful to have an
application that generates a dataset that may be used as input for the
clustering application. For this reason, we designed the gendata
application.

The user opens the gendata application (see Figure 1) to find the variable
data tab. There are several input options that allow the user to customize the dataset
that is produced. The user may leave the defaults in place for most of the inputs,
however the user is required to specify the number of clusters and the size of the
clusters in order for a dataset to be generated.

The “number of clusters” is the number of clusters the user wishes to be
displayed. Each cluster receives a roughly equal number of assigned observations.
The user can specify any numbers of clusters, with a minimum number of two. In
conjunction with the number of clusters is the “size of the clusters”. Here the user
must input x comma separated values which sum to one. The number of values
must equal the specified number of clusters.

 Additionally, there are a number of optional user inputs. These include the
“population size,” which allows the user to control the number of observations n
that are produced. The user may specify a population size in increments of five.
The “number of dimensions” is the number of variables in the dataset that is being
created. The user may specify the noise_scale, which can be any value between 0
and 1 inclusive. The noise scale is the global standard deviation, a factor that
affects the elements that are generated. The user may specify whether the seed used
for generating the dataset is null or non-null. If the default null option is left as is,
a null seed will produce a completely random dataset, whereas a non-null seed will
create a dataset where the results can be repeated.

Once the user has set the required inputs (having the total number of comma
separated cluster values equal the number of clusters on the number of clusters
input), they can press the “Generate Data” button, and a dataset is produced (see
Figure 2). If the null setting is chosen, a new dataset is created each time this button
is pressed. The dataset is captured and held in the working space (unless manually
cleared) for use as input for the clustering application. The output is displayed
on the screen.

The user can choose to click the second tab and view a scatterplot matrix of
the first four variables (see Figure 3). The user can also generate a new dataset
while in this tab as well, since the input remains visible and active while on this
tab. As mentioned above, the newly generated dataset remains in the working
space and is accessible to the clustering application.

3. The clustering Application

The clustering application is the application that actually allows the user
to perform clustering analysis. The user can do this with an input dataset generated
by the gendata application, or arguably more usefully (to them), with their own
properly formatted dataset.

The clustering application contains four tabs. The user calls the clustering
function and specifies the dataset that will be analyzed. When the user opens the
application, the Plot tab is opened. The first three variables are shown as a matrix
plot by default. The user may select any of the variables in the dataset from the
drop down menu to plot. Once this is done, the user clicks the “Produce Matrix
Plot” button, and the user defined matrix plot is created (See Figure 4). At this

point, clustering is not performed, but instead allows the user to examine the data
and look for groupings.

On the second tab, the user can alter a number of inputs, including the lambda
value, which governs the number of clusters which are formed; the larger the
lambda value, the more clusters that are discovered. When ready, the user presses
a “Run” button which allows a bar plot of the cluster counts to be displayed (See
Figure 5). This tells the user how many clusters are found. A merge step is
incorporated that reduces sensitivity for the estimated number of clusters to the
penalty parameters. This step occurs when the user chooses the “True” input, and
is skipped when the user opts for “False” Tolerance is another variable input. This
is the maximum amount of change in parameter values between iteration to declare
convergence.

The third tab allows us to produce a scatter plot with color coded clusters. Like
Tab 1, the user chooses the variables they want to analyze. This matrix plot differs
from the one produced in Tab 1 in that the clustering is done for the user (See
Figure 6).

The fourth tab produces parallel plots of the data (See Figure 7), In the
Cartesian coordinate system where the axes are orthogonal, the most points we can
view is three dimensions. If we instead draw the axes parallel to each other, we can
view many axes on the same two-dimensional display. In our example, each of the
variables in displayed as an axis, each cluster is color coded, and each broken line
segment represent the collection of variables for a particular row of the data. The
user can then visually examine the degree of clustering in the data.

4. Future Work and Final Comments

The project is still very much a work in progress. We have a number of tasks still
to complete. These include perfecting the apps and integrating into the
growClusters package, expanding the gendata application beyond simple
random sampling to also include complex sample designs, expanding the
clustering application to also include the hierarchal clustering algorithm from
the growClusters package, and publishing the package on CRAN.

5. References

[1] Auguie, Baptiste (2017). gridExtra: Miscellaneous Functions for
"Grid" Graphics. R package version 2.3. https://CRAN.R-
project.org/package=gridExtra

[2] Bailey, Eric (2015). shinyBS: Twitter Bootstrap Components for
Shiny. R package version 0.61. https://CRAN.R-
project.org/package=shinyBS

[3] Chang, Winston, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan
McPherson (2019). shiny: Web Application Framework for R. R package
version 1.3.2. https://CRAN.R-project.org/package=shiny

https://cran.r-project.org/package=shinyBS
https://cran.r-project.org/package=shinyBS
https://cran.r-project.org/package=shiny

[4] Martinez, Wendy L., Angel R. Martinez and Jeffrey L. Solka.
Exploratory Data Analysis with MATLAB. CRC Press, 2011. Print.

[5] Savitsky, Terrance D. (2019). About growClusters. Documentation for
growClusters package (to be published on CRAN)

[6] Savitsky, Terrance D. (2016). Scalable Approximate Bayesian
Inference for Outlier Detection under Informative Sampling, Journal of
Machine Learning Research 17(225):1−49.

[7] Schloerke, Barret Schloerke, Jason Crowley, Di Cook, Francois
Briatte,Moritz Marbach,Edwin Thoen, Amos Elberg and Joseph
Larmarange. (2018). GGally: Extension to 'ggplot2'. R package version
1.4.0. https://CRAN.R-project.org/package=GGally

[8] Wickham, Hadley, Roman Francois, Lionel Henry and Kirill Müller
(2019). dplyr: A Grammar of Data Manipulation. R package version 0.8.3.
https://CRAN.R-project.org/package=dplyr

[9] Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin
Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo and Hiroaki Yutani
(2019). ggplot2: Create Elegant Data Visualisations Using the Grammar
of Graphics. R package version 3.2.1. https://CRAN.R-
project.org/package=ggplot2

https://cran.r-project.org/package=GGally
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2

Figure 1. Screenshot of the gendata application at the point where the application is first opened and is awaiting user input. There are six
possible user inputs. The only requirements regarding the inputs are that the cluster sizes sum to 1.0 and the number of cluster sizes must be equal
to the number of clusters entry.

Figure 2: This is the gendata application after user has submitted inputs. A data set is produced and saved in the working space. Given the
inputs shown, the dataset will have 500 observations and 15 variables. Five clusters will be produced, and the dataset will be completely random,
since the “null” option was used.

Figure 3: This is the scatterplot matrix tab of the gendata application. This is automatically produced when the dataset is generated. The user has
the option to generate a new dataset while clicked on this tab.

Figure 4: This is the clustering app. The plot tab is shown. This is a scatterplot matrix of the data. By default, the first three variables are
shown. From the drop-down menu, the user selects which variables to show, and a customized scatterplot matrix is produced.

Figure 5: This is the dpcluster tab of the clustering application. The user can tailor the various inputs to match the clustering needs. Once the
run button is clicked, a bar plot of the cluster distribution is produced. The unequal distribution of this bar plot reflects to unequal cluster sizes that
were used when producing the input dataset, using the gendata application.

Figure 6: This is the scatter plot tab of the clustering application. The user selects which variables they wish to see and a customized color-
coded scatterplot is produced. The user can examine the degree of clustering for each of the chosen variables.

Figure 7: This is the parallel plots tab of the clustering application. Each broken line segment represent the collection of variables for a particular
row of the data. In the plot shown, there are four clusters and five variables displayed.

