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Abstract: We describe new experimental productivity dispersion statistics, Dispersion 

Statistics on Productivity (DiSP), jointly produced by the Bureau of Labor Statistics (BLS) 
and the Census Bureau, that complement the official BLS industry-level productivity 
statistics. The BLS has a long history of producing industry-level productivity statistics, 
which represent the average establishment-level productivity within industries when 

appropriately weighted. These statistics cannot, however, tell us about the variation in 
productivity levels across establishments within those industries. Dispersion in productivity 
across businesses can provide information about the nature of competition and frictions 
within sectors and the sources of rising wage inequality across businesses. DiSP data show 

enormous differences in productivity across establishments within industries in the 
manufacturing sector. We find substantial variation in dispersion across industries, increasing 
dispersion from 1997–2016, and countercyclical total factor productivity dispersion. We hope 
DiSP will enable further research into understanding productivity differences across 

industries and establishments and over time. 
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1. Introduction 

Productivity measures are critical for understanding economic performance in the 

U.S. economy. In this paper, we describe a new productivity data product, Dispersion 

Statistics on Productivity (DiSP), jointly developed and published by the U.S. Bureau of 

Labor Statistics (BLS) and the U.S. Census Bureau.1 BLS produces the official labor and 

total factor productivity (TFP) growth statistics for major sectors and industries in the U.S. 

These statistics are constructed using aggregate industry-level data and can be thought of as 

changes in the first moment of establishment-level productivity (appropriately weighted). 

That is, these statistics show how productivity changes on average within sectors and 

industries, but they cannot provide insight into the variation in productivity levels across 

establishments within sectors or industries. Research has shown that changes in the 

dispersion of productivity across establishments in the same industry is related to changes in 

the growth of aggregate productivity (both economy-wide and at the industry level) through a 

variety of channels. 

To fill this void, BLS and the Census Bureau initiated the Collaborative Micro-

productivity Project (CMP) to develop and publish experimental statistics on within-industry 

productivity dispersion (i.e., second-moment measures of establishment-level productivity) 

and to produce restricted-use research datasets. The public-use statistics developed in this 

project, DiSP, were released for the first time in the fall of 2019. The first release covered all 

four-digit NAICS industries in the manufacturing sector and the years 1997–2016. The most 

recent release of DiSP in the fall of 2021 extended the coverage to 1987–2018.2 Moving 

forward, the data will be updated annually. Restricted-use establishment-level data with 

 
1 DiSP data are available on both BLS and Census Bureau websites at: https://www.bls.gov/productivity/tables/ 
and https://www.census.gov/disp. The DiSP is experimental with plans to expand the data product in several 

ways as described in the paper. 
2 The additional earlier years in the 2021 release reflect the ongoing efforts to enhance the DiSP product. 

https://www.bls.gov/productivity/tables/
https://www.census.gov/disp
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micro-based estimates of productivity and its underlying components (e.g., output and input 

measures) are also available to qualified researchers on approved projects in secure Federal 

Statistical Research Data Centers (FSRDCs).3  

Economic theory and recent empirical evidence suggest that the second moments of 

productivity are informative on several important dimensions. One of the most important 

findings in the literature on micro-level productivity is that large productivity differences 

across establishments exist even within narrowly defined industries.4 For example, using data 

from the 1977 Census of Manufactures (CM), Syverson (2004a) found that the establishment 

at the 90th percentile of the within-four-digit-SIC labor productivity distribution is on average 

about four times as productive as the establishment at the 10th percentile.  

Syverson’s findings generated considerable interest in the causes and consequences of 

this dispersion. Possible market explanations include the concavity of the profit function that 

prevents the most-productive business from taking over an industry, frictions in factor 

adjustments (such as costs of adjusting input factors), barriers to entry and exit, and 

distortions that inhibit the equalization of marginal products across businesses (such as the 

regulatory environment). Drivers of establishment-level productivity variation include 

differences in management skills, the quality of production factors, innovation, and 

investments in R&D.  

Research has shown that the dispersion in establishment-level productivity varies 

across sectors, by geographic area, and over time. For example, Syverson (2004a, 2004b) 

shows that variation in dispersion across industries and geographic areas is related to product 

substitutability, market structure, and competition. Hsieh and Klenow (2009) argue that both 

cross-country variation and within-country variation in the dispersion in productivity are 

 
3 For more information on the FSRDCs: http://www.census.gov/fsrdc. An earlier version of this dataset was 

analyzed in Foster et al. (2016a). 
4 Syverson (2011) provides a survey of this literature. 

http://www.census.gov/fsrdc
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related to distortions that inhibit productivity-enhancing reallocation. Asker et al. (2014) 

present evidence that the patterns of dispersion reflect dynamic factor adjustment frictions 

within sectors. The findings in Foster et al. (2016b) suggest that productivity differences 

across establishments may be generated by differences in efficiency levels, demand shocks, 

frictions/distortions, or all of the above. Foster et al. (2021a) and Cunningham et al. (2021) 

show that industries experiencing a surge in innovation exhibit a burst of firm entry, followed 

by an increase in productivity dispersion during an experimentation and shakeout phase, 

followed ultimately by an increase in industry-level productivity.  

Establishment-level productivity differences are also correlated with important 

economic outcomes at the micro level, such as the survival and growth of establishments. 

There is an extensive literature on the connection between productivity, reallocation, and 

growth (Baily et al., 1992; Griliches and Regev, 1995; Foster et al., 2001; Petrin et al., 2011; 

Diewert and Fox, 2010; Foster et al., 2016a; Decker et al., 2020; Blackwood et al., 2021). 

These studies show that more productive businesses are more likely to survive and grow. 

These findings contribute to the perspective that reallocation—the process by which 

economic activity is allocated to its highest valued use—is an important contributor to 

aggregate productivity growth.  

Productivity dispersion is also important for understanding rising wage inequality, 

which has been shown to be a between-firm phenomenon (Davis and Haltiwanger, 1991; 

Barth et al., 2016; Song et al., 2019; Haltiwanger and Spletzer, 2020). In addition, several 

studies have found that high-wage establishments are also more productive and that rising 

between-establishment dispersion in wages is closely associated with rising between -

establishment dispersion in productivity (e.g., Dunne et al., 2004). Economic theories of 

search and matching provide the theoretical connection between productivity dispersion and 

wage dispersion (e.g., Burdett and Mortensen, 1998). Search and matching frictions create 
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quasi-rents for worker-firm matches that make it optimal for high-productivity firms to pay 

high wages.  

Our results using the DiSP experimental data confirm earlier findings of sizeable 

differences in productivity across establishments within industries. To preview our results, we 

find that, on average, the manufacturing establishment at the 75th percentile of the within-

industry labor productivity distribution is more than twice as productive as the establishment 

at the 25th percentile. If we instead focus on TFP, we find that the establishment at the 75th 

percentile is almost twice as productive as the establishment at the 25th percentile. Underlying 

these averages, we find substantial differences in dispersion across industries. For example, 

labor productivity dispersion in the industry at the 75 th percentile of the dispersion 

distribution is about 1.4 times as big as the dispersion in the industry at the 25 th percentile. 

The corresponding multiplier for TFP is 1.2. We also find that dispersion in within-industry 

productivity exhibits a positive time trend over our sample period (1997–2016) and that TFP 

dispersion is significantly countercyclical.   

The experimental productivity dispersion statistics are intended to complement 

official BLS data, so it is crucial to understand the relationship between the dispersion of the 

productivity distribution derived from Census Bureau microdata and the statistics from BLS 

built from industry-level aggregates. Section 2 describes BLS productivity measures and 

productivity measures that we construct from Census microdata. Section 3 compares the two 

approaches to measuring inputs, output, and productivity for the manufacturing sector, and 

for four-digit NAICS manufacturing industries. We also compare these measures to data from 

the NBER-CES Manufacturing Industry Database and examine several data and measurement 

issues such as imputation and weighting of the microdata. In Section 4, we explore the 

variation in industry-level productivity dispersion measures across industries and over time. 

Section 5 summarizes our conclusions and describes plans for future work. In Appendix A, 
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we provide a table of acronyms used throughout the paper and their meanings for the ease of 

the reader. 

2. Measuring Productivity 

Because our primary goal is to create statistics that provide insights about productivity 

that complement the official BLS industry-level productivity measures, it is useful to first 

describe how BLS constructs its measures from published aggregates, and then compare it to 

measures that we construct by aggregating Census microdata.  

2.1. BLS Industry-level Productivity 

BLS publishes quarterly and annual measures of labor productivity growth for major 

sectors; annual measures of labor productivity for 199 three-digit and four-digit NAICS 

industries; and annual measures of TFP for major sectors, 18 three-digit NAICS 

manufacturing industries, 86 four-digit NAICS manufacturing industries, the air 

transportation industry, and the line-haul railroad industry. Productivity growth is measured 

as the difference between percentage changes in indexes of output and inputs (labor and, in 

the case of TFP, also capital and intermediate purchases). BLS does not publish industry 

productivity levels, although they are available on request. 

BLS industry output is based on a sectoral concept, which measures the value of 

goods produced for sale outside the industry.5 For manufacturing industries, BLS uses 

published Annual Survey of Manufactures (ASM) and Census of Manufactures (CM) data on 

the total value of shipments, which it adjusts to remove intrasectoral transactions and resales 

and to account for changes in finished goods and work-in-process inventories.6 This adjusted 

 
5 Sectoral output is less than gross output, but greater than value-added output. In the most detailed industries, 
sectoral and gross output are the same or very close. However, going from very detailed industries to more 

aggregated industries, sectoral output moves closer to value-added output. In the limit, at the aggregate level, 
sectoral output is the same as value-added output, except for imported intermediate inputs. For more information 
on the importance of using sectoral output, see Kovarik and Varghese (2019). 
6 See https://www.census.gov/programs-surveys/asm.html and https://www.census.gov/programs-
surveys/economic-census.html.  

https://www.census.gov/programs-surveys/asm.html
https://www.census.gov/programs-surveys/economic-census.html
https://www.census.gov/programs-surveys/economic-census.html
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nominal output measure is then distributed to detailed categories of products and services 

using the mix of annual wherever-made product shipments from the ASM. Nominal output in 

each product category is deflated using the appropriate detailed producer price index from the 

BLS prices program. These real output measures are then Tornqvist-aggregated into industry 

output indexes. Self-employment revenues for manufacturing firms, which come from 

Internal Revenue Service data, are also added to these output measures.   

BLS measures labor input as the total annual hours worked by all persons in an 

industry. This measure is constructed by combining data from three BLS surveys: the Current 

Employment Statistics (CES) survey, the Current Population Survey (CPS), and the National 

Compensation Survey (NCS). The CES provides detailed information on the employment and 

average weekly hours paid for production and non-supervisory employees (henceforth 

referred to as production workers).7 The NCS data are used to adjust CES average weekly 

hours from an hours-paid to an hours-worked basis by removing paid vacation accrued and 

sick leave taken.8 To estimate nonproduction worker average weekly hours, BLS uses data 

from the CPS to calculate a ratio of nonproduction to production worker average weekly 

hours worked, which is then multiplied by the adjusted CES production worker hours 

(worked). Total nonproduction worker hours are estimated as: 

TH𝑁𝑃 = EmpNP
CES × AWHP

CES × ℎ𝑤ℎ𝑝𝑃
𝑁𝐶𝑆 ×

AWHNP
CPS

AWHP
CPS × 52                          (1) 

where EmpNP
CES is nonproduction worker employment from CES, AWHP

CES is production 

worker average weekly hours paid from CES, ℎ𝑤ℎ𝑝𝑃
𝑁𝐶𝑆 is the hours-worked-to-hours-paid 

ratio from NCS, and (
AWHNP

CPS

AWHP
CPS) is the CPS nonproduction/production average weekly hours 

ratio. CPS data are also used to construct hours worked by self-employed and unpaid family 

 
7 Workers in goods-producing industries are referred to as being production or non-production workers and in 

the service-providing industries as nonsupervisory or supervisory workers. 
8 Note that this adjustment does not account for off-the-clock hours. 
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workers (Eldridge et al., 2004). 

 For TFP at the four-digit NAICS level, capital input is based on the flow of services 

from the productive stock of capital. BLS investment data for industries combine 

expenditures on structures and equipment from the ASM with data on investment in different 

assets by industry from BEA and the Annual Capital Expenditures Survey (ACES). Using a 

perpetual inventory method, BLS then computes industry-asset level capital stocks from these 

investment flows. In BLS official TFP measures, these stocks are converted to capital 

services using industry-asset specific rental prices and then aggregated to the industry level.  

 For intermediate purchases inputs, BLS combines quantities of materials, purchased 

business services, fuels, and electricity consumed by each industry. The nominal values of 

materials, fuels, and electricity are from the CM and ASM, while the values of purchased 

business services are estimated from BEA and Census Bureau data. 

2.2. Establishment-level Productivity using Census Data 

To measure establishment-level labor productivity, we combine establishment-level 

information from three Census Bureau restricted-use microdata files with public-use industry-

level data from BLS. Given that one goal of our research is to shed light on BLS industry 

productivity statistics, we try to match BLS concepts and measures as closely as possible.  

Our establishment-level microdata come from the CM, the ASM, and the 

Longitudinal Business Database (LBD). The CM is collected every five years in years ending 

in “2” and “7”. Data are collected from all manufacturing establishments except those that are 

very small. For these very small non-mail establishments, the Census Bureau uses 

information from administrative records. The ASM sample is a five-year panel of 

manufacturing establishments, updated every year for births, and data are collected annually. 

ASM panels begin in years ending in “4” and “9”, and the probability of selection into the 

ASM sample is a function of both industry and size (employment or the value of shipments). 
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Like the CM, the ASM does not collect data from very small establishments but accounts for 

them using administrative information. In CM years, ASM data are collected as part of the 

CM data collection, but for this analysis and the public-use statistics, we use only the ASM 

establishments.9 Data are imputed for establishments that do not respond or that fail to report 

some data elements (item non-response); we discuss this further in Section 2.3. The LBD is a 

longitudinally linked version of the Census Bureau’s Business Register that covers the non-

agricultural employer universe of business establishments (see Chow et al., 2021 and Jarmin 

and Miranda, 2002). The LBD provides us with both high-quality longitudinal links and 

information on the universe of manufacturing establishments, which we use to construct the 

inverse propensity score weights (IPW) that we use in our productivity calculations.  

Ideally, we want to construct an output measure that exactly matches the BLS 

measure.  We start by using Census microdata to replicate the value of shipments as closely 

as possible. Specifically, we calculate establishment-level real output as deflated revenues, 

adjusted for resales and changes in inventories.10 However, we cannot replicate the BLS 

sectoral output concept because the ASM does not collect the information needed to calculate 

intra-sectoral transactions. Instead, we add the value of intra-sectoral transactions back into 

BLS output measures to make the two measures comparable. Thus, we measure 

establishment-level output as: 

𝑄𝑒𝑡 = (𝑇𝑉𝑆𝑒𝑡 + 𝐷𝐹𝑒𝑡 + 𝐷𝑊𝑒𝑡 − 𝐶𝑅𝑒𝑡)/𝑃𝐼𝑆𝐻𝐼𝑃𝑖𝑡    (2) 

where TVS = total value of shipments, 𝐷𝐹𝑒𝑡 = 𝐹𝐼𝐸𝑒𝑡 − 𝐹𝐼𝐵𝑒𝑡  and 𝐷𝑊𝑒𝑡 = 𝑊𝐼𝐸𝑒𝑡 − 𝑊𝐼𝐵𝑒𝑡  

are the changes in finished-goods and work-in-process inventories, respectively (FIB, FIE = 

beginning-of-year and end-of-year finished goods inventories, and WIB, WIE = beginning-of-

year and end-of-year work-in-process inventories), CR = cost of resales, PISHIP = deflator 

 
9 The microdata made available in the FSRDCs contains productivity measures for all CM establishments for 
which productivity calculation is possible. 
10 In practice, subtracting resales does not make much difference because they are only a small fraction of 
revenue. 
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for the value of shipments, and the i, e, and t subscripts index industries, establishments, and 

years, respectively.11    

We measure labor input as total hours worked. For each establishment, the ASM 

collects the total number of employees, the number of production workers, and the total 

number of hours worked by production workers. We calculate total annual hours worked by 

summing ASM production worker hours and an estimate of nonproduction worker hours, 

which we calculate using the same methodology as BLS (equation (1)) but substituting ASM 

data for CES data:12   

𝑇𝐻𝑒𝑡 = 𝑃𝐻𝑒𝑡 + ((𝑇𝐸𝑒𝑡 − 𝑃𝑊𝑒𝑡) ×
𝑃𝐻𝑒𝑡

𝑃𝑊𝑒𝑡
× (

AWHNP
CPS

AWHP
CPS)

𝑖𝑡

)                                  (3) 

where PH = production worker hours, PW = the number of production workers, TE = total 

employment, and  
AWHNP

CPS

AWHP
CPS = CPS non-production/production average weekly hours ratio for 

the four-digit NAICS industry. We calculate establishment-level log labor productivity as:  

𝑙𝑛𝐿𝑃𝑒𝑡 = 𝑙𝑛𝑄𝑒𝑡 − 𝑙𝑛𝑇𝐻𝑒𝑡.                                                       (4) 

Establishment-level TFP in logs is measured as: 

𝑙𝑛𝑇𝐹𝑃𝑒𝑡 = 𝑙𝑛𝑄𝑒𝑡 −  𝛼𝐾𝑙𝑛𝐾𝑒𝑡 −  𝛼𝐿𝑙𝑛𝑇𝐻𝑒𝑡 −  𝛼𝑀𝑙𝑛𝑀𝑒𝑡 − 𝛼𝐸𝑙𝑛𝐸𝑒𝑡,                    (5) 

where Q and TH are real output and total hours as defined in equations (2) and (3), K denotes 

real productive capital stock, and M and E denote deflated values of expenditures on 

materials and energy, respectively.13 The productive capital stock is constructed using the 

perpetual inventory method for equipment and structures separately.14 The value of M is 

 
11 The value of shipments are deflated at the six-digit NAICS industry level using deflators from the NBER-CES 
dataset. Values for 2012–2016 are imputed using price indexes from BEA GDP-by-Industry data. In 

comparisons to BLS output data conducted in this paper, BLS industry implicit output price deflators (as 
described in 2.1) are used in place of the shipments deflator. 
12 Note that it is not necessary to use the hours-worked-to-hours-paid ratio because establishments are requested 

to report hours worked. 
13 BLS constructs aggregate TFP using capital services rather than productive stock. 
14 We do not include rented capital due to its irregular collection in the ASM. Pre-1986 and post-2006, this 

information is collected annually on the ASM. In the intervening years, this information was only collected in 
the Economic Census. Exploratory analysis for the years when this is available shows rented capital is small and 
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calculated as the deflated sum of cost of materials, the cost of resales, and the cost of contract 

work done for the establishment by others.15 The nominal value of E is the sum of the cost of 

electricity and the cost of fuels. For the CMP data ultimately included in the DiSP data, the 

two expenditures are deflated using the appropriate deflators from the NBER-CES database. 

Equation (5) follows directly from a Cobb-Douglas production function, a common 

assumption in the literature.16 We measure the factor elasticities, 𝛼𝐾, 𝛼𝐿, 𝛼E, and 𝛼M, using 

the share of expenditures of the corresponding input in total cost in each six-digit NAICS 

industry.17 For the BLS data comparisons, we use published BLS industry cost shares; for the 

DiSP statistics, we use shares calculated from CMP data. 

DiSP does not include value-added-based productivity dispersion for conceptual 

reasons. While there is a market for final demand, a market for value added does not exist. 

This consideration is irrelevant for the overall economy because value added equals the value 

of final demand at that level of aggregation. However, the relationship between value added 

and final demand is only an approximation at lower levels of aggregation. In order to make 

inferences about final goods produced by an establishment or industry, not only are the output 

and input values necessary but also the relevant input-output linkages.18 A related issue is that 

 
does not make much difference to establishment-level capital measures. We plan on exploring this further in 
future research. 
15 Published ASM measures of value-added are based on the difference between the value of output and a 

composite-operating-expenses measure inclusive of materials and energy expenditures. We break out the cost of 
materials and energy separately in our TFP measure. The inclusion of contract work implies that some aspects of 

purchased services are included in the materials expenditures. However, since 2006, the ASM has included 
questions on other operating expenses, including leased employees and additional purchased services not 
included in the cost of contract work. We are actively exploring the inclusion of those operating expenses for a 

supplemental TFP dispersion measure commencing in 2006. Challenges for inclusion of these variables are the 
short time series, item non-response rates, and the treatment of establishments of single-unit versus multi-unit 
firms. Establishments of the latter are less likely to have such additional operating expenses because the 

headquarters establishment of the parent firm may be providing and/or purchasing those services.  
16 It can be shown that the Cobb-Douglas production function is a first-order approximation of any CES 
production function. A popular alternative, the translog, is a second-order approximation; see Caves et al. 

(1982). While the translog is more flexible, it requires estimates of second derivatives and is therefore a less 
parsimonious specification. 
17 See web appendix B in Foster et al. (2016a) for more details. Procedures for extending the output and input 
price deflators are described in this appendix. 
18 An additional consideration follows when using the logarithmic transformation to stabilize the variance of 
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the existence of a value-added production function at the establishment-level requires very 

strong functional form assumptions that are likely violated (Basu and Fernald, 1997).   

2.3 Missing Data and Imputation 

As noted earlier, the ASM microdata are subject to item non-response, and these 

missing values are imputed by the Census Bureau. The Census Bureau’s imputation methods 

are designed to yield accurate published aggregates but do not necessarily preserve the 

distribution or adequately reflect the variability of the underlying microdata. There is 

evidence that certain imputation methods may affect microdata analyses. However, there are 

techniques available to mitigate the effects of imputation on dispersion measures. For 

example, White et al. (2018) analyze dispersion statistics using classification and regression-

tree methods. Blackwood et al. (2021) follow a different approach and address imputation by 

dropping observations with imputed data and reweighting the remaining observations. The 

results from these studies suggest that imputation yields lower measured dispersion relative to 

the case when imputation is corrected for. In this paper, we use the entire set of observations 

in the sample and leave further analysis of these issues for future work. 

3. Comparing Micro-Aggregated Data to Published Industry Data 

In this section, we compare our micro-aggregated estimates to the official data 

published by BLS, covering the 1997–2016 period. Based on earlier work comparing similar 

business data across the two government agencies, we expect that there will be some 

systematic differences between these measures (Elvery et al., 2006). Even though differences 

in the levels of the micro-aggregated and published first moments do not directly affect our 

conclusions about dispersion (because we control for industry-year effects), it is useful to 

determine how far apart the two sets of estimates are. If the first moments are close, then it is 

 
empirical distributions. This transformation truncates distributions at zero, which leads to biased inference if the 
probability of negative value added is correlated with establishment-level characteristics. Negative value added 

may be plausible, for example, in intermediate-intensive industries during periods of recession or crises (Cao et 
al., 2021). 
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more reasonable to think of the micro-based second moments as measuring variation around 

the published first moments. As an additional check, we compare these two sets of estimates 

to estimates from the NBER-CES database. The NBER-CES estimates can be thought of as 

equivalent to the official published ASM and CM statistics upon which they are based and are 

used here for comparison only.19 We start by comparing input and output measures, and then 

we compare productivity measures.  

3.1. Input and Output Measures 

Figure 1 shows the total number of employees in the manufacturing sector from each 

series. The first thing to note is that employment levels based on ASM microdata (using ASM 

sample weights) are significantly lower than the published ASM and BLS estimates because 

they exclude the “non-mail” stratum—small establishments that are not sampled by the ASM. 

The published ASM series includes adjustments for the non-mail stratum and is much closer 

to the BLS estimates.  

[Place Figure 1 here] 

To account for these small non-mail establishments, we construct an alternative set of 

weights. As noted, the weighted sample total calculated from the ASM (using ASM sample 

weights) is by design not equal to the published total because there are additional adjustments 

in the latter for the non-mail cases. Fortunately, there are some very small establishments in 

the ASM sample each year that are below the thresholds for non-mail cases. This occurs 

because, among the smaller establishments that were selected for the ASM (that is, 

establishments with employment above the threshold), some had fallen below the size 

threshold by the time that they provided data. This implies that there is coverage for all 

business sizes in the ASM sample (e.g., there are ASM establishments in any given year and 

 
19 For more information on the NBER-CES Manufacturing Industry Database, see http://www.nber.org/nberces/. 
The NBER-CES series was last updated through 2011 as of September 15, 2020. 
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industry with 1–4 employees, even though this is typically below the ASM sample threshold). 

To create the alternative set of weights, we use the LBD. Specifically, we define the 

manufacturing universe using the LBD and use LBD data to estimate the probability that an 

establishment is included in the ASM sample. We then use these probabilities to construct 

IPW. See Appendix B for a full discussion of the weighting procedures. This procedure 

increases the weights assigned to the “non-mail” establishments so that the propensity-score-

weighted employment totals are consistent with the LBD.20 Moreover, as seen in Figure 1, the 

micro-aggregated employment series using IPW yields totals that align with the published 

BLS and ASM more closely than those using ASM weights.21 This aligns with our objective 

in using IPW, as these weights correct for the contribution of the “non-mail” establishments 

in a manner that the ASM weights are not designed to address.   

Next, we compare total manufacturing output and input growth across the BLS, CMP, 

and NBER series (Figure 2).22 For all three series, we use the BLS price deflators for these 

comparisons, apart from the capital series, because BLS does not produce separate deflators 

for equipment and structures. To make it comparable to what we can construct from the ASM, 

we also adjust the BLS output series by adding the value of intrasectoral transactions back 

into the series. The BLS and NBER output series track each other closely, while the CMP 

series deviates from the other two series in some years but exhibits the same pattern of 

growth rates (see Panel (a)). Panel (b) of Figure 2 compares hours growth rates, which exhibit 

similar dynamics across the series, except during the 2005–2007 period, when the NBER 

series diverges. Panel (c) of Figure 2 shows capital stock growth rates. All three series exhibit 

 
20 In addition, unreported results suggest that IPW do a good job matching the industry/year-specific size and 

age distributions of the LBD. 
21 We explored the possibility of benchmarking CMP employment (based on the manufacturing universe in the 

Census Business Register) to BLS employment (based on the manufacturing universe in the BLS Quarterly 
Census of Employment and Wages). While this benchmarking would improve the correlation between the BLS 
and CMP labor (employment and hours) measures, it decreases the correlation between BLS and CMP output 

and the other input measures, which are based on the manufacturing universe in the Census Business Register. 
22 See Appendix A Table A2 for further details about the construction of these series. 
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a slight downward trend in the late 1990s and are essentially flat starting in the early 2000s. 

Panels (d) and (e) of Figure 2 show that for energy and material inputs, the three series track 

very closely.23 

[Place Figure 2 here] 

Table 1 shows correlations between the three data sources for inputs and output for 

the total manufacturing sector. The correlations in the top panel are based on total 

manufacturing aggregate time series, while the bottom panel shows the average of the within-

industry correlations for four-digit NAICS industries, calculated over the 19 years of the 

sample. The top panel of the table shows that hours, energy, materials, and output, both in 

levels and in growth rates, are highly correlated across the data series (the correlations range 

from 0.88 to 0.99).24 Average industry-level correlations, shown in the bottom panel, are 

lower than for total manufacturing, but they are still reasonably high for these variables, both 

in levels and in growth rates.  

[Place Table 1 here] 

The correlation between the capital series is significantly lower than the correlations 

described above. There are several plausible explanations. First, there is a fundamental 

difference in the underlying data. BLS investment data for four-digit industries combine 

expenditures on structures and equipment from the ASM with data on investments in 

different assets by industry from BEA and the Annual Capital Expenditures Survey 

(ACES).25 Using a perpetual inventory method, BLS then computes industry capital stocks 

from these investment flows. In contrast, our approach takes investment flows directly from 

the establishment and uses these flows with the perpetual inventory method at the 

 
23 The cost of purchased services and resales are not included in the materials comparisons. 
24 The level correlations being high reflects trends, implying appropriate caution in interpretation. 
25 See Becker et al. (2006) for more discussion of the relationship between top-down methods used by the BEA 

and bottom-up methods like those we use with the establishment-level data for measuring capital stocks and 
flows. 
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establishment level to generate capital stocks. Second, the BLS investment series covers a 

longer period than the micro-aggregated series. This is significant because initial capital 

stocks are difficult to measure. The BLS capital stock is built up from investment flows that 

stretch back to 1958 (and longer for some assets). By 1997, when our data series starts, the 

BLS capital stock reflects mainly investment, and the impact of any mismeasurement of the 

initial capital stock is minimal. In contrast, the sample rotation in the ASM implies that we 

need to estimate initial capital stocks for establishments that newly enter the sample rotation. 

For CMP, we initialize new establishments using their book value, and the earliest book value 

and investment data that we use dates to 1972. Despite differences in data sources and 

methodologies, we can conclude that the micro-aggregated data are largely consistent with 

published aggregate data. 

3.2. Productivity Growth 

We calculate productivity growth as the change in log productivity where productivity 

is measured as either output per hour or TFP.26 Figure 3(a) shows that output-per-hour growth 

rates for the manufacturing sector are broadly similar, but with some greater discrepancies in 

various subperiods (e.g., 2003–2009). These differences can be attributed to the differences in 

data sources and methodologies, some of which were illustrated in Figure 2. Despite 

underlying differences, TFP growth shows remarkable similarity across these data sources, 

see Figure 3(b). Table 2 echoes these findings: the correlations between the series constructed 

using different data sources are highest for TFP growth.  

[Place Figure 3 here] 

[Place Table 2 here] 

This comparison of inputs, output, and productivity serves as an important backdrop 

 
26 The official BLS productivity series are calculated using percentage changes in the index, and thus the BLS 
series that we refer to here differ slightly from the published series. Additionally, the official total manufacturing 

productivity series is published by the BLS Division of Major Sector Productivity, whereas the data here are 
aggregated from industry data provided by the BLS Division of Industry Productivity Statistics.  
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to our new experimental statistics on within-industry dispersion. Although there are some 

differences between the BLS aggregates and the micro-aggregated series, they are similar 

enough to allow us to make meaningful inferences about the relationship between within-

industry dispersion and BLS published estimates of industry productivity growth.  

4. Productivity Dispersion 

For our analysis of productivity dispersion, we focus on (log) levels rather than 

growth rates. Because we are interested in comparing within-industry dispersion of 

productivity across industries and over time, it is necessary to account for industry 

differences in average productivity. To do this, we calculate establishment-level productivity 

as the deviation from average productivity in that establishment’s four-digit industry in each 

year.27 The interpretation of normalized productivity levels is intuitive: they tell us how far 

above or below the mean the establishment sits in the productivity distribution. 

We use the interquartile range (IQR) as our primary measure of dispersion, because it 

is intuitive and easy to interpret. The IQR shows how much more productive an 

establishment at the 75th percentile of the productivity distribution is than an establishment at 

the 25th percentile of the productivity distribution. The standard deviation may seem like an 

obvious alternative to the IQR; however, it is known to be more sensitive to outliers than 

quantile-based dispersion measures. We also report the 90–10 differential as well as the 10–1 

and 99–90 differentials.  

Table 3 shows the descriptive statistics for distributions of the dispersion measures.28 

The first entry reported in the table (0.898) indicates that in the average industry and year, the 

establishment at the 75th percentile of the distribution is about (e0.898≈) 2.45 times as 

productive as the establishment at the 25th percentile. The establishment at the 90th percentile 

 
27 These are weighted averages using IPW where establishment-level productivity is expressed as a deviation 

from average productivity in that establishment’s 4-digit NAICS industry.  
28 We present standard deviations in Table 3 for completeness but do not discuss these results. 
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is about 5.9 times as productive as the one at the 10th percentile. Average dispersion in TFP is 

lower.29 However, the establishment at the 75th percentile is still about 1.7 times as productive 

as the establishment at the 25th percentile using TFP measures. These differences imply 

substantial differences in a core measure of business performance at the establishment-level 

within narrowly defined industries. 

[Place Table 3 here] 

Many factors may underlie the observed dispersion in measured productivity across 

establishments in the same industry.30 We define a “wedge” as any mechanism that prevents 

the equalization of marginal revenue products across producers. Because the measures of 

productivity dispersion reported here are revenue-based measures, the presence of 

widespread dispersion is consistent with the presence of one or more types of wedges. One 

type is adjustment frictions that inhibit businesses from adjusting their scale of operations and 

specific inputs to changing economic conditions. These adjustment frictions may be related to 

the costs of adopting new technologies or business practices; thus, dispersion in an industry 

may reflect the gap between the frontier establishments and other producers. Additional types 

of wedges are market distortions such as differences in markups across producers or financial 

constraints in the same industry. Complicating matters is that in the presence of wedges that 

are correlated with fundamentals, the variation in the dispersion will also reflect differences 

in business fundamentals such as technical efficiency and product appeal across businesses  

(Blackwood et al., 2021). For example, an increase in the dispersion in product appeal across 

producers in the presence of adjustment frictions will yield an increase in the dispersion of 

revenue productivity across producers (even if the adjustment frictions remain constant). In a 

similar fashion, dispersion may reflect unmeasured inputs. These could include production 

 
29 The range for output per hour is somewhat larger than what was found by Syverson (2004a)—he found a 
multiplier of about 1.9—but our findings are generally in line with his results. 
30 See Syverson (2011) for more detailed discussion of these issues and Blackwood et al. (2021) for a discussion 
more closely related to this new data product.  
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methods, management practices, and the mix of worker types (labor quality). Rising revenue 

productivity dispersion might also reflect rising dispersion in firm-level markups (De 

Loecker et al., 2020; Foster et al., 2021b). 

It is well beyond the scope of the current paper to determine the relative importance 

of each of these alternative factors. Instead, the aim here is to describe the DiSP data product 

and point to its potential for investigating these alternative determinants of dispersion. One 

strength of the new data product is that dispersion measures are provided at a detailed level of 

aggregation by year. Figure 4a summarizes how within-industry dispersion in output per 

hour—measured as the IQR—varies across industries and over time. The mean and median 

IQR are close to each other, but the large differences between the 25 th and 75th percentiles 

show that there is substantial variation in the IQR across industries. For example, in 2002, the 

productivity difference between the establishment at the 75th and 25th percentiles is about 100 

log points in the industry at the 75 th percentile of the IQR distribution, while this difference is 

approximately 70 log points in the industry at the 25 th percentile of the IQR distribution. We 

find similar differences across the industry distribution when looking at TFP dispersion, with 

IQRs of approximately 60 and 40 log points at the 75th and 25th percentiles, respectively (see 

Figure 4b). 

[Place Figure 4 here] 

The differences in the IQRs suggest that there are factors such as those discussed 

above that generate “dispersion in dispersion,” including differences in shocks, adjustment 

costs, distortions, technology, and distributions of capital intensities. In addition, dispersion is 

rising during the period under investigation, more so for TFP than for labor productivity. The 

rising trend suggests that wedges, and the dispersion in business fundamentals underlying the 
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observed dispersion, are changing in systematic ways over time.31 We can also see from 

Figure 4 that although the volatility of (the mean) dispersion is nontrivial, it is dwarfed by the 

variation across industries.  

Table 4 shows that there is substantial movement in the ranking of industries in 

terms of their dispersion. The diagonal elements of these matrices are less than one, 

indicating that the probability that the IQR of an industry remains in the same quintile 

between two periods is less than one. Conversely, off-diagonal elements are generally non-

zero. For example, the second entry of the first row indicates that there is a 24% chance that 

an industry in the first quintile of output per hour IQR last year is in the second quintile this 

year. Similarly, the fourth entry in the fifth row indicates there is an 18% chance that an 

industry in the fifth quintile of output per hour IQR last year is in the fourth quintile this year. 

These findings illustrate that not only is there dispersion in dispersion, but the IQR rank of 

industries varies over time. 

[Place Table 4 here] 

For the rest of this section, we consider a few extensions to our analysis to illustrate 

further the nature of the dispersion. We first examine how our results change when we weight 

establishments using activity weights. Activity weights are generated by multiplying our IPW 

by an activity measure such as hours shares (the share of an establishment’s hours of the total 

hours in its industry) for labor productivity and composite input shares for TFP. Activity 

weighting paints a potentially different picture of dispersion because there may be differences 

between the dispersion of different size groups. Our second extension is to examine the tails 

of the productivity distribution. There has been great interest in the finding that a substantial 

 
31 There is an ongoing debate about the source of the rising dispersion in revenue productivity measures. See, 

e.g., Bils et al. (2021), Blackwood et al. (2021), Decker et al. (2020), and von Brasch et al. (2020). We do not 
seek to address that debate here directly but note that Decker et al. (2020) find that rising (revenue-based) labor 
productivity dispersion in manufacturing is present in both the ASM data used here and in administrative data 

from the Business Register. This finding suggests that an increase in measurement error is not driving the rising 
dispersion.  
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portion of wage inequality is driven by the upper tail of the distribution and by increasing 

between-establishment wage differentials. Investigating the upper tail of the productivity 

distribution is analogously interesting, as theory and evidence show that the productivity and 

earnings distributions are related. Third, we explore the common secular trends and 

cyclicality in the dispersion measures. Fourth, we highlight that most of the within-industry 

dispersion in productivity is not accounted for by establishment observables like business 

size, age, or location. Finally, we provide additional information about the public domain 

DiSP data product. 

4.1. Activity-Weighted Dispersion Measures 

Figure 5 replicates the dispersion measures in Figure 4 but using activity weights, 

which we will refer to as “activity-weighted” distributions. We see rising dispersion over time 

in both Figures 4 and 5. The main difference is that activity-weighted dispersion is smaller 

and exhibits less year-to-year variation than dispersion weighted by IPW alone. Because 

activity weights give more weight to larger establishments, comparison of Figures 4 and 5 

implies that there is less dispersion among larger establishments. Or put differently, 

dispersion in productivity across hours or composite inputs is lower than dispersion across 

establishments. Activity-weighted dispersion also exhibits a rising trend that is more 

pronounced than the increase in trend dispersion without activity weighting.   

[Place Figure 5 here] 

4.2. Dispersion in the Tails 

Turning to the tails of the productivity distributions, a distinctive feature of the within-

industry productivity distribution is that mean and median dispersion in the right tail (the 99–

90 difference—see Figure 6) are about the same order of magnitude as the mean and median 

dispersion of the IQR (see Figure 4). This is striking given that each tail covers only one-fifth 

as many establishments as the IQR. Comparing Figure 6a to Figure 4a, output per hour 
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dispersion in the 99–90 difference is only slightly smaller than the IQR. TFP 99–90 

differences are even larger than the IQR. In addition, differences in the right tail of the TFP 

distribution are rising faster: the mean shows that dispersion in the right tail rose by about 40 

log points between 1997 and 2016, while the IQR rose by only 10 log points over the same 

period (compare Figures 6b and 4b). The activity-weighted dispersion measures (Figure 7) 

generally show similar patterns but a smaller absolute increase. In addition, there is 

substantial dispersion in dispersion in the right tail.  

[Place Figure 6 here] 

[Place Figure 7 here] 

 The fact that there are systematic differences in dispersion between different parts of 

the productivity distribution—for example, dispersion among the most-productive 

establishments is generally higher and is rising faster over time than dispersion among their 

less productive competitors—is relevant for important questions about aggregate productivity 

growth. As mentioned in the introduction, earlier studies established a connection between 

reallocation and productivity growth. In a well-functioning market economy, production 

inputs flow from less-productive to more-productive businesses. In other words, gains in 

aggregate productivity due to resource reallocation are possible only when establishments 

have different productivity levels, which implies dispersion is relevant in this context because 

it can be thought of as an indicator of the potential gains from reallocation.32 Quantifying the 

contribution of different establishment types is an important empirical question and exploring 

their relative importance remains a promising area for the empirical productivity literature. 

In contrast to the right tail, the left tail (the 10–1 ratio) exhibits lower dispersion 

relative to the IQR. Mean output-per-hour 10–1 differences are 20–30 log-points smaller than 

 
32 Dispersion across establishments may reflect the frictions impeding efficient reallocation. Mitigating such 
frictions can improve productivity. 
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the IQR, though they exhibit similar volatility (see Figure 8a). Mean TFP differences in the 

left tail are similarly smaller initially than the IQR and exhibit no positive trend (see Figure 

8b).33 The activity-weighted dispersion measures tell a similar story (Figure 9).  

[Place Figure 8 here] 

These findings highlight the importance of looking at the entire productivity 

distribution. The IQR is a convenient measure that covers half of the distribution. However, 

there is as much dispersion in the upper and lower tails as there is in the center of the 

distribution. We also see that weighting matters: accounting for size tends to reduce both 

productivity dispersion and its volatility. 

[Place Figure 9 here] 

4.3. Common Secular Trends and Cyclicality in Dispersion 

As is evident in Figures 4 and 5, the moments of industry-level dispersion exhibit 

considerable variation over time with an apparent upward trend in the first moment. Table 5 

quantifies common trends and cyclicality in the IQR measures of labor productivity and TFP 

on both an activity-weighted and non-activity-weighted basis. These regression results are 

based on the public-domain DiSP panel data at the four-digit-NAICS-by-year level. All 

reported results include (unreported) industry fixed effects. A statistically significant positive 

trend is present for all measures considered. Cyclicality is captured by the change in the 

national unemployment rate (Bureau of Labor Statistics, 1996–2016). Periods of increases in 

the unemployment rate correspond closely to NBER-defined recessions (Foster et al., 2016a). 

Dispersion in TFP is significantly countercyclical in the DiSP data, which is consistent with 

Kehrig (2015). Dispersion in labor productivity has a less consistent cyclical pattern. It is 

significantly procyclical when using the non-activity-weighted dispersion measure, but 

 
33 The spike in mean dispersion in 1998 is due to transitory changes in the following four-digit NAICS 
industries: 3341, 3342, 3344, 3345, and 3351. In these industries, the least-productive establishments shifted to 

the left in 1998 and then back to the right in 1999. The significant changes in production technologies in these 
industries (factoryless manufacturing and offshoring) may explain these transitory dynamics in these years. 
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acyclical using the activity-weighted dispersion measure.    

[Place Table 5 here] 

Many factors may underlie the countercyclical nature of productivity dispersion.  It 

might reflect cyclicality of second moment shocks that has been interpreted as 

countercyclical uncertainty shocks by Bloom (2009). It might also reflect countercyclical 

increases in frictions and distortions (see, e.g., Blackwood et al. (2021)) and in turn imply 

countercyclical increases in allocative inefficiency.34 

4.4. Establishment and Firm Characteristics and Within-Industry Dispersion 

 Many factors may underlie the substantial dispersion in productivity across 

establishments within the same industry as well as the variation between dispersion measures 

over time. To provide more guidance on the potential driving forces, we examine the 

relationship between productivity and observable establishment characteristics.  For this 

purpose, we examine differences across space (by state), establishment size, and age.   

Table 6 shows the R-squared and p-values from F-tests for regressions of 

establishment-level productivity on observable establishment characteristics, such as 

geography (state), size, and age classes. We focus on accounting for the variation in 

productivity within (four-digit NAICS) industry cells. While we find that geography, size, 

and age have statistically significant relationships with productivity variation across 

establishments in the same year and industry, these characteristics account for only a fraction 

of the observed differences in the productivity levels across establishments. It is this type of 

finding that highlights the interpretation in the research literature that there is enormous 

idiosyncratic variation in measured productivity across establishments. As we have discussed 

above, such idiosyncratic variation may stem from many factors. Further research is 

 
34 Diewert and Fox (2018) provide independent methodology and evidence that allocative inefficiency increases 
in recessions. 
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necessary to understand the contribution of different factors to this idiosyncratic dispersion . 

Table 6 highlights that much of the idiosyncratic dispersion in dispersion is industry specific 

and that the annual, industry-level statistics potentially provide much scope for investigating 

the sources of this dispersion.   

[Place Table 6 here] 

4.5 Description of the Dispersion Statistics on Productivity (DiSP) Data Product       

The new data product, Dispersion Statistics on Productivity (DiSP), contains a 

balanced panel of productivity statistics summarizing the within-industry distributions of 

output per hour and TFP. 35 Dispersion statistics include standard deviations, interquartile and 

interdecile ranges of the within-industry distributions of establishment-level productivity. All 

data moments are weighted using IPW so that they are representative of the universe of 

establishments (see Section 2.2 and Appendix B.2). In addition, the dataset includes activity-

weighted versions of dispersion measures. The 99–90 and 10–1 ranges are currently under 

consideration for future releases, given the interesting patterns in the right and left tails 

highlighted above. 

The data product is useful for analyzing the relationships between productivity 

dynamics at the establishment-level, industry-level, and for the entire manufacturing sector. 

As discussed above, many factors may underlie the cross-industry and time-series variation in 

dispersion. We expect that this new data product will facilitate our understanding of the 

connection between micro- and macro-level productivity. A key benefit of making these data 

available will be to allow researchers without access to the confidential microdata to explore 

the various possible causes—and effects—of the differences in within-industry dispersion 

 
35 The timeliness of the DiSP data depends on the release of establishment- and firm-level information. Our goal 
is to provide annual updates. In non-Census years, the ASM is available in the fall of the following year, while 
the LBD becomes available in spring of the year after that. In Census years, microdata become available later. 

The productivity dataset can be created approximately 2–3 months after the underlying microdata becomes 
available.  



  

25 
 

across industries and over time. 

5. The Relationship between Productivity Growth and Dispersion 

The large and rising productivity dispersion discussed in the previous section could 

be due to one or more underlying mechanisms. For example, if dispersion results from 

innovative activity and experimentation that increases heterogeneity, then dispersion is a 

positive sign because innovative industries are likely to exhibit growth after a shakeout 

period (Gort and Klepper, 1982; Foster et al., 2021a; Cunningham et al., 2021). As mentioned 

earlier, dispersion may also be due to frictions and distortions (Hsieh and Klenow, 2009) that 

prevent the flow of resources from less productive to more productive businesses. In this 

case, dispersion has negative consequences for growth. 

The new data product is well suited for analyzing the link between productivity 

growth and dispersion. To illustrate this, we regressed BLS estimates of industry-level 

productivity growth on contemporaneous and lagged values of industry-level dispersion 

growth measures and other control variables (Table 7). We allow coefficients to differ 

between high-tech and non-tech industries and before/after the Great Recession. We also 

control for period effects. The pre-recession coefficients in column 2 show that an increase in 

LP dispersion is associated with almost no statistically significant productivity growth in non-

tech industries but significantly positive growth in high-tech industries. The coefficient on 

lagged dispersion growth suggests that an increase in dispersion is followed by lower growth 

in non-tech industries but additional growth in high-tech industries; both effects are 

statistically significant. The relationship between TFP dispersion and growth in column 4 is 

not inconsistent with these findings, although the correlations are lower in absolute value and 

are estimated with less precision. In the post-recession period, the correlation structure is 

different: the high-tech industry correlations are not significant for LP (column 6), while the 

signs of the high-tech correlations change for TFP (column 8). While pre-recession data show 
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that rising productivity dispersion was followed by periods of positive TFP growth in high-

tech industries, dispersion appears to have negative growth implications after the Great 

Recession.36 

[Place Table 7 here] 

[Place Figure 10 here] 

The estimates in Table 7 are associations and do not imply causality. These patterns 

may be consistent with one or more of the above-mentioned mechanisms. For example, 

whether the positive link between growth and dispersion in high-tech industries is a sign of 

increased innovation cannot be established without measures of innovative activity or 

analyzing the role of entry.37 Similarly, whether the negative relationship between growth and 

dispersion after the Great Recession reflects misallocation of resources across establishments 

cannot be assessed without analyzing the sources of dispersion in marginal revenue products. 

Analogously, for any explanation of the negative relationship using cyclical mechanisms or 

changes therein, see for example Kehrig (2015), a joint analysis of input prices and dispersion 

would be required. Nevertheless, the results in this section show systematic patterns between 

the first and second moments of the within-industry productivity distribution. The 4-digit-

NAICS-by-year DiSP data covering several decades offers considerable scope for 

investigating these and other hypotheses.38   

6. Concluding Remarks 

A growing literature uses micro-level data to examine establishment-level 

productivity dynamics and finds substantial within-industry productivity dispersion. This 

 
36 The different industry and time patterns of these correlations are illustrated in Figure 10, where the growth in 
BLS TFP and within-industry dispersion are plotted for two high-tech industries (semiconductors and other 

electronic component, computer and peripheral equipment) and two non-tech industries (motor vehicles parts, 
fabric mills). 
37 Foster et al. (2021a) and Cunningham et al. (2021) analyze the relationship between dispersion and entry in 
U.S. manufacturing industries. 
38 The microdata underlying the dispersion statistics has been used to explore these issues. For example, Foster 

et al. (2016a) and Decker et al. (2020) examined the changing relationship between productivity, survival, and 
growth over the cycle and in terms of secular trends.   
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paper provides an overview of a new data product, Dispersion Statistics on Productivity 

(DiSP), that was jointly developed and released by BLS and the Census Bureau. This new 

data product provides measures of productivity dispersion within narrowly defined industries 

by year.  

Much of the paper discusses the methodology used to produce this data product. We 

compare our input and output measures, which we aggregated from microdata, to official 

BLS aggregates at the industry and manufacturing-wide level. Not surprisingly, we find some 

differences between BLS industry-level data and micro-aggregated ASM data. However, in 

general, we find high correlations between BLS and micro-aggregated outputs and inputs (for 

example, at the total manufacturing level, the correlation between the BLS published series 

and the micro-aggregated data for output and hours growth are both about 0.9).   

Using measures of inputs and output, we develop measures of labor productivity 

(output per hour) and TFP (output per unit of combined inputs) and examine some of their 

properties. Correlations between BLS and micro-aggregated labor productivity growth are 

also reasonably high and especially high for TFP growth (e.g., at the total manufacturing 

level, the TFP growth correlation is 0.94).  

Illustrating the properties of the new data product, we find large within-industry 

dispersion in labor productivity: the establishment at the 75th percentile of the productivity 

distribution is about 2.4 times as productive as the one at the 25th percentile, on average. For 

TFP, we find that the analogous ratio is 1.7. These patterns show enormous differences in 

measures of business performance across establishments in the same narrowly defined 

industry and year. Differences may stem from many factors, but they highlight both great 

potential for growth (e.g., if the gaps between high- and low-productivity businesses could be 

reduced) and also possible sources of frictions or distortions that are impeding a more 

efficient allocation of resources.  
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As the title of our paper suggests, we find significant dispersion in within-industry 

dispersion across industries. For the top quartile of industries, the ratio of TFP across 

establishments implied by the IQR exceeds 1.7, while for the bottom quartile of industries the 

ratio is lower than 1.4. Dispersion in dispersion over time is small in comparison but is still 

important. As has been found in previous research, we find rising dispersion in both labor 

productivity and TFP, and that TFP dispersion is countercyclical. 

Our results also indicate that average dispersion depends on where we measure it: 

average dispersion is greater as we move further away from the center of the within-industry 

productivity distribution. Specifically, average productivity differences across establishments 

(especially for TFP) are largest in the right tail of the productivity distribution. Similar to 

what we find for average dispersion, the dynamics of these measures depend on where we 

measure productivity differences. We find evidence that dispersion among the most-

productive establishments has been increasing during our sample period, while differences 

among the least-productive establishments do not show these patterns. This suggests that 

positively trending dispersion found in earlier studies may be a consequence of the dynamics 

among the most-productive establishments. The role of different establishment types is an 

interesting topic for future research, because assessing their relative importance would help 

us to better understand the drivers of productivity growth. A similarly promising area of 

establishment-level productivity analysis would be to explore the role higher moments of the 

within-industry productivity distribution play in this regard. 

Our analysis suggests that these patterns are sensitive to how dispersion is measured. 

We find that activity weights generally imply smaller, less volatile productivity differences 

among establishments for the entire distribution. We also find that, on average, activity-

weighted dispersion among more-productive establishments shows a more pronounced 

positive trend.  
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Our exploratory analysis of productivity growth and dispersion indicates that 

dispersion and productivity growth in high-tech industries are positively correlated before the 

Great Recession, while this relationship reverses post-recession. While this analysis is only 

descriptive, it reveals systematic patterns between these key moments of the within-industry 

productivity distribution. 

In future work, we plan to explore extending the data product in several directions. As 

noted, one active area of exploration is releasing statistics on the tails of the productivity 

distribution. Another area of exploration is to release statistics by additional characteristics, 

such as firm age and firm size. Research has shown that young businesses exhibit especially 

high productivity dispersion. This may reflect greater experimentation by young businesses 

as well as greater challenges that young businesses face in changing the scale of their 

operations. We also plan to use information on the occupational mix of establishments from 

the Occupational Employment and Wage Statistics matched to establishments in the 

ASM/CM to quantify the effect of labor heterogeneity on productivity dispersion.39 In 

addition, BLS and Census have begun work on producing dispersion statistics for retail trade 

industries. 

Finally, we acknowledge that our measures of dispersion do not account for 

investments in intangibles, as the ASM only contains information on the book value of 

tangible assets and investment, and that it is possible our results could be affected if we were 

able to control for them. We leave the inclusion of intangibles in the measurement of 

productivity dispersion for future research.40 

 
39 See Blackwood et al. (2022) for further discussion. An interesting finding in that research is that differences in 
within-industry productivity across establishments are highly correlated with differences in within-industry 

differences across establishments in indices of the skill and task mix of workers. This analysis highlights that 
novel insights can emerge from the public domain DiSP statistics while also motivating improvements in the 
DiSP statistics for the future. 
40 It would be interesting to explore the relationship between DiSP statistics and measures of within-industry 
dispersion in intangible investment similar to what Blackwood et al. (2022) did with skill and task dispersion.   
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Figure 1. Manufacturing Employment Levels, 1997–2016 

 

Source: “BLS Employees” is the annual average of the not-seasonally-adjusted employment 

in manufacturing [CEU3000000001, Current Employment Statistics program]. 
“ASM Published” is the published aggregate employment series from the ASM. 
“ASM smpl weighted” total employment is the micro-aggregated series calculated 
using ASM sample weights. “CMP propensity score weighted” is calculated using 

our estimated IPW. 
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Figure 2. Manufacturing Output and Input Growth Rates (in percent), 1998–2016 

 

a) Output   

 

b) Hours 
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c) Capital 

 

d) Materials 

 

e) Energy 

Source: “BLS” is the authors’ calculations from Industry Productivity Program data. “CMP propensity 
score weighted” is the authors’ calculations on the ASM. “NBER” is the authors’ 

calculations on the NBER-CES database.
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Figure 3. Productivity Growth by Data Source and Measure (in percent), 1998–2016 

 

a) Output per hour 

 

 

b) Total factor productivity 

Source: See the notes to Figure 2. 
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Figure 4. Distribution of IQR of Productivity, 1997–2016  

 

(a) Output per hour 

 

 

(b) Total factor productivity 

Notes: Within-industry productivity moments are created at the four-digit NAICS level, weighted 

using IPW. Annual descriptive statistics of industry dispersion are unweighted.  

Source: Authors’ calculations on the ASM.  
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Figure 5. Distribution of Activity-Weighted IQR of Productivity, 1997–2016 

 

(a) Output per hour (hours-weighted) 

 

 

(b) Total factor productivity (composite-input-weighted) 

Source: See notes to Figure 4. 
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Figure 6. Distribution of 99–90 Difference of Productivity, 1997–2016 

 

(a) Output per hour 

 

 

(b) Total factor productivity 

 

Source: See notes to Figure 4. 
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Figure 7. Distribution of Activity-Weighted 99–90 Difference of Productivity, 1997–2016 

 

(a) Output per hour (hours-weighted)  

 

 

(b) Total factor productivity (composite-input-weighted) 

Source: See notes to Figure 4. 
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Figure 8. Distribution of 10–1 Difference of Productivity, 1997–2016 

 

(a) Output per hour 

 

(b) Total factor productivity 

Source: See notes to Figure 4. 
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Figure 9. Distribution of Activity-Weighted 10–1 Difference of Productivity, 1997–2016 

 

(a) Output per hour (hours-weighted) 

 

(b) Total factor productivity (composite-input-weighted) 

 

Source: See notes to Figure 4. 

 



 

Figure 10. Growth in TFP and Dispersion in Select Industries (1997–2015) 
 

 

 

 

 
 

Source: Author's calculations on the DiSP data and BLS Industry Productivity Statistics 



45 
 

 

Table 1. Input and Output Correlations between BLS, CMP, and NBER (1997–2016) 
 

 BLS/CMP BLS/NBER CMP/NBER 

Total Manufacturing    
Hours worked, levels 0.986 0.994 0.996 
Hours worked, growth  0.930 0.909 0.923 
Capital, levels  -0.184 0.880 0.328 
Capital, growth  0.330 0.643 0.585 
Energy, levels  0.977 0.997 0.978 
Energy, growth  0.958 0.985 0.948 
Materials, levels  0.931 0.996 0.963 
Materials, growth  0.858 0.992 0.880 
Output, levels  0.945 0.996 0.961 
Output, growth 0.894 0.993 0.926 
Average of Four-digit NAICS 

   

Hours worked, levels 0.803 0.889 0.883 

Hours worked, growth  0.457 0.632 0.599 

Capital, levels  0.521 0.714 0.489 

Capital, growth  0.265 0.565 0.263 

Energy, levels  0.861 0.986 0.841 

Energy, growth  0.714 0.714 0.709 

Materials, levels  0.837 0.962 0.843 

Materials, growth  0.659 0.937 0.661 

Output, levels  0.838 0.985 0.850 

Output, growth  0.676 0.951 0.675 

Source: Authors’ calculations on the ASM. 
 

Table 2. Productivity Growth Correlations between BLS, CMP, and NBER (1997–2016) 

 

BLS/CMP  BLS/NBER  CMP/NBER  

Labor productivity (Total Manufacturing) 0.705 0.818 0.735 

Labor productivity (Average of Four-digit NAICS) 0.465 0.619 0.660 

Total factor productivity (Total Manufacturing) 0.935 0.991 0.960 

Total factor productivity (Average of Four-digit 
NAICS) 

0.786 0.896 0.810 

Source: Authors’ calculations on the ASM. 
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Table 3. Summary of Within-Industry Productivity Distributions (1997–2016) 

Within-Industry Productivity Moment Mean 

Standard 

Deviation IQR 

Labor Productivity 
   

IQR 0.898 0.290 0.322 

90-10 differential 1.773 0.476 0.613 
Standard deviation 0.684 0.167 0.222 
99-90 differential 0.732 0.279 0.333 
10-1 differential 0.550 0.267 0.275 

Total Factor Productivity 
   

IQR 0.520 0.222 0.205 
90-10 differential 1.078 0.393 0.371 
Standard deviation 0.460 0.152 0.161 

99-90 differential 0.866 0.512 0.546 
10-1 differential 0.301 0.181 0.153 

Notes: Log labor productivity (LP) is calculated as log (output/hours) where hours are BLS-adjusted 

total hours. The four-digit NAICS industry mean log LP is subtracted off establishment-level log LP. 
Within-industry productivity moments are created at the four-digit NAICS level using IPW. Annual 

summary statistics of these industry statistics are then created weighting each industry equally. The 

numbers shown are means of the annual summary statistic values from 1997 to 2016, weighting each 

year equally.  

Source: Authors’ calculations on the ASM.   
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Table 4. Probability of Transition across Quintiles of the Cross-Industry Distribution of Dispersion 
(annual averages between 1997 and 2016)  

IQR  IQR (Activity weighted) 

Output per Hour 

 1 2 3 4 5   1 2 3 4 5 

1 0.63 0.24 0.08 0.03 0.01  1 0.70 0.22 0.06 0.01 0.00 

2 0.23 0.41 0.22 0.10 0.02  2 0.22 0.49 0.24 0.04 0.00 

3 0.10 0.25 0.41 0.25 0.03  3 0.06 0.25 0.56 0.15 0.01 

4 0.03 0.08 0.25 0.44 0.19  4 0.01 0.04 0.14 0.65 0.15 

5 0.01 0.03 0.03 0.18 0.74  5 0.00 0.00 0.01 0.15 0.84 

             

Total Factor Productivity 

 1 2 3 4 5   1 2 3 4 5 

1 0.64 0.23 0.07 0.04 0.01  1 0.75 0.19 0.03 0.01 0.01 

2 0.22 0.42 0.28 0.05 0.02  2 0.19 0.53 0.21 0.05 0.00 

3 0.08 0.26 0.40 0.26 0.04  3 0.03 0.24 0.53 0.20 0.03 

4 0.04 0.08 0.20 0.47 0.18  4 0.02 0.02 0.20 0.56 0.17 
5 0.01 0.02 0.05 0.16 0.75  5 0.01 0.01 0.03 0.17 0.79 

Notes: Rows index quintiles in t-1, columns index quintiles in t. Probabilities in each table are 

normalized by column sums, i.e., column elements sum to one, apart from rounding.  

Source: Authors’ calculations on the ASM.  

 

Table 5. Common Secular Trends and Cyclicality in IQR Dispersion 

 Dependent Variable 

 Labor Productivity Total Factor Productivity 

 

Non-activity 
weighted 

Activity 
Weighted 

Non-activity 
weighted 

Activity 
Weighted 

Change in unemployment rate -1.182 -0.093 1.061 0.686 

(in 100s) (0.390) (0.293) (0.458) (0.338) 

Trend 0.004 0.004 0.004 0.002 

 (0.001) (0.001) (0.001) (0.002) 

N 1,720 1,720 1,720 1,720 

R-squared 0.647 0.809 0.644 0.761 

Notes: Sample is the 4-digit IQR dispersion statistics from 1997–2016. All specifications control for 

four-digit NAICS industry effects. Robust standard errors in parentheses are clustered at the industry 

level. 

Source: Authors’ calculations on the DiSP data and BLS unemployment rate.   
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Table 6. Relationship between Productivity and Establishment Characteristics, 1997–2016 
 

Characteristic   R2 

   LogLP (demeaned) 

State   0.003 
Size class   0.014 
Age class   0.007 

    
   LogTFP (demeaned) 

State   0.006 
Size class    0.004 
Age class   0.001 

Notes: LogLP (demeaned): log labor productivity, industry and year effects are removed, LogTFP 

(demeaned): log TFP, industry and year effects are removed, naics4: four-digit NAICS code, year: time 

identifier, state: Federal Information Processing Standard state code, size class: employment size class 

with thresholds 20, 50, 100, 250, and 500, age class: establishment age class with thresholds 1, 2, 3, 4, 5, 

10, and 15. Each row shows the R2 from a separate regression; in each instance, the p-value is less than 
0.0001. 

Source: Authors’ calculations on the ASM.
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Table 7. BLS Productivity Growth and Dispersion Growth Before and After the Great Recession 

 

 Pre-Recession Period (1999–2007) Post-Recession Period (2009–2015) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 LP LP TFP TFP LP LP TFP TFP 

Dispersion 0.188 0.110 0.062 0.043 0.116 0.150 -0.038 -0.001 

 (0.073) (0.069) (0.021) (0.022) (0.057) (0.065) (0.027) (0.017) 

Lagged Dispersion  0.012 -0.082 0.005 -0.016 0.126 0.143 -0.027 -0.016 

 (0.064) (0.046) (0.022) (0.015) (0.072) (0.076) (0.012) (0.014) 
Tech x Dispersion  0.317  0.054  -0.117  -0.123 

  (0.110)  (0.051)  (0.115)  (0.041) 

Tech x Lagged Dispersion   0.509  0.060  -0.081  -0.049 

  (0.093)  (0.062)  (0.155)  (0.027) 

Joint Hypothesis Tests:         

[Dispersion + Tech x Dispersion]  0.427  0.097  0.033  -0.124 

  (0.088)  (0.047)  (0.095)  (0.038) 

[Lagged Dispersion + Tech x Lagged Dispersion]  0.427  0.044  0.062  -0.064 
  (0.078)  (0.061)  (0.137)  (0.024) 

N 344 344 344 344 258 258 258 258 

R-squared 0.141 0.227 0.118 0.154 0.155 0.166 0.178 0.211 

Notes: In these regressions, average annual industry-level productivity growth rates for two-year subperiods are regressed on average annual industry-level 

dispersion growth rates for two-year subperiods. Dispersion is defined as the activity-weighted IQR for an industry in a year. Controls include a constant and 

period effects. Robust standard errors in parentheses are clustered at the industry level.  
Source: Author's calculations on the DiSP data and BLS Industry Productivity Statistics.
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Appendix A 

 Table A1. Table of Acronyms 

 

Acronym Meaning 
ACES Annual Capital Expenditures Survey 

ASM Annual Survey of Manufactures 
AWH Average weekly hours 
BEA Bureau of Economic Analysis 
BLS Bureau of Labor Statistics 

CES Current Employment Statistics 
CM Census of Manufactures 
CMP Collaborative Micro-productivity Project 
CPS Current Population Survey 

CR Cost of resales 
DF Changes in finished goods 
DiSP Dispersion Statistics on Productivity 
DW Changes in work-in-process inventories 

E Cost of electricity and cost of fuels 
FIB Beginning-of-year finished goods inventory 
FIE End-of-year finished goods inventory 
FSRDC Federal Statistical Research Data Center 

GDP Gross domestic product 
IPW Inverse propensity score weights 
IQR Interquartile range 
LBD Longitudinal Business Database 

LP Labor productivity 
M Cost of materials, cost of resales, and cost of contract work  
NAICS North American Industry Classification System 
NBER-CES National Bureau of Economic Research and Center for Economic Studies  

NCS National Compensation Survey 
PH Production worker hours 
PISHIP Deflator for value of shipments 
PW Number of production workers 

Q Output 
TE Total employment 
TFP Total factor productivity 
TH Total hours worked 

TVS Total value of shipments 
WIB Beginning-of-year work-in-process inventories 
WIE End-of-year work-in-process inventories 
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Table A2. Summary of Variables Used in Selected Tables and Figures 

 Table 1 
Correlations 

Table 2 
Correlations 

Table 3 
Dispersion 

Figure 1 
Employment 

Figure 2 
Hours 

Figure 2 
Output 

Figure 3  
Productivity 

    Comparisons 

BLS implicit price deflator used for all estimates (except for 

capital) 

yes yes    yes yes 

Shipments deflator used to deflate output   yes     

Cost of resales (CR) removed from CMP yes yes yes   yes yes 

Employees only   yes yes  N/A  

Include BLS employees and self-employed (SE) and unpaid 
family workers (UFW) in BLS data only 

yes yes   yes N/A yes 

CPS nonproduction/production hours ratio (even for NBER 
hours) 

yes yes yes  yes  yes 

BLS intrasectorals included yes yes    yes yes 
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Appendix B 

B.1. Properties of ASM samples 

The ASM is a five-year panel of roughly 50,000–70,000 manufacturing establishments. 

It is a sample of establishments drawn from the manufacturing portion of the Census Bureau’s 

Business Register using a probability proportional to size sampling scheme.41 The largest 

establishments are sampled with certainty and are included in every panel.42 Smaller 

establishments are sampled with a probability less than one, where the probability increases 

with establishment size (measured by the value of shipments). The smallest single-unit 

establishments, which are part of the “non-mail” stratum, are not mailed a form but they are 

included in the estimates. The Census Bureau uses administrative records for payroll, 

employment, industry, and location from the administrative data for the smallest single-unit 

establishments, while total value of shipments is imputed using industry averages.43 

The ASM sample is refreshed every five years. New ASM panels are drawn from the 

Economic Census and begin 2 years after the Census from which it was drawn (years ending in 

“4” and “9”). The sample is also updated annually to include new establishments that are 

identified on the Census Bureau’s Business Register. The Business Register is  updated with 

information from the Economic Census as well as administrative records from the IRS and the 

Census Bureau’s annual Report of Organization (formerly called the Company Organization 

Survey).  

 
41 For more information about the ASM, see http://www.census.gov/manufacturing/asm/. 
42 Prior to 1999, certainty units were establishments with 250 or more employees. In 1999, the cutoff was increased 
to 500 employees and, in 2004, it was increased again to 1,000 employees. Currently, the 10 largest establishments 

in an industry are also sampled with certainty. In addition to establishment size, certainty criteria include other 
characteristics such as industry, cell size, or energy use. For example, computers, flat-glass, sugar, and small 

industries (with less than 20 establishments), or establishments with large inventories, assets, fuel/electric 
expenditures are also sampled with certainty. 
43 Non-mail cases are included in the official estimates and have a weight of one. The survey is designed to tabulate 

cases from the mail and the non-mail component. The mail component was not designed to estimate the total 
population.  
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Data for the ASM are collected in all years except for years ending in “2” and “7”, when 

the ASM data are collected as part of the Economic Census. Data on payroll, employment, 

industry, and geography for establishments in the non-mail stratum are obtained from 

administrative records.44 

The ASM sample is designed to estimate unbiased national level estimates of a skewed 

population. For example, in the 2014 ASM panel, large establishments sampled with certainty 

account for approximately 72% of the total value of shipments in the 2012 CM; non-certainty 

establishments are sampled with probabilities from 0.05 to 1.00.45 This sample design implies 

that the establishment counts in various size bins may not reflect those calculated from the 

LBD. 

The ASM sample weights, which are inversely proportional to a shipments-based 

establishment size measure, could in principle be used to correct for the effects of the ASM 

sample design. However, the sample design implies that the weighted sum of shipments from 

the mail stratum only will not match published totals.46  

Another important aspect of the sample design is that the composition of establishments 

changes over time and between sample selections. Any weighting procedure aiming at creating 

unbiased estimates of productivity dispersion should account for the fact that the sampling 

probabilities, and therefore the composition of the ASM, change every five years. In addition, 

sampling and non-mail stratum thresholds vary across years.  

B.2. Establishment Characteristics and the Probability of Selection into  the ASM 

The ASM’s sample design has important implications for our analysis. For example, the 

sum of the ASM sample weighted employment or sales might equal total employment or total 

 
44 Federal regulations require the Census Bureau to limit survey response burden. 
45 Source - ASM Methodology website, https://www.census.gov/programs-surveys/asm/technical-
documentation/methodology.html (accessed September 16, 2020).  
46 As mentioned above, only the mail component together with the adjustment for the non-mail stratum yields 
unbiased estimates of the total population. See Davis et al. (1996) for more details. 

https://www.census.gov/programs-surveys/asm/technical-documentation/methodology.html
https://www.census.gov/programs-surveys/asm/technical-documentation/methodology.html
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sales. However, it is not clear that the ASM sample weights are appropriate for our analysis. 

This section is devoted to describing our weighting procedure. 

 To address the effects of the ASM’s sample design, we construct IPW using the LBD. 

Propensity scores are estimated from a logistic regression in which we model the relationship 

between establishment characteristics and the probability that an establishment is selected into 

the ASM. We start by matching establishments in the ASM to LBD establishments by year and 

“LBD Number.”47 Our dependent variable is a dummy variable that equals one if the 

establishment is in both the ASM and the LBD for that year and zero if the establishment is only 

in the LBD. For establishments in the non-mail stratum, the dummy variable is set to zero. 

The set of regressors includes dummy variables that classify each establishment based 

on its employment and payroll size class, whether the establishment is part of a multi-unit 

entity, the establishment’s industry code, and the interaction between industry and employment 

size effects. Including industry-size interactions allows us to estimate industry-specific size 

distributions. These variables are obvious candidates for our logistic regressions because the 

probability of selection into the ASM sample and the cutoff for the non-mail stratum in the 

ASM vary by industry and size.  

 We define industries at the three-digit NAICS level because the interaction of size 

indicators and more narrowly defined industry codes leads to empty cells in smaller industries. 

Empty-size bins imply that the size distribution cannot be estimated in these industries.48 When 

the size distribution cannot be estimated for an industry, propensity scores cannot be calculated 

because maximum-likelihood estimates of the size effects do not exist. Empty cells can, in 

principle, be avoided by collapsing size bins, combining similar narrowly defined industries, or 

allowing bin definitions to vary across industries. We experimented with the number and 

 
47 The LBD Number is an establishment identifier that is consistently defined across both datasets. Although 
linking the datasets by LBD Number is straightforward, a small percentage of establishment-year observations do 

not match due to timing issues between the ASM and the LBD. 
48 The size distribution cannot be estimated if all establishments are in the same size bin. 
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definition of the size bins and the level of industry aggregation and found that using three-digit 

NAICS industry codes together with four size bins allows us to estimate the size distribution in 

every industry and year. Allowing for more heterogeneity by using either industry-specific size 

bins or more narrowly defined industries leads to feasibility problems with the logistic 

regression. 

We define the size bins so that the resulting distribution allows the lowest size bins to 

vary over time. That is, in every year and every industry, the 50th percentile of establishments 

with fewer than 50 employees is used to define bins one and two. For larger establishments, the 

following bins are defined: 50–99, 100–199, and 200+.49 There are 21 three-digit NAICS 

industries in the 2002 classification system, which results in 105 industry-specific size 

distributions. We include a continuous size measure to allow the weights to vary within these 

cells. This is necessary to account for possible within-cell compositional changes. Adding five 

payroll classes and two groups related to multi-unit status increases the number of cells to 113.50 

The 2002 change in the industry classification system resulted in missing NAICS-2002 

codes for a nontrivial number of establishments in the LBD between 1997 and 2001. For 

example, the NAICS code is missing if an establishment exited prior to 2002. For these 

observations, we used imputed NAICS codes.51 From 2002 on, NAICS codes are available for 

all establishments in the LBD. 

B.3 Comparison of Hours Measures 

In this study, we use hours data from ASM, augmented with data from the CPS. 

However, for official estimates of productivity growth, BLS uses the CES as its primary source 

of hours data. Although the CES and ASM are establishment surveys, the two surveys d iffer in 

 
49 The payroll size classes are 0–200, 201–500, 501–1000, 1001–5000, and 5001+. 
50 If we were to use 4-digit industry, the number of cells would increase significantly. There are 86 4-digit NAICS 
industries implying 86 different size distributions and 430 industry-size cells. Such an increase in the number of 

cells yields empty size bins in several industries. 
51 NAICS codes are imputed using a method described in Fort (2013). 
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what hours data they collect and how they collect it. The best information on these differences 

comes from studies completed in the early 2000s (Goldenberg and Willimack, 2003; Fisher et 

al., 2001). These studies do a nice job of summarizing the differences between the two surveys 

and how those differences affect estimates of hours worked. In this appendix, we summarize 

that research and discuss the implications for comparing our estimates to published BLS 

estimates.  

There are some general differences between the two surveys that are worth noting. First, 

the ASM is an annual survey, whereas the CES is conducted monthly. As a result, the reference 

periods of the two surveys differ. The reference period for the CES is the pay period that 

includes the 12th of the month. The CES collects data on the total number of employees, hours 

for all employees since 2006, the number of production workers, production worker payroll, and 

production worker hours.  

In contrast, the ASM has different reference periods for different data elements. For 

production worker employment, the ASM reference period is the pay period that includes the 

12th of the month in the months of March, May, August, and November. These quarterly reports 

are then averaged into an annual number. The ASM collects employment data for other 

employees only for the pay period that includes March 12 th. The implicit assumption is that 

nonproduction worker employment does not vary much over the year. Total employment is not 

collected directly, but rather is equal to the sum of the total number of nonproduction workers in 

March and the annual average of quarterly production worker employment.  

Annual total employment in the two surveys can differ if there are seasonal patterns in 

production worker employment that are missed in the ASM’s quarterly reports or if there is a 

seasonal pattern to nonproduction worker employment. We examined this issue using monthly 

CES data. Specifically, we calculated the average employment for each quarter using CES data, 

and then calculated the ratio of average quarterly employment to CES employment in the ASM 
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reference months (March, May, August, and November). The ratios were very close to one, 

showing that estimates of average annual employment are the same whether we use four 

quarterly reports or 12 monthly reports.  

There are greater differences in the hours data collected in the two surveys. There are 

two possible reasons for this. First, the two surveys use different concepts. The ASM asks 

employers to report hours worked, whereas the CES collects hours paid. The main difference is 

that the CES hours data include holidays, annual leave, and sick leave that were paid but not 

worked. Thus, we would expect total annual hours reported in the CES to exceed total annual 

hours in the ASM. For productivity measurement, hours worked is the correct concept, which is 

why BLS adjusts the CES data using hours-worked-to-hours-paid ratios from the NCS.  

Second, the two surveys differ in how they ask respondents to report hours. The ASM 

asks respondents to report total annual production worker hours. The CES asks respondents to 

report total employment and hours for production workers for the pay period that includes the 

12th of the month. The hours reports are converted to a weekly number using conversion factors 

that vary with the number of workdays in the month. Apart from the difference in concept, these 

two approaches to collecting hours data could result in different estimates of total annual hours. 

Research by Frazis and Stewart (2004) has shown that people work longer hours during the 

week that includes the 12 th of the month.52 This would also lead to annual hours in the CES 

being higher than in the ASM. Neither survey collects hours data for nonproduction workers.53 

As noted in the text, nonproduction worker hours are estimated using data from the CPS.  

  

 
52 Their research examined the accuracy of CPS hours reports by comparing the CPS hours data to hours data from 

the American Time Use Survey (ATUS). They found that reports were on average consistent, but that some groups 
overreported their hours (college educated) and others underreported their hours (less than college). Research by 
Eldridge et al. (2022) found differences in hours reports for production and nonproduction workers that are 

consistent with the findings of Frazis and Stewart (2004). 
53 The CES began collecting all employee hours in 2006.  
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