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Abstract

PRELIMINARY

Several recent papers aim to account for changing preferences in cost-of-living in-

dexes (COLI). Workhorse models like Constant Elasticity of Substitution (CES) at-

tribute the errors in demand regressions entirely to preferences, leaving no room for

other sources of error. Using a Monte Carlo experiment and retail scanner data, I

find evidence that model misspecification can lead to misleading conclusions about

the degree of taste change reflected in CES-based price indexes. Nevertheless, under

misspecification, a Sato-Vartia index still approximates a conditional COLI that fixes

tastes to an intermediate level.

1 Introduction

Many recently proposed methods for cost-of-living index (COLI) measurement rely on speci-

fication and estimation of a model of consumer preferences. For example, a workhorse model

∗The views expressed herein are those of the author and not necessarily those of the Bureau of Labor
Statistics or the U.S. Department of Labor.
†Division of Price and Index Number Research, Bureau of Labor Statistics, 2 Massachusetts Ave, NE,

Washington, DC 20212, USA. Email: Martin.Robert@bls.gov
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is constant elasticity of substitution (CES).1 The impact of changing preferences has been

an object of recent attention in the price index literature. Redding and Weinstein (2020)

(henceforth RW) estimate that the pure contribution of changing tastes to welfare is eco-

nomically important—lowering an unconditional COLI by 0.4 percentage points per year

when based on the CES model.2 Using retail scanner data and a simple CES model, Martin

(2020) found that the choice of taste vector could raise or lower a conditional COLI for a

food category between half a percentage point and three percentage points per year.

As discussed by Fisher and Shell (1972), it is difficult to assess the role of tastes in full

generality—analysts must focus attention on one or two items, or assume a full model for

preferences. In the CES model, time-varying tastes make up the idiosyncratic error of the

regression of log expenditure shares on log prices. The obvious issue in drawing inference

on taste change from regression residuals is that this leaves no room for other sources of

error.3 One potential source of error is from model misspecification. CES preferences are

quite tractable, but they are restrictive. Substitution elasticities are held constant across

different pairs of goods, income elasticities are all equal to one, and complementary goods are

ruled out in some applications. COLI can be derived, of course, for more flexible models, but

some parsimony is usually required.4 A hypothetical index user might therefore reasonably

view the underlying model as an approximation for a more complicated, unknown preference

structure.

1See, for example, Feenstra (1994) and Broda and Weinstein (2010) use this model to account for welfare
gains from new and disappearing goods. The Bureau of Labor Statistics (BLS) implicitly assumes CES-like
preferences by using a geometric mean formula for its elementary item indexes, and uses a CES formula for
initial estimates of the Chained CPI. See US Department of Labor (2018).

2An earlier version, Redding and Weinstein (2018) found much higher differences, on the order of two to
three percentage points per year. Martin (2020) discusses how changes in the set of common goods may have
contributed to the change in RW’s results. Incorporating pure taste effects also requires the assumption of
cardinal utility.

3Feenstra and Reinsdorf (2007) also point out this possibility in describing the challenges of merging
the stochastic and economic approaches to index numbers. See also Nevo (2003) regarding difficulty in
distinguishing taste change from quality change.

4Even flexible cost functions like the translog may not actually be estimated in a fully flexible manner
due to the curse of dimensionality. Applications may restrict own and cross price elasticities to depend on a
relatively small set of parameters. For example, see Feenstra and Weinstein (2017), where the N(N + 1)/2
elasticities are restricted to depend on only one free parameter.
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It is prudent, therefore to ask if and to what extent specification errors can impact

model-based price indexes. As a starting point, I use a Monte Carlo experiment to explore

the performance of several CES-related price indexes, including the Sato-Vartia price index,

Lloyd-Moulton index, the Backwards Lloyd-Moulton index, and RW’s Common-Goods Price

Index (CCV). The first three of these are exact conditional COLI in the CES case (Feenstra

and Reinsdorf, 2007; Martin, 2020), while RW’s CCV index estimates an unconditional COLI

under the assumption of cardinal utility and the normalization that the taste parameters

have a time-constant geometric mean. The experiment’s true model is in the CES family, but

has a neglected nesting structure reflecting heterogeneity in substitution elasticities across

groups of goods. The goal is to see how misspecification contributes to the performance of

price indexes and indicators of taste change. Of course, a model can be made more flexible;

indeed, nested CES preferences are quite common in empirical studies. Still, one might

be concerned that imposing some degree of parsimony will impact the measurement of the

COLI and lead to improper conclusions regarding taste change.

To preview the results, I find that this form of misspecification leads to economically

significant bias and root mean squared error (RMSE) in the Lloyd-Moulton variants and

the CCV index. Moreover, the Lloyd-Moulton variants, as well as the CCV and Sato-

Vartia indexes can differ significantly from each other regardless of whether there is taste

change or not. This raises the empirical possibility that index comparisons may severely

misdiagnose the extent of changing tastes. An empirical application to retail scanner data

on fresh produce also suggests that model specification can have a significant impact on the

Lloyd-Moulton indexes and the CCV index. As a consequence, researchers using model-

based indexes to draw conclusions about tastes should estimate a variety of models and

report a range of results.5 At the same time, the Monte Carlo experiment and empirical

results suggest that the Sato-Vartia index, as well as the geometric mean of the two Lloyd-

Moulton indexes (which is also a quadratic mean of order-r index), are relatively robust to

5In supporting this recommendation, this paper complements the findings of Nevo (2003).
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misspecification.

2 Cost-of-Living Index Theory with CES Preferences

A COLI is based on the expenditure function from classical consumer theory.6 We assume

a representative agent has preferences over N narrowly-defined commodities, indexed by i,

that can be represented by a CES utility function. The function is governed by an elasticity

of substitution parameger σ, as well as quantity augmenting or diminishing parameters,

ϕ1, . . . , ϕN , which I collect in the vector ϕ. Denote the set of goods available as I. As

in RW, I assume that σ is constant between different price situations being compared.7

Under the assumption of optimizing behavior, the expenditure function gives the minimum

expenditure required to achieve utility level ū when facing prices p = (p1, . . . , pN). These

assumptions are collected below:

Assumption 2.1 The representative agent’s expenditure function has the form:

C(p, ū;ϕ) = ū

[∑
i∈I

(
pi
ϕi

)1−σ
] 1

1−σ

(1)

Due to homotheticity of CES preferences, we focus attention on the unit expenditure function

c(p;ϕ) ≡ C(p, 1;ϕ) without further loss of generality. Using Shephard’s Lemma, the optimal

expenditure shares have the form.

si(p;ϕ) =
(pi/ϕi)

1−σ∑
j∈I (pj/ϕj)

1−σ =
(pi/ϕi)

1−σ

[c(p;ϕ)]1−σ
(2)

A bilateral COLI uses the expenditure function to compare two price situations.8 Sup-

6The concept dates back at least to Konüs (1924). For more information, see Bureau of Labor Statistics
(2018), National Research Council (2002), or ILO (2004).

7Despite the loss of generality, constant σ simplifies the derivation of price indexes and allows for identi-
fication using panel variation in prices and expenditure shares.

8Most commonly the comparison is intertemporal, but the general theory accommodates other possibilities
(e.g., regional comparisons).
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posing the comparison is intertemporal, constant tastes is easily seen to be an inelegant

assumption empirically. Adding time subscripts t, the log-share equation for item i with

respect to the actual price and vectors pt and ϕt is:

ln sit = (1− σ) ln pit + (σ − 1) ln [c(pt;ϕt)] + (σ − 1) lnϕit (3)

The equation has two unobservables—the log of the unit expenditure, which is constant

across items, and the log of ϕit. We define an item i narrowly enough so that potential time

series variation in lnϕit is attributable to taste change and not changes in product attributes

or quality. As RW point out, time-varying tastes are more realistic as they provide a source

of idiosyncratic error, yet exact price indexes for CES preferences are typically derived for

the case where ϕit is time-constant. However, the basic theory of the COLI, outlined in the

next subsection, makes no such assumption as it relates to a data generating process.

2.1 Conditional COLI

A conditional COLI is defined as the minimum expenditure required for an agent to be

indifferent between two price situations. I label the reference situation 0 and the comparison

situation 1.

Definition 2.1 A (conditional or ordinal) Cost-of-living Index (Fisher and Shell, 1972;

Heien and Dunn, 1985; Pollak, 1989)

Φ(p0,p1;ϕ) =
c(p1;ϕ)

c(p0;ϕ)
, (4)

for a given ϕ.

The ϕ parameters determine the specific indifference surface on which Φ is based. Two

immediate candidates for preferences to plug in are ϕ0 and ϕ1, corresponding to the reference

and comparison periods, respectively. In principle, however, other choices are possible.
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A number of price indexes are associated with CES preferences. Of particular interest is

the Sato-Vartia (SV) index, proposed independently by Sato (1976) and Vartia (1976). In

addition to prices, the following formulas depend on observed quantities qit and expenditure

shares sit = pitqit/
∑N

j=1 pjtqjt, t = 0, 1.

Definition 2.2 The Sato-Vartia price index

PSV (p0,p1, q0, q1) =
∏
i∈I

(
pi1
pi0

)wi
, (5)

where wi =
[

si1−si0
ln si1−ln si0

]
/
[∑

k∈I
sk1−sk0

ln sk1−ln sk0

]
.

When tastes are constant between periods 0 and 1, the SV index is exact for the CES

model, meaning PSV (p0,p1, q0, q1) = Φ(p0,p1;ϕ). This is notable because it does not

require knowledge or estimation of σ or ϕ. In the case of changing tastes, however, the SV

index still estimates a COLI that may be of interest. From Feenstra and Reinsdorf (2007),

there exists a vector ϕ̄, where each element ϕ̄i lies between normalized ϕi0 and ϕi1, such

that PSV (p0,p1, q0, q1) = Φ(p0,p1; ϕ̄). While I am unaware of any prior efforts to explicitly

study the SV index under misspecification, previous studies9 have found it performs similarly

to superlative indexes like the Tornqvist, which suggests some flexibility with respect to

functional form.10

Two other indexes of note are the Lloyd-Moulton index, proposed by Lloyd (1975) and

Moulton (1996), and what Martin (2020) calls the Backwards Lloyd-Moulton index (also

due to Lloyd, 1975), both of which depend on the parameter σ.

Definition 2.3 Lloyd-Moulton Index

PLM(p0,p1, q0, q1, σ) =

{∑
i∈I

si0

(
pi1
pi0

)1−σ
} 1

1−σ

(6)

9E.g., Redding and Weinstein (2018) and Martin (2020)
10In fact, a similar index, the Vartia I of Vartia (1976), has been shown to approximate superlative indexes

to the second order (Diewert, 1978).
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Definition 2.4 Backwards Lloyd-Moulton Index

PBLM(p0,p1, q0, q1, σ) =

{∑
i∈I

si1

(
pi0
pi1

)1−σ
} −1

1−σ

(7)

The Lloyd-Moulton variants are also exact for CES preferences. If preferences are con-

stant, then PLM(p0,p1, q0, q1, σ) = PBLM(p0,p1, q0, q1, σ) = Φ(p0,p1;ϕ). In the case of

changing preferences, Martin (2020) showed that PLM(p0,p1, q0, q1, σ) = Φ(p0,p1;ϕ0), and

PBLM(p0,p1, q0, q1, σ) = Φ(p0,p1;ϕ1). As a result, one may view the difference between the

two Lloyd-Moulton variants as an indicator of taste change. Another quantity of interest

may be the geometric mean of the LM and BLM indexes, denoted PLMM(p0,p1, q0, q1, σ)

which is exact for the geometric mean of Φ(p0,p1;ϕ0) and Φ(p0,p1;ϕ1). While not associ-

ated with a COLI, per se, PLMM(p0,p1, q0, q1, σ) is equivalent to quadratic mean of order

2(1−σ) price index (Martin, 2020). Since this index is superlative, it is likely to be somewhat

robust to misspecification.

However, exactness of PLM and PBLM depends on the CES assumption through Eq. 2.

As each only relies on one period’s expenditures, they rely on the model to predict the

demand response to relative price change. Consequently, their relative performance under

misspecification may not accurately reflect differential tastes.

2.2 Cardinal COLI

RW focus attention on a different concept which aligns more closely to what National Re-

search Council (2002) or ILO (2004) call an unconditional COLI, or what Muellbauer (1975)

calls a cardinal COLI.

Definition 2.5 The Cardinal COLI

ΦC(p0,p1;ϕ0,ϕ1) =
c(p1;ϕ1)

c(p0;ϕ0)
, (8)
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This ratio represents the change in expenditure required to maintain a constant utility level,

even though the associated consumption bundles do not lie on the same indifference surface.

It relies, therefore, on a stronger interpretation of utility than what is implied by the usual

axioms of preferences.

RW propose the following, which they call the CES Common Varieties Index (CCV).11

Definition 2.6 RW’s CES Common Varieties Index (CCV)

PCCV (p0,p1, q0, q1, σ) = exp

[
1

N

N∑
i=1

ln

(
pi1
pi0

)
+

1

σ − 1

1

N

N∑
i=1

ln

(
si1
si0

)]
, (9)

Under the normalization that tastes have a time-constant geometric mean, i.e.
∏

i∈I ϕi0 =∏
i∈I ϕi1, PCCV (p0,p1, q0, q1, σ) = ΦC(p0,p1;ϕ0,ϕ1)

12 The need for normalization arises

from the fact that s(p,ϕ) is homogeneous of degree zero in ϕ, while c(p,ϕ) is homoge-

neous of degree −1. In other words, a simple re-scaling of the taste vector would affect

ΦC(p0,p1;ϕ0,ϕ1), but have no effect on expenditure shares.

The CCV index can be derived by plugging in the following expression for lnϕit, which

follows from the expression for s(pt,ϕt) given by Eq. 2 and the normalization that the

geometric mean of the ϕit equals one.

lnϕit =

[
ln

(
sit
s̃t

)
− (1− σ) ln

(
pit
p̃t

)]
/(σ − 1) (10)

The right-hand-side of Eq. 10 is equivalent to the scaled error term of a regression of

ln (sit/s̃t) on ln (pit/p̃t). Thus, any misspecification picked up by this error will affect the

price index.

The cardinal COLI differs from a given ordinal COLI by a term that values the pure

11RW’s proposed CES Unified Price Index consists of the CCV plus a new goods adjustment in the style
of Feenstra (1994). I abstract from the issue of new and disappearing goods because the taste change issue
exists regardless. I calculate indexes with new goods adjustments as part of my empirical application.

12Redding and Weinstein (2018) motivates the normalization with the assumption that the natural logs
of the ϕit are drawn from a distribution with constant mean and variance. Under this assumption, PCCV

and ΦC have the same probability limit as N grows large.
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effect of tastes on expenditure. For instance, let ϕ̄ be the intermediate taste vector such

that PSV (p0,p1, q0, q1) = Φ(p0,p1; ϕ̄). Then we can write

ln ΦC(p0,p1;ϕ0,ϕ1)− ln Φ(p0,p1; ϕ̄) = ln

[
c(p0; ϕ̄)

c(p0;ϕ0)

c(p1;ϕ1)

c(p1; ϕ̄)

]
(11)

The term on the right hand side of Eq. 11 is the product of two expenditure ratios. One

uses reference period prices to value a taste change from ϕ0 to ϕ̄, while the other uses com-

parison period prices to value a taste change from ϕ̄ to ϕ1.
13 If tastes are constant, then

ΦC(p0,p1;ϕ0,ϕ1) = Φ(p0,p1; ϕ̄) = PCCV (p0,p1, q0, q1, σ) = PSV (p0,p1, q0, q1). There-

fore, the price index analog to the left hand side of Eq. 11, lnPCCV (p0,p1, q0, q1, σ) −

lnPSV (p0,p1, q0, q1), is another indicator of taste change.14

Tables 1 and 2 summarize the CES-based COLI and price indexes, as well as the indicators

of taste change that will be the basis of the analysis in later sections. For readability of tables

and figures, I abbreviate ΦC for ΦC(p0,p1;ϕ0,ϕ1), Φ̄ for Φ(p0,p1; ϕ̄), Φ0 for Φ(p0,p1;ϕ0),

Φ1 for Φ(p0,p1;ϕ1), and drop arguments from PCCV , PSV , PLM , PBLM , and PLMM .

3 Specification error from a missing nest

This section describes the potential missspecification—a neglected nesting structure—that

this paper investigates. The nested CES model is a common extension of the model intro-

duced in the last section. For the purposes of this exercise, the nested preferences represent

the true model that is either unknown or infeasible to estimate, forcing the analyst to specify

Eq. 1 as an approximation. Otherwise, it would be straightforward to estimate versions of

PSV , PLM , PBLM , and PCCV for the nested model. In addition to rendering Eq.’s 1 and

2 incorrect, this introduces an additional source of time-varying error into the differenced

13The negative of the term on the right hand side of Eq. 11 is the true analog to what RW term “consumer
valuation bias,” which they estimate as lnPSV (p0,p1, q0, q1)− lnPCCV (p0,p1, q0, q1, σ).

14The difference between ΦC and any ordinal index is an indicator of the pure effect of tastes. I choose to
study Eq. 11 because the difference between the CCV and SV indexes is a major focus of RW.
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log-share equation.

Suppose the set of goods I is partitioned in to G exhaustive and mutually exclusive

groups Ig, g = 1, . . . , G. The elasticity of substitution between goods now depends on their

group membership, which has the effect of allowing some heterogeneity in the closeness of

substitutes and relaxing the independence of irrelevant alternatives (IIA) property.

The unit-utility expenditure function is given by:

c(pt, ζt, δt) =

[
G∑
g=1

(
cg(pgt, δgt)

ζgt

)1−σa
] 1

1−σa

, (12)

where g indexes group, ζgt, g = 1, . . . , G, is a group-level taste shifter, and σa is the elasticity

of substitution across groups. The item-level prices enter the expenditure function through

a group-level price index given by:

cg(pgt, δgt) =

∑
i∈Ig

(
pit
δit

)1−σg
 1

1−σg

, (13)

where δit, i = 1, . . . , Ng, is the item-level taste shifter, and σg is the group-specific elasticity

of substitution between items in the same group. If σ1 = σ2 = · · · = σG = σa, then Eq. 12

collapses to Eq. 1 with ϕit = ζgtδit.

Consider what happens when the group structure is not taken into account. In this case,

the period t share of total (not group) expenditure on good i in group g is, in natural logs:

ln sit = (1− σg) ln pit + (σg − σa) ln cg(pgt, δgt)

+ (σa − 1) ln [c(pt, ζt, δt)] + (σg − 1) ln δit + (σa − 1) ln ζgt (14)

Eq. 14 implies that in addition to error originating from the taste parameters ζgt and δit,

a simple regression of ln (sit/s̃t) on ln (pit/p̃t) will include additional sources of time-varying

error related to neglected heterogeneity in the substitution elasticities. For this example,
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the error is straightforward to derive, depending in part on interactions between ln (pit/p̃t)

and group indicators. With other models, the form would likely be more complicated. As a

consequence, differences such as CCV − SV , or BLM −LM may not be indicative of taste

change.

4 Monte Carlo Experiment

I evaluate the CES-based price indexes through Monte Carlo experiment, whereby I approx-

imate their behavior by calculating them repeatedly over different, independent draws of the

data. The advantages of this method are that the true COLI are observed (since the under-

lying preference structure is under my control) and that I can repeat the experiment many

times. The disadvantage is that the results ultimately depend on the experiment design, and

so they are difficult to generalize. Nevertheless, I examine a wide range of conditions and

arrive at some interesting conclusions.

4.1 Design

Each replication, I draw time series of prices and taste parameters. For simplicity, I abstract

from simultaneity issues and generate the prices exogenously.15 These feed into the expen-

diture shares and unit cost equations implied by the nested CES model described in the

previous section. Then, I calculate the price indexes as if the group structure were unknown.

For each replication, I compare these index values against the different true cost of living

change they target.

The type of data I have in mind are disaggregated prices and quantities of the sort

found household or retail scanner datasets.16 For simplicity, I consider a panel of products

i = 1, . . . , N that exist in two time periods, t = 0, 1. Log-prices and taste shifters are

15The theory in Section 2 does not take a stand on simultaneity per se, but simultaneity would complicate
estimation of σ.

16I treat the set of available goods as fully observed. This abstracts from issues of item sampling in the
CPI, but might reasonable for large scanner datasets.
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generated to be independent in the cross-section. Log prices follow a random walk with

drift, with the mean log price change set to 0.02 and the standard deviation set to 0.1.17

ln pi0 = 0.02 + ri0 (15)

ln pi1 = 0.02 + ln pi0 + ri1 (16)

rit ∼ i.i.d. Normal(0, 0.01) (17)

The N goods are divided in equal proportion into two groups, g = 1, 2. I set the group-level

taste shifters both equal to one, and generate the individual taste shifters as:18

ln δit = ln δi + ln θit, (18)

ln δi ∼ Normal(0, 0.25), (19)

ln θit ∼ i.i.d. Normal(0, χ2). (20)

The utility-maximizing quantities are then generated as:

qit =
δ
σg−1
it p

−σg
it Mgt

cg(pgt, δgt)1−σg
, (21)

where

Mgt = Mtcg(pgt, δgt)
1−σa/c(pt, ζt, δt)

1−σa , (22)

andMt is income, which is constant and set to 100 without loss of generality (since preferences

are homothetic).

The target measures for the experiment are the true conditional and unconditional COLI

defined in Section 2, but using the nested CES model (i.e., using Eq. 12 with the appropriate

17The standard deviation of price change is reasonable for a product group from a dataset like Nielsen’s
Scantrack and generates enough variance for substantial substitution effects.

18The equation for ln δit satisfies the assumption for lnφit from RW 2018 (a population version of the
constant geometric mean normalization), but there will still be finite sample variation between the geometric
means of the ϕ in each period.
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taste parameters plugged in).19 I calculate the price indexes acting as if the group structure

is unknown, however, by using shares of total expenditure. Estimation of a substitution

elasticity is required for PCCV , PLM , and PBLM . I accomplish this by calculating one minus

the OLS slope coefficient of a simple regression of ∆ ln sit on ∆ ln pit and a constant.20 This

would be appropriate if the homogeneous model were correct and prices were exogenous,

though a real application would surely account for simultaneity. Of course, the regression

with homogeneous σ is misspecified when the nested model is true.

Because of the underlying randomness in prices and tastes, the true COLIs, in addi-

tion to the two candidate indexes, will change with different draws of the data, as will the

differences between the indexes. By design, no index is exact for their target COLI un-

der misspecification, and will generally differ from each other. I hope to approximate the

distribution of these random variables with repeated, independent draws of {p0,p1, δ0, δ1}

(Wooldridge, 2010). I conduct experiments for two main cases. First, as a benchmark, I

set σ1 = σ2 = σa = 4. This provides a baseline for evaluating the price indexes when the

implied model is correctly specified. Second, I consider varying degrees of misspecification

by setting σa = 3, σ1 = 4, and varying σ2 over the interval [4, 10]. The empirical applica-

tion in Section 5 suggests these are reasonable parameter values. For each case, I vary the

degree of taste change, with χ ∈ {0, 0.25, 0.5}. The χ = 0 case represents no taste change,

χ = 0.25 represents low to moderate taste change (the idiosyncratic variance is less than the

cross-section variation), and the χ = 0.5 case represents a high degree of taste change (the

idiosyncratic variance is equal to the cross-section variance).21

My results are for a cross-section of size 2, 000, which is on the order of a moderately-sized

19The intermediate level of tastes, ϕ̄ for which the SV index is exact were calculated using the appendix
to Feenstra and Reinsdorf (2007).

20Note: in this two period model, a time dummy is collinear with a constant in the differenced equation.
21RW report percentiles of the distributions of estimates of var [(σ − 1) logϕit] and var [(σ − 1) ∆ logϕit]

for 104 product groups from Nielsen’s household scanner data. My taste parameter choices produce estimates
of these demand variances that fall in RW’s reported range when the model is correctly specified model.
When χ = 0.25, this continues to hold for all but the σ2 = 10 case. When χ = 0.50, higher values of
σ2 produce estimates of var [(σ − 1) ∆ logϕit] that exceed those reported by RW. Note: None of the price
indexes considered place restrictions on either of these variances.
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product group in scanner datasets. All statistics are based on 5,000 replications using Stata.

4.2 Results

As discussed in Section 2, when tastes vary, different true COLI can be defined for the CES

model (summarized in Table 1), and certain differences between them reflect the impact of

changing tastes (Table 2). All simulation tables are natural logs or differences in natural logs,

so units can be interpreted as approximate percentage change or percentage point differences

when multiplied by 100. Appendix Tables A1, A2, and A3 give the means and standard

deviations of the true COLI themselves. Table 3 presents means and standard distributions

for these true taste change indicators for the simulations described in the previous subsection.

Note that when taste parameters are constant over time, both taste change indicators are

identically zero in each replication, as all four true COLI are identical. The ordinal taste

change effect, ln Φ1 − ln Φ0 has a mean close to zero regardless of the model or the degree

of time series variation in tastes, but the standard deviation indicates significant dispersion

that increases both as tastes vary more and as substitution is more heterogeneous between

groups. The cardinal taste change effect, ln ΦC−ln Φ̄ has a mean slightly below zero, between

-0.07 and -0.24 percentage points, and this decreases as χ or σ2 increase. This indicator is

highly dispersed, with standard deviations between 2.8 and 11.2 percentage points, roughly

three to four times as large as their ordinal counterpart’s.22

I define an estimation error as the natural log of the price index minus the natural log of

the appropriate true COLI (see Table 1). I then calculate the bias and root mean squared

error (RMSE) for each price index for each set of model parameters, which are presented in

Appendix Tables A4-A6. Figures 1 and 2 summarize these results. The bars show the bias

or RMSE of an index for a particular level of χ as the substitution heterogeneity increases,

with the first bar from the left representing the simple CES model and subsequent bars

representing the nested model with varying σ2.

22Appendix Tables A1-A3 suggest this variability might be related dispersion in ln ΦC , though I did not
calculate covariances between true indexes for a complete decomposition.
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As would be expected, bias for all of the price indexes is zero or virtually zero in the

simple CES case (regardless of the degree of taste change), for which the underlying models

are correctly specified. Bias is also very small for the least heterogeneous nested model,

where σ2 = 4. As σ2 in the true nested model increases, the simple CES model is a poorer

approximation. Bias in the BLM, LM, and CCV indexes increases substantially, and in many

cases exceeds the mean and standard deviation of the associated true COLI. Bias appears to

be flat or slightly decreasing as χ increases, with the exception of the SV index, for which bias

is low, but slightly increasing. BLM and LM are clearly biased in opposite directions, with

BLM tending to miss high and LM tending to miss low. CCV errors were more evenly split

between positive and negative, but as the figure indicates, tended to be negative. Finally,

both the LMM indexes and SV indexes performed relatively well under misspecification. For

the LMM index, it suggests that the biases in BLM and LM offset when taking the geometric

mean, and the result conforms with what is known about Quadratic Mean of Order r price

indexes. For the SV index, the bias increases with σ2, but remains relatively low. This

suggests, perhaps, that the SV index is approximately consistent in aggregation in the sense

described by Diewert (1978).

The patterns for the RMSE (Figure 2) are similar to the bias, though in this case,

greater degrees of taste change lead to larger errors. It is also notable that errors in the

CCV index are substantially larger than those of the other indexes, though the comparison

is less dramatic if we normalize by the standard deviations of the associated true COLI. The

CCV index also has significant errors when the model is correctly specified, which is possibly

due to the normalization of the true taste parameters holding in expectation (as per Eq. 2

of RW) rather than in finite samples.

As a consequence, the estimated index differences, which under correct specification

are indicators of taste change, lead to misleading inferences when the model is incorrectly

specified. Table 4 presents the biases and RMSEs of the estimated indicators, whiles Figure

3 and 4 illustrate their performance graphically. Specification errors push apart the the price
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index pairs even if the underlying COLI are close, meaning BLM will tend to exceed LM,

and SV will tend to exceed CCV, to an excess degree reflecting the neglected substitution

heterogeneity. This can occur even if tastes are constant. On the other hand, the results

for the SV and LMM indexes are encouraging for the estimation of conditional COLI in

models with taste change and potential misspecification. Even though it appears difficult to

separately identify the contributions of changing tastes, COLI reflecting different notions of

“average” tastes are still estimable.

5 Application: Fresh Produce

The previous sections suggest model choice may have a significant impact on price index

results related to taste change. In this section, I illustrate the issue by estimating a simple and

nested CES model for fresh produce using retail scanner data (sometimes called Scantrack)

from Nielsen.23 The data cover the fourth quarter of 2005 through the second quarter of 2010,

and include total sales and quantities for about 4500 unique universal product codes (UPC) or

equivalent. Because products are defined by UPC, characteristics or quality are (in theory),

constant (Broda and Weinstein, 2010). The dataset includes mainly large retail grocery and

drug store chains, but still covers roughly 85% of total consumer expenditures on fresh fruits

and vegetables as estimated by the BLS (Bureau of Labor Statistics, 2013). Within this

product group, Nielsen organizes items into 22 product modules. For example, salad mix,

potatoes, and apples are all separate modules. The number of items in each module ranges

from 3 to 958, with a median of 128. Though RW use Nielsen’s household scanner data,

they are classified similarly. Their methodology estimates a single elasticity of substitution

for the entire fresh produce product group. A priori, we might think substitution behavior

within and across more finely defined strata is heterogeneous. For instance, a consumer

might be more willing to substitute within varieties of onions than within varieties of apples,

23CES preferences have the property that optimization over a subset of goods does not depend on goods
outside the subset (Deaton and Muellbauer, 1980).
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and might be even less willing to substitute apples for onions. If we view the true model as

CES nested by module, how much might our conclusions change if we ignore the nest? To

get at this, I estimate both versions of the model and calculate the CES-based price indexes

for each.

Prior papers (including prior work by RW, though not calculating a price index with taste

change) has recognized potential heterogeneity and have nested by module, producing firm

or even brand.24 Often finer product classifications are modeled at the expense of having to

impose numerous parameter restrictions due to small sample sizes.25 In the Scantrack data,

estimating elasticities within and across modules for every product group would be similarly

challenging, but Fresh Produce is one of the better candidates. Moreover, since products are

perishable, I am less concerned about threats to the model from neglected dynamics (i.e., as

explored in Osborne (2018)).

Assembly and data cleaning follow Broda and Weinstein (2010), which is similar in this re-

gard to RW. As such, I use national totals by UPC, aggregating across markets outlets.26 As

in Broda and Weinstein (2010), identification and estimation of the substitution elasticities

follows the “double-differencing” method of Feenstra (1994), using panel variation in prices

and expenditure shares as opposed to instrumental variables, which are often unavailable in

scanner datasets.

Tables 5 through 8 present the results. To begin, the estimate of σ based on the simple

model is 2.94, which is reasonable given the aforementioned papers using similar data. The

CCV index based on this estimate of σ is given in the second column of Table 7. The base

period is the same quarter in the previous year, and the values are presented as percent

changes. The simple average of CCV index over 2006Q4-2010Q2 is -2.4%. In contrast,

24See Jaravel (2016), Hottman, Redding, and Weinstein (2016), and Broda and Weinstein (2010).
25Broda and Weinstein (2010) restrict elasticities within and across brand module to be the same within the

entire product group, adding only one more parameter. Hottman, Redding, and Weinstein (2016) similarly
restrict the elasticities within and across firm. Jaravel (2016) estimates a separate elasticity within each
module, but does not estimate elasticities of substitution across modules.

26Handbury (2013) and Lecznar and Smith (2018) are two examples where heterogeneity by consumer
group, outlet, or geography play a significant role in COLI estimation.
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the SV index estimates an average 1.1% yearly rise in the cost-of-living, a difference of 3.2

percentage points. The differences in any particular quarter ranges from 0.1 to 8.9 percentage

points. This suggests an interpretation that the pure effect of changing tastes is to lower

the estimated cost-of-living significantly, so much in fact that costs for these products have

actually fallen. The differences between the CCV and SV values are of a similar magnitude

for what RW report for a more broad range of food, beverage, and general merchandise

products. Meanwhile, columns 2-4 of Table 8 compare the two Lloyd-Moulton variants

based on σ = 2.94, which correspond to conditional COLI where tastes are fixed at different

points–for BLM, the taste vector corresponds to the current quarter, whereas for LM, it

corresponds to four quarters prior. On average, using current tastes to evaluate price change

leads to 2.1% higher inflation than using reference tastes.

The results change substantially when I estimate the nested model. First, Panel B of

Table 5, as well as Table 6 indicate considerable heterogeneity in the substitution elasticity

estimates across modules.27 The within-module point estimates ranged from 3.37 to 55.64,

with a share-weighted median of 5.16. The elasticity of substitution of products across

modules was estimated as 4.37. Because they are based on smaller samples, some of the

module-specific estimates are imprecisely estimated, but many are still significantly different

from the simple model’s estimate. In terms of within-module versus across-module substi-

tution, the estimates tend to fit the expected pattern, with the within-elasticity exceeding

the across-elasticity for 17 product groups.

The resulting indexes are compared in columns 5-7 of Tables 7 and 8. As expected the

SV index is little changed by adding the nest, still averaging 1.1% year-over-year inflation.

The nested CCV index, on the other hand, gives an average inflation figure of 0.2%, about

2.6 percentage points higher than the simple version. The quarterly differences between

the nested SV and nested CCV range from -3.1 to 4.6 percentage points, with the average

difference at 0.9 percentage points. Not only does this imply a much lower “consumer

27There are only 21 estimates listed, as the “Cranberries” module had insufficient observations.
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valuation bias” on average, but unlike the simple CCV, where accounting for taste change

always pushes the COLI lower, the nested CCV implies taste change actually pushes the

COLI higher in four of the quarters. Figure 5 illustrates this graphically. Both models could

be interpreted as implying a significant role for tastes, but the magnitudes, as well as the

bottom line direction of the cardinal COLI are quite different.28

While the nested model implies greater similarity between SV and CCV, these data imply

a greater difference between BLM and LM than suggested by the simple model, as illustrated

in Figure 6. The nested LM index is lower and the nested BLM index is higher than their

respective non-nested counterparts. The average gap between BLM and LM jumps to 8.0

percentage points with the nested model, with individual quarterly differences ranging from

5.7 to 11.9 percentage points. At face value, these results suggest the choice of taste vector

has a larger impact on the conditional COLI when the model is nested. If we view the nested

CES model as closer to the truth, then these results run contrary to what the Monte Carlo

experiment’s finding that misspecification was associated with a wider BLM-LM gap.

Of course, the nested CES model could also be misspecified, sampling error in the estima-

tion of the elasticities could play a role, so those results should be interpreted with caution.

There are clearly practical trade-offs an analysts faces if implementing a model-based COLI

estimate like CCV, LM or BLM. The imprecision of the module-specific elasticity estimates

is just one example. Model selection would ideally be justified by substantive robustness

checks. This exercise raises an encouraging point, however. Figures 5 and 6 suggest that

both the SV and LMM indexes are much less sensitive to the nesting structure chosen.

Again, the SV is exact for a COLI for an average level of tastes, and the LMM index exact

for the average of two COLI evaluated at different tastes. This suggests, therefore, that

while model specification plays a large role in quantifying the effects of taste change, it may

be less consequential for estimating a conditional COLI which reflects average tastes.

28These results hold qualitatively if I add a Feenstra-style adjustment for entering and exiting goods. The
results are available from the author by request.

19



6 Conclusion

This paper shows that the assumed preference structure needs to be taken seriously if many

CES-based COLI estimates are of interest. Even in a case where true preferences are in the

CES family, neglected heterogeneity in substitution elasticities across groups of products can

lead to errors in the measurement of inflation. As a result, it is possible for empirical studies

to misdiagnose or overestimate the impact of changing tastes. One can always employ a

richer nested CES model, or even a more flexible cost function like the translog, but model

estimation will always require the analyst to draw the line somewhere between generality and

tractability. On the other hand, while this paper suggests that specification errors confound

estimates of taste change effects, indexes like the Sato-Vartia, which estimate COLI that

reflect average tastes, appear relatively robust to model misspecification.

This paper explores a missing nest as a potential misspecification because it is not only a

simple extension of RW’s framework, but also is convenient to simulate. Of course, there are

many other such forms of heterogeneity that have been explored in the price index literature

in other contexts—varying tastes across consumers, nonhomotheticity, outlet substitution,

and geographic aggregation, to name a few—and these should be examined carefully as well.

Nailing down these issues, in addition to critically examining the conceptual target, will be

a crucial in the development of model-based COLI measures for use in national statistical

programs.
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Tables

Table 1: CES Price Index Summary

True COLI Price Index
Φ0 PLM
Φ1 PBLM
Φ̄ PSV

ΦC PCCV

Table 2: CES Indicators of Taste Change

Truth Estimator
ln Φ1 − ln Φ0 lnPBLM − lnPLM
ln ΦC − ln Φ̄ lnPCCV − lnPSV

Table 3: Empirical Distributions of True Taste Change Indicators

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

χ = 0.25
ln ΦC − ln Φ̄ Mean -0.0007 -0.0007 -0.0013 -0.0015 -0.0015

SD 0.0282 0.0278 0.0398 0.0445 0.0468
ln Φ1 − ln Φ0 Mean 0.0000 0.0000 0.0001 0.0001 0.0002

SD 0.0080 0.0078 0.0125 0.0147 0.0159
χ = 0.50

ln ΦC − ln Φ̄ Mean -0.0016 -0.0016 -0.0022 -0.0024 -0.0024
SD 0.0762 0.0742 0.1012 0.1090 0.1122

ln Φ1 − ln Φ0 Mean 0.0000 0.0000 0.0001 0.0002 0.0003
SD 0.0203 0.0195 0.0282 0.0311 0.0324
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Table 4: Empirical Performance of Taste Change Indicators

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

χ = 0
lnPCCV − lnPSV Bias 0.0000 0.0000 -0.0021 -0.0049 -0.0069

RMSE 0.0000 0.0001 0.0078 0.0188 0.0285
lnPBLM − lnPLM Bias 0.0000 0.0000 0.0063 0.0155 0.0251

RMSE 0.0000 0.0001 0.0064 0.0158 0.0255
χ = 0.25

lnPCCV − lnPSV Bias 0.0001 0.0001 -0.0025 -0.0058 -0.0081
RMSE 0.0083 0.0083 0.0299 0.0629 0.0896

lnPBLM − lnPLM Bias 0.0000 0.0000 0.0062 0.0154 0.0249
RMSE 0.0024 0.0024 0.0072 0.0163 0.0260

χ = 0.50
lnPCCV − lnPSV Bias 0.0000 0.0001 -0.0017 -0.0037 -0.0050

RMSE 0.0204 0.0202 0.0618 0.1111 0.1476
lnPBLM − lnPLM Bias 0.0000 0.0001 0.0060 0.0147 0.0238

RMSE 0.0047 0.0047 0.0091 0.0175 0.0269

Table 5: Substitution Elasticity Estimates for Fresh Produce

Panel A: No Nesting
Estimate Value 95% CI

σ̂ 2.94 [2.81, 3.06]

Panel B: Nested by Module
Estimate Value 95% CI

σ̂a 4.37 [3.14, 5.60]

Distribution of σ̂g
Mean 7.78
P25 3.73
Med. 5.16
P75 11.08

Note: Based on data provided by the Nielsen Company.
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Table 6: Elasticity Estimates by Module

Module Exp. share σ̂g 95% CI
Salad Mix 0.18 3.73 [2.62, 4.84]
Other Fruit 0.13 6.87 [4.96, 8.79]
Potatoes 0.12 4.04 [3.32, 4.76]
Strawberries 0.10 18.59 [8.85, 28.34]
Lettuce 0.07 17.42 [10.94, 23.90]
Carrots 0.07 11.08 [6.50, 15.66]
Other Vegetables 0.06 3.51 NA
Tomatoes 0.05 4.17 [3.62, 4.71]
Mushrooms 0.05 3.37 [2.30, 4.45]
Apples 0.04 8.31 [6.70, 9.94]
Onions 0.03 8.55 [4.59, 12.51]
Celery 0.03 5.16 [2.86, 7.46]
Oranges 0.02 6.19 [5.90, 6.48]
Spinach 0.02 3.71 [1.99, 5.45]
Herbs 0.01 8.86 [−1.41, 19.13]
Cauliflower 0.01 7.72 [2.02, 13.42]
Grapefruit 0.00 12.71 [10.46, 14.96]
Garlic 0.00 4.05 [1.81, 6.30]
Sprouts 0.00 18.01 [2.38, 33.64]
Radishes 0.00 5.94 [1.25, 10.63]
Kiwi 0.00 55.64 [−0.44, 111.71]
Note: Based on data provided by the Nielsen Company.
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Table 7: SV and CCV Index Comparison (base period = same quarter a year ago)

No Nest Nested by Module
Quarter SV CCV Difference SV CCV Difference
2006Q4 3.6% 3.6% 0.1% 3.6% 3.4% 0.2%
2007Q1 4.9% 3.0% 2.0% 5.0% 4.1% 0.9%
2007Q2 4.4% 1.3% 3.1% 4.4% 3.0% 1.4%
2007Q3 1.3% -0.9% 2.2% 1.3% 0.5% 0.8%
2007Q4 1.3% -4.0% 5.2% 1.2% -1.2% 2.4%
2008Q1 0.0% -2.1% 2.1% 0.0% -0.7% 0.6%
2008Q2 0.6% 0.3% 0.3% 0.6% 1.0% -0.4%
2008Q3 8.2% 1.9% 6.3% 8.1% 3.8% 4.3%
2008Q4 7.1% -1.8% 8.9% 7.1% 2.5% 4.6%
2009Q1 1.6% -4.9% 6.4% 1.5% -1.6% 3.1%
2009Q2 -2.1% -7.3% 5.3% -2.0% -3.7% 1.7%
2009Q3 -7.9% -9.7% 1.8% -7.9% -4.8% -3.1%
2009Q4 -6.2% -7.3% 1.1% -6.2% -3.7% -2.5%
2010Q1 -0.8% -6.0% 5.2% -0.7% -0.7% 0.0%
2010Q2 1.0% -2.0% 2.9% 1.0% 1.7% -0.7%
Average 1.1% -2.4% 3.5% 1.1% 0.2% 0.9%
Note: Based on data provided by the Nielsen Company.

Table 8: LM Index Comparison (base period = same quarter a year ago)

No Nest Nested by Module
Quarter BLM LM Difference BLM LM Difference
2006Q4 4.4% 3.0% 1.4% 8.5% 2.2% 6.4%
2007Q1 6.5% 3.9% 2.6% 13.6% 1.8% 11.9%
2007Q2 6.0% 3.3% 2.6% 9.5% -0.2% 9.7%
2007Q3 2.1% 0.7% 1.4% 5.7% -1.6% 7.4%
2007Q4 1.9% 0.6% 1.4% 4.3% -3.6% 7.9%
2008Q1 0.6% -0.8% 1.5% 3.1% -2.9% 6.0%
2008Q2 1.3% -0.3% 1.6% 4.4% -3.3% 7.8%
2008Q3 9.6% 6.8% 2.8% 13.2% 4.2% 9.0%
2008Q4 8.7% 5.5% 3.2% 11.0% 3.2% 7.8%
2009Q1 2.7% 0.7% 1.9% 5.3% -3.0% 8.3%
2009Q2 -1.5% -2.7% 1.2% 0.3% -5.5% 5.8%
2009Q3 -7.1% -8.7% 1.6% -5.5% -11.2% 5.7%
2009Q4 -4.9% -7.8% 2.9% -1.5% -11.0% 9.5%
2010Q1 0.5% -2.2% 2.7% 3.2% -5.1% 8.3%
2010Q2 2.3% -0.1% 2.4% 5.5% -2.6% 8.2%
Average 2.2% 0.1% 2.1% 5.4% -2.6% 8.0%
Note: Based on data provided by the Nielsen Company.
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Figures

Figure 1: Empirical Bias
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Figure 2: Empirical Root Mean Squared Errors
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Figure 3: Empirical Bias for Taste Change Indicators
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Figure 4: Empirical RMSE for Taste Change Indicators
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Figure 5: Index Comparison (base = same quarter a year ago)
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Figure 6: Lloyd-Moulton Index Comparison (base = same quarter a year ago)
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A Additional Simulation Tables

Table A1: Empirical Distribution of true COLI, χ = 0 (in natural logs)

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

ΦC Mean 0.0051 0.0051 0.0033 0.0031 0.0031
SD 0.0071 0.0071 0.0102 0.0118 0.0126

Φ̄ Mean 0.0051 0.0051 0.0033 0.0031 0.0031
SD 0.0071 0.0071 0.0102 0.0118 0.0126

Φ0 Mean 0.0051 0.0051 0.0033 0.0031 0.0031
SD 0.0071 0.0071 0.0102 0.0118 0.0126

Φ1 Mean 0.0051 0.0051 0.0033 0.0031 0.0031
SD 0.0071 0.0071 0.0102 0.0118 0.0126√

Φ0Φ1 Mean 0.0051 0.0051 0.0033 0.0031 0.0031
SD 0.0071 0.0071 0.0102 0.0118 0.0126

Table A2: Empirical Distribution of true COLI, χ = 0.25 (in natural logs)

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

ΦC Mean 0.0045 0.0045 0.0021 0.0017 0.0015
SD 0.0294 0.0290 0.0415 0.0463 0.0486

Φ̄ Mean 0.0052 0.0052 0.0034 0.0031 0.0031
SD 0.0080 0.0079 0.0114 0.0129 0.0137

Φ0 Mean 0.0052 0.0052 0.0034 0.0031 0.0031
SD 0.0088 0.0087 0.0128 0.0146 0.0155

Φ1 Mean 0.0052 0.0052 0.0035 0.0033 0.0032
SD 0.0091 0.0089 0.0132 0.0149 0.0157√

Φ0Φ1 Mean 0.0052 0.0052 0.0034 0.0032 0.0031
SD 0.0080 0.0079 0.0114 0.0128 0.0135
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Table A3: Empirical Distribution of true COLI, χ = 0.50 (in natural logs)

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

ΦC Mean 0.0036 0.0038 0.0015 0.0011 0.0010
SD 0.0771 0.0751 0.1023 0.1101 0.1132

Φ̄ Mean 0.0053 0.0054 0.0037 0.0035 0.0035
SD 0.0110 0.0107 0.0154 0.0171 0.0180

Φ0 Mean 0.0054 0.0055 0.0039 0.0037 0.0037
SD 0.0155 0.0150 0.0214 0.0235 0.0245

Φ1 Mean 0.0054 0.0055 0.0040 0.0039 0.0040
SD 0.0160 0.0154 0.0218 0.0238 0.0247√

Φ0Φ1 Mean 0.0054 0.0055 0.0040 0.0038 0.0038
SD 0.0121 0.0117 0.0164 0.0179 0.0185

Table A4: Empirical Performance of Price Indexes, χ = 0

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

CCV Bias 0.0000 0.0000 -0.0021 -0.0049 -0.0068
RMSE 0.0000 0.0001 0.0078 0.0187 0.0282

SV Bias 0.0000 0.0000 0.0000 0.0000 0.0001
RMSE 0.0000 0.0000 0.0001 0.0002 0.0003

LM Bias 0.0000 0.0000 -0.0031 -0.0077 -0.0124
RMSE 0.0000 0.0000 0.0032 0.0078 0.0126

BLM Bias 0.0000 0.0000 0.0032 0.0079 0.0127
RMSE 0.0000 0.0000 0.0032 0.0080 0.0130

LMM Bias 0.0000 0.0000 0.0000 0.0001 0.0002
RMSE 0.0000 0.0000 0.0002 0.0004 0.0008

Note: Statistics are for the natural logs of the price indexes.

Table A5: Empirical Performance of Price Indexes, χ = 0.25

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

CCV Bias 0.0001 0.0001 -0.0023 -0.0055 -0.0077
RMSE 0.0083 0.0083 0.0296 0.0624 0.0889

SV Bias 0.0000 0.0000 0.0002 0.0004 0.0005
RMSE 0.0000 0.0001 0.0008 0.0018 0.0026

LM Bias 0.0000 0.0000 -0.0031 -0.0076 -0.0123
RMSE 0.0012 0.0012 0.0036 0.0082 0.0130

BLM Bias 0.0000 0.0000 0.0031 0.0078 0.0126
RMSE 0.0012 0.0012 0.0037 0.0084 0.0133

LMM Bias 0.0000 0.0000 0.0000 0.0001 0.0002
RMSE 0.0001 0.0001 0.0005 0.0011 0.0018

Note: Statistics are for the natural logs of the price indexes.
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Table A6: Empirical Performance of Price Indexes, χ = 0.50

CES Nested CES: σa = 3, σ1 = 4
σ = 4 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10

CCV Bias 0.0000 0.0001 -0.0013 -0.0030 -0.0042
RMSE 0.0204 0.0201 0.0613 0.1102 0.1466

SV Bias 0.0000 0.0000 0.0003 0.0006 0.0008
RMSE 0.0000 0.0005 0.0030 0.0054 0.0071

LM Bias 0.0000 -0.0001 -0.0030 -0.0073 -0.0118
RMSE 0.0023 0.0024 0.0046 0.0089 0.0137

BLM Bias 0.0000 0.0001 0.0030 0.0074 0.0120
RMSE 0.0024 0.0024 0.0047 0.0091 0.0139

LMM Bias 0.0000 0.0000 0.0000 0.0001 0.0001
RMSE 0.0003 0.0003 0.0011 0.0021 0.0031

Note: Statistics are for the natural logs of the price indexes.
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