
Imputation of Missing Values by Low Rank Matrix Approximation December 2021 

MoonJung Cho∗

Key Words: Auxiliary variables, Correlation, Rank estimation, Singular value decomposition.

1. Introduction

The analysis of sample survey data often requires adjustments for missing values in variables of
interest. Standard adjustments based on item imputation or propensity weighting factors rely on
the availability of auxiliary variables for both responding and non-responding units. However,
the application of these can be challenging when the auxiliary variables are themselves subject
to incomplete-data issues. This paper will demonstrate how low rank matrix approximation can
be applied to impute missing auxiliary variables. The performance depends on the rank of the
auxiliary variable matrix and the extent to missingness rates. We will evaluate the method in terms
of bias and mean squared error.

2. Low Rank Matrix Approximation

In survey data, auxiliary variables are sometimes called predictor variables or explanatory vari-
ables. We consider auxiliary variablesX in a matrix form and are interested in the imputation of
auxiliary variables. Hence, observations are in rows, and variables are in columns. We noted that
predictor variables are typically chosen because they are correlated to a dependent variable. The
higher correlation ensures the better prediction or explanation that auxiliary variables can provide
about the dependent variable. This results in high correlations among the auxiliary variables them-
selves. For example, when a dependent variable is a price of specific commodity, the 1-month and
3-month previous prices can be correlated against each other. This may lead X (auxiliary variable
matrix) to be low rank.

The rank of matrixX is the number of independent columns (or rows). A matrix X is full rank
if

rank ofX = min (n, p)

wheren is the number of rows andp is the number of columns.X is low or deficient rank if it is not
a full rank. In practice, statistical software such as MatLab estimate a rank of matrix by counting
non-zero singular values after considerable numerical adjustment. We consider cases where the
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rank ofX is significantly low and show a way to impute missing observations ofX. Let auxiliary
variable matrixX be ann× p matrix with missing entries at(i, j) ∈ Ω:

Ω = {(i, j) : X(i, j) is missing}.

Our goal is to find a low rank matrix which has the smallest sum of singular values (i.e., nuclear
norm) while its non-missing entries are the same as non-missing entries ofX.

3. Rank Estimation

Let a matrixX be any realn × p matrix with no missing entries. We can then decomposeX
uniquely as a product of orthogonal matricesU andV , and a diagonal matrixS:

X = USV ′

whereU ∈ O(n), V ∈ O(p) andS isn×p diagonal matrix. The diagonal elements ofS are called
the singular values and they satisfyσ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

X can be a full rank matrix even when variables are dependent among eachother. In such cases,
some of the singular values ofX may be close to zero. When variables are highly dependent among
each other, we may examine the magnitude of singular values instead of accepting its nominal rank.
Suppose the rankrǫ(X) is the number of singular values greater thanǫ. If some of the singular
values ofX are close to zero, the rankrǫ(X) is much smaller than the nominal rank ofX but a
better choice for practical applications.

We now show how to estimate the rank ofX whenX has missing observations. Note that the
singular values ofX ′X are the square of the singular values ofX. That meansX ′X andX have
the same number of non-zero singular values, and to estimate the rank ofX ′X is to estimate the
rank ofX.

LetQ = X ′X, i.e.,

Qij =
n
∑

k=1

XkiXkj

for 1 ≤ i, j ≤ p. LetΓij be the set of indices of rows for which thei-th andj-th columns have no
missing values:

Γij = {k : neither ofXki andXkj is missing}.

EstimateQij by

Q̂ij =
n

‖Γij‖

∑

k∈Γij

XkiXkj

where‖Γij‖ is the size ofΓij . We then obtain singular values of̂Qij . Estimates of singular values
of X are positive square root of the singular values ofQ̂ij .

We simulated a rank-3 auxiliary variable matrix where a number of observations is 500 and a
number of variables is 10. Figure 1 shows the cumulative sum of singular values where there is no



missing observation: on the horizontal axis are singular values from the largest to the smallest; on
the vertical axis is the cumulative sum of singular values. Since the first (largest) value of singular
values is 56.25, the cumulative sum is 56.25; the second (largest) value of singular values is 6.21,
hence the cumulative sum increases by 6.21. Since it is a rank-3 matrix, the rest of singular values
are0 after the third, and there is no increase in the cumulative sum.

The red circles in Figure 2 displayX ′X rank estimation after removing10% of observations
of X at random. We observed that the first three singular values were well in line with true values
and had a slight increment for the rest of values. Figure 3 shows the performance ofX ′X rank
approximation as we increase a missing rate to30% of observations. The black diamonds display
X ′X rank estimation after having30% of observations ofX removed at random. We observed that
values fromX ′X rank estimation were farther away from true values as the missing rate increases.
Table 1 shows the values of singular values with various missing rates.

Table 1: X ′X Rank Estimation With Various Missing Rates

TRUE 10% 30% 50%
56.25 56.07 56.35 56.21
6.21 6.30 6.81 7.15
4.12 4.24 4.38 6.14
0.00 3.24 4.29 5.31
0.00 2.06 3.35 3.84
0.00 1.40 3.00 3.38
0.00 1.38 2.34 2.68
0.00 1.15 1.60 2.59
0.00 0.67 1.20 1.41
0.00 0.33 1.18 0.63

4. Imputation Using Singular Value Decomposition

Recall the singular value decomposition of any realn × p matrixX without any missing entries.
ThenX can be decomposed as a product of orthogonal matrices and a diagonalmatrix:

X = USV ′

and the diagonal elements satisfyσ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
Now, letSk be then×p diagonal matrix with the firstk singular valuesσ1, . . . , σk and the rest

of the diagonal set to zero. Then the rank-k approximationXk = USkV
′ satisfies

‖X −Xk‖ ≤ ‖X −A‖

for any rank-k matrixA. It means the difference betweenXk andX is the smallest, andXk is the
best approximation ofX among all rank-k matrices.



For a matrixX with missing entries, imputation ofX can be done by an iterative procedure
which shrinks the singular values of an initially imputed matrix. LetX be ann× p rank-r matrix
with a number of random entries are missing. LetZ beX where missing values ofX are replaced
by initially imputed values. For example, one often imputes a missing value initially with the
mean or median of non-missing entries of the column in which a missing entry falls:Z(i, j) =
mean(X(:, j)) for (i, j) ∈ Ω andZ(i, j) = X(i, j) for (i, j) /∈ Ω.

We modify Z to a matrix of low rank by shrinking its singular values (more specifically a
nuclear norm). We then update missing values with values from modifiedZ. Each iteration step
reduces the singular values ofZ, while keeping the non-missing entries ofX unchanged. The
procedure is run iteratively until it meets the given criteria:

1. Find the singular value decomposition (SVD) ofZ: Z = USV ′

2. Shrink the singular values ofZ by setting singular values

σi =

{

σi − σr+1 for i ≤ r
0 for i > r.

3. ReplaceZi,j with (UTV ′)i,j for (i, j) ∈ Ω.

4. Repeat at 1.

The MatLab code is given below:

% I is an indicator matrix: 1 for missing; 0 otherwise
I =isnan(X);
Z =X;

% fill each missing value of Z initially
% with the mean of non-missing elements of its column
for j=1:p
Z(I(:,j),j)=nanmean(X(:,j));
end

% missing values of Z are updated iteratively
% by newly computed values of W using SVD
% repeat k times
for i=1:k
[U S V] = svd(Z);
S = max(0, S-S(r+1,r+1));
W = U*S*V’;
Z(I) = W(I);
end



We compared the approximation with the nearest neighbor and column mean imputation methods.
The nearest imputation method computes distances among observations using non-missing values
across variables, and then choose the nearest observation to impute missing values. The column
mean method fills a missing value with its column mean of non-missing entries

Figure 4 plots predictedy values against truey values when missing rate is 10% at random. If
an imputation method were perfect, its predicted values would fall ony = x line. We observed that
the predicted values of the low rank approximation followed the line more closelycompared to the
other two imputation methods. Figure 5 shows boxplots of differences between predictedy and
truey values when missing rate is 10% at random. All three methods centered at0 but values of
the low rank approximation were less variable and stayed closer to0. Figure 6 shows that predicted
values from all three methods became more variable when we increase missingrate from 10% to
30%.

We also compared relative errors of the methods. Relative Error is estimated:
√

√

√

√
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(yi − ŷi)2
/

√

√

√

√

n
∑

i

yi2 .

Table 2 shows the relative errors of the methods. As the missing rate increases, the relative errors of
all methods increase. The values of relative error of low rank approximation were smaller compare
with the other two methods throughout varying missing rates.

Table 2: Relative Errors

10% 30% 50%
Low Rank Approx 0.010 0.039 0.075
Nearest Neighbor 0.018 0.056 0.099
Column Mean 0.046 0.113 0.165

5. Discussion

We considered cases where the rank ofX is significantly low and showed how the low rank matrix
approximation could be applied to impute missing auxiliary variables. We also considered how to
estimate the rank ofX whenX had missing values.

If X is assumed to be of low rank, the missing values can be imputed so that its nuclear norm
(the sum of singular values) is minimized. Since the norm is a convex function,the imputation can
be converted to a constrained convex optimization problem. Imputation can be done by solving a
constrained convex optimization problem which finds a matrix with a minimum norm while having
the same entries of non-missing values ofX. The matrix can be found by any suitable optimization
algorithm, for example, CVX package of MatLab.
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Figure 1: Cumulative Sum of Singular Values (n = 500; p = 10; rank = 3)
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Figure 2: Cumulative Sum of Singular Values of Simulated X with Missing 10% (n = 500; p =

10; rank = 3)
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Figure 3: Cum Sum of Singular Values with Missing 10%, 30%



0 10 20 30 40 50 60 70 80 90

Y (True)

0

10

20

30

40

50

60

70

80

90

P
re

d
ic

te
d

Low Rank Approximation
Nearest Neigbor
Column Mean

Figure 4: Predicted (Y) n = 500; p = 10; rank = 3, missing rate = 10%
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Figure 5: Boxplot of Difference between True (Y) and Predicted (Y) when missing rate is 10%
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Figure 6: Predicted Y with missing rate = 10% and 30%


