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Abstract 

Sample units with extreme values can have undue influence on survey estimates. This is 

particularly the case when those sample units are associated with large design weights and the 

sample size is small. The extreme values with large design weights can disproportionately affect 

survey estimates and impact their stability. Using establishment survey data from the Current 

Employment and Statistics (CES), we explore methods for weight smoothing to reduce weight 

volatility and improve the stability of the survey estimates. This paper extends the previous work 

of Gershunskaya and Sverchkov (2014), in which they considered several models for weight 

smoothing, e.g., LOESS curves, penalized B-splines, and Bayesian models and compared 

weighted estimates from those methods to true values. We consider an additional set of methods 

to accomplish the same goals. These include using the CES Robust Estimator, mixed random 

effects, bagging, and high-performance split modeling. We compare weighted estimates from 

these methods to full administrative counts from the Quarterly Census of Employment and 

Wages (QCEW). 
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1. Introduction 

Much of this paper builds on previous research by Gershunskaya and Sverchkov (2014) and 

Grieves and Gershunskaya (2017). In this paper we explore comparisons in LOESS, Robust 

Estimator, Spline, Mixed Random Effects, Bagging, and High-Performance models in SAS1 with 

Bagging being performed in both SAS and R using PROC IML (see coding snippets).  

2. The CES Survey 

2.1 CES Overview 

The Bureau of Labor Statistics (BLS) collects data each month on employment, hours, and 

earnings from a sample of nonfarm establishments through the Current Employment Statistics 

(CES) program. The CES survey includes about 122,000 businesses and government agencies, 

which cover approximately 666,000 individual worksites drawn from a sampling frame of 

Unemployment Insurance (UI) tax accounts covering roughly 11.0 million establishments. 

 
1 Documentation of individual SAS procedures used in this paper can be found in the SAS/STAT 15.2 User’s Guide 
(https://documentation.sas.com/doc/en/statug/15.2/titlepage.htm). 



 

                  

2.2 CES Frame and Sample Selection 

The CES survey derives its frame from the Quarterly Census of Employment and Wages 

(QCEW) program. The QCEW is an administrative program that collects employment and wage 

information from all establishments covered under the unemployment insurance (UI) on a 

quarterly basis. From the derived frame, CES chooses a stratified simple random sample of UI 

accounts, that is, when a UI account is chosen all establishments under that UI account are 

included in the sample. Stratification is performed by state, industry supersector (a grouping of 

North American Industrial Classification System codes), and total employment size. The 

sampling rates for each stratum are determined through a method known as optimum allocation2, 

which distributes a fixed number of sample units across a set of strata to minimize the overall 

variance, or sampling error, on the primary estimate of interest.  

2.3 CES Estimator 

The primary estimate of interest for the CES survey is the over the month change in 

employment, 𝑹𝑡. The estimator used is defined as follows: �̂�𝑡  =  
∑ 𝑤𝑗 𝑦𝑗,𝑡𝑗∈𝑆𝑡

∑ 𝑤𝑗 𝑦𝑗,𝑡−1𝑗∈𝑆𝑡

  , where j denotes 

the establishments, t is the current month, 𝑦𝑘,𝑡  and 𝑦𝑘,𝑡−1 denote the employment of sample 

units in the current and previous months, and 𝑆𝑡 is the “matched sample” or the set of sample 

units reporting positive employment in the current and previous months. To produce monthly 

estimates of levels, we use the annual census value produced from the QCEW, 𝑌0, and apply the 

ratio with �̂�𝑡=1 =  𝑌0 �̂�𝑡=1 and subsequent months estimated as �̂�𝑡 = �̂�𝑡−1�̂�𝑡. For more details see 

the BLS Handbook of Methods3. 

2.4 Motivation for CES Weight Adjustment 

In CES, we essentially track changes in population employment every month. Gershunskaya and 

Sverchkov (2014) found that weights could be modeled as a function of the survey responses to 

produce a more efficient estimator. The difficulty lies in finding and estimating a suitable model 

for the relationship between weights and reported employment changes. Because we are using 

the ratio estimator and estimating the relative change, the link between the weights and residuals, 

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑡,𝑗 = 𝑦𝑡,𝑗  − 𝑅𝑡𝑦𝑡−1,𝑗 , is considered.  

2.5 Weight Smoothing 

Weight smoothing has been shown to be beneficial in probability surveys for lowering the 

variance of survey-weighted estimators by modeling the survey weights conditional on the 

variables of interest (Beaumont 2008). We construct this new set of "smoothed" weights with 

lower variance and more in alignment with the survey response to improve the accuracy of our 

estimates. We can think of these new “smoothed” weights as a function 𝑓 (∗) of some response 

 
2 Current Employment Statistics – National: Design (https://www.bls.gov/opub/hom/ces/design.htm). 
3 BLS Handbook of Methods. Current State Employment Statistics – State and Metro Area. 
(https://www.bls.gov/opub/hom/sae/). 



 

variable (in our case the residuals) plus some error term, 𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = 𝑓(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) +

𝑒𝑟𝑟𝑜𝑟. 

2.6 Robust CES Estimator 

We currently use the Robust Estimator in the CES survey to minimize the MSE conditional on 

sample size, this is the baseline model we wish to improve upon. We adjust weights for a small 

number of influential reports, and the algorithm is designed to find a Winsorization cutoff point 

so to minimize the MSE of the resulting estimator (under certain mild to weak assumptions). 

Weights are then either censored or in more extreme cases, reports are removed from the ratio 

altogether. We refer to it as Robust Estimator in CES since the procedure is designed to reduce 

the effect caused by extreme weights and/or reported employment changes. This was a "gentle" 

attempt to change the initial weights, in which we only changed weights for the most significant 

reports. This approach yields an estimate with a lower MSE than the original weights method. 

Please see Gershunskaya and Huff (2004) for more information on the algorithm formulation.  

3. Estimation Challenges  

We believe there to be better model for weights, but it comes with constraints in our program, 

1.) Timeliness - Processing times for weight smoothing need to be quick and expedient with 

analysts often having to process tens of thousands of records at a time, we simply do not 

have the human resources to sift through so much information. 

2.) Automated Process - The process needs to be automated with little to no tweaking of 

criteria set in the modeling process. 

3.) Computer Resources - While we could possibly parallelize the process for faster run 

times, we are limited by computer resources and therefore our modeling process must be 

carried out quickly. This really goes back ultimately to timeliness. 

4.) Lack of Covariates - While the data size is large, there is a lack suitable of covariates that 

can be fit in the model.  

4. Tested Models  

Below is a summary of the models we used in our application of weight smoothing and a brief 

description.  

4.1 LOESS 

LOESS, or locally weighted regressions (Cleveland 1979), is a non-parametric model that creates 

regressions at each point using q nearest neighbors. The regressions are weighted as a function of 

the distances from that point to its q nearest neighbors. To fit the model, a few tuning parameters 

must be chosen. In general, a “smoothing” parameter s ∈ (0,1] must be chosen, s is the 

percentage of data to be used in each local regression. As stated in a previous section, these 

models were first considered in the original CES work performed by Gershunskaya and 

Sverchkov (2014). The models were fit in SAS using their automatic parameter selection 

technique. We will consider some restrictions on the smoothing parameter. The SAS LOESS 

procedure gives the user the option to set an upper and lower bound on the potential smoothing 



 

parameter. SAS will perform its model selection based on the restricted domain of smoothing 

parameters, choosing the one that minimizes some criteria. 

4.2 SAS Splines 

A spline is a special function defined piecewise by polynomials which are suitable for fitting 

noisy data. The benefit of penalized B-splines being the automatic selection of the number of 

knots used. The TRANSREG (transformation regression) procedure fits linear models, optionally 

with smooth, spline, Box-Cox, and other nonlinear transformations of the variables. You can use 

PROC TRANSREG to fit a curve through a scatter plot or fit multiple curves, one for each level 

of a classification variable. 

SAS Code Snippet 

%let ublambda=500; 

proc transreg data=aelnk; 

by st subss; 

model identity(weight) = pbspline(res/lambda=0.1 &ublambda. range);  
output out= t  predicted; 

id ui msa size wae0 wae1 sae0 sae1 cnt_ui;   

where  cnt_ui     >20; 
run;  

4.3 SAS Mixed Random Effects 

The GLIMMIX procedure fits statistical models to data with correlations or nonconstant 

variability and where the response is not necessarily normally distributed. These models are 

known as generalized linear mixed models (GLMM). GLMMs, like linear mixed models, assume 

normal (Gaussian) random effects.  

SAS Code Snippet 
 
proc glimmix data=aelnk ; 

by st subss;   

class msa; 

model weight = msa res / ddfm = bw ; /* ddfm=satterth */  

random intercept / subject = msa type=toep; 

output out = t pred=pred;  

run;  

4.4 SAS/R Bagging 

Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning 

ensemble meta-algorithm designed to improve the stability and accuracy of machine 

learning algorithms used in statistical classification and regression. It also reduces variance and 

helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used 

with any type of method. Bagging is a special case of the model averaging approach and was 

implemented using the ipred4 R package within SAS IML.  

 
4 Documentation of the ipred R package can be found, https://cran.r-project.org/web/packages/ipred/ipred.pdf 

https://cran.r-project.org/web/packages/ipred/ipred.pdf


 

SAS Code Snippet 

 

mainbag.sas 

 

proc iml;   

%include "setoption.sas";  

call ExportDataSetToR("aelnk2", "aelnk" );    

%include "bag.sas"; 

call ImportDataSetFromR("work.t","results_comb" );  

quit;  
 
setoption.sas 
 
submit / R; 

options(stringsAsFactors = FALSE) 

endsubmit; 

 

bag.sas 

 

submit / R;         
  

library( ipred ) #library for bagged trees 

                                                                       

bag <- function(x){ 

                                             

        x$msa2 <- as.factor(x$msa)   #convert MSA to factor for model 

                              

        #run model 

          bagged_m1 <- bagging( 

          formula = weight ~ res + msa2 , 

          data    = x, 

          coob    = TRUE, 

          control = (xval = 0) 
          ) 

                                                 

        #add predictions 

          x$pred <- predict( bagged_m1, x) 

          x$msa2 <- NULL 

          return(x) 

                    } #end bag function  

                                     

#create factor to split data into st/subss combo 

         aelnk$key <- as.factor( paste0(aelnk$st, aelnk$subss) ) 

                  

# split the dataset into subsets and run our function bag() on each one of  

# the subsets, returns a list with predictions adjoined to each subset 

         results <- lapply( X= split( aelnk, aelnk$key) , FUN = bag )  

                             

# combine the list we received above into one large data.frame to return  

# to SAS results_comb <- dplyr::bind_rows(results) 

 

 results_comb <- do.call("rbind", results) 

 

endsubmit; 
  

 

 
 



 

4.5 High Performance Split 

The HPSPLIT procedure is a high-performance procedure that builds tree-based statistical 

models for classification and regression. The procedure produces classification trees, which 

model a categorical response, and regression trees, which model a continuous response. Both 

types of trees are referred to as decision trees because the model is expressed as a series of if-

then statements. 

SAS Code Snippet 

 

proc hpsplit data=aelnk seed=31415 ; 

class msa ; 

id st msa subss weight size wae0 wae1 sae0 sae1 res cnt_ui; 

model weight = res msa ; 

output out = t (rename=(P_weight=pred)); 

run; 
 

5. Results  

5.1 Evaluation Criteria 

The evaluation is based on comparing the different models weight predictions to the true5 

employment levels that are available from the QCEW. An absolute difference was used as 

comparison between the models and the QCEW, 𝐴𝑏𝑠𝑑𝑖𝑓 =
|𝜃−𝑄𝐶𝐸𝑊|

𝑄𝐶𝐸𝑊
, where 𝜃 is the employment 

estimate from the model of interest. 

5.2 Model Fit Comparison 

The benchmark 2019, 2018, and 2017 tables below are presented at the most basic estimation 

cell level i.e., State/MSA/Industry. Notice that the spline absolute difference has the smallest 

interval. The smaller the interval the better the overall fit to the QCEW. In addition, over the 

month relative differences were calculated (tables not listed in paper) for the same benchmark 

years, and the conclusion was the same. We can reasonably conclude that the spline model, at 

least for these benchmark years, performed the best overall. It’s worth noting that there is a 

slightly better than a 20% reduction in the mean absolute error of the spline model from the 

baseline robust model. 

Benchmark 2019 

 

 
5 The QCEW may contain non-sampling error but serves as a benchmark or Gold Standard value. 



 

Benchmark 2018 

 

Benchmark 2017 

 

6. Current Progress 

Currently research is being conducted for specific domains where the seasonality greatly differs 

from the statewide supersector where weight models are fit. In addition, the spline model is 

being worked into development and being tested across different States, MSAs, and Industries. 
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