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Abstract 
Household nonresponse in the U.S. Current Population Survey (CPS) is addressed through a single 
ratio adjustment at cell levels defined by geography and urbanicity. Most nonresponse cells are 
defined within state boundaries, combining primary sampling units that have similar metropolitan 
status and population size. Though the CPS is a panel survey with differential response rates by 
rotation group and county level, the current nonresponse adjustment procedure accounts for neither 
due to instability concerns arising from small adjustment cells. In this paper, Bayesian response 
propensity adjustment factors (RPAFs) are constructed at the county level, leveraging longitudinal 
relative response rates to inform a preliminary weight adjustment. The single nonresponse vector is 
then expanded into a two-dimensional matrix, incorporating rotation group, before raking the 
RPAF-adjusted sample weights to the marginal totals. 
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1. Introduction 
 
The Current Population Survey has benefitted from sterling response rates throughout its history, 
but no survey is immune from the global rise in nonresponse afflicting the field.  
 
A monthly household survey, the CPS has measured the state of the American labor force for about 
80 years, achieving an average unit response rate of 93 percent as recently as the mid-to-late 1990s2. 
But the turn of the century marked the beginning of the decline—almost imperceptibly at first—as 
complex forces applied downward pressure on response propensities throughout the world3.  
 
Figure 1 displays the recent acceleration of CPS nonresponse, from a gradual loss of one or two 
percentage points in the 2000s; to the ten-point decline across the 2010s; through the Covid-19 data 
collection disruptions of 2020 to the recent but tenuous 2023 stasis around 70 percent. 
 

 
1 Views expressed are those of the author and do not necessarily reflect the views or policies of the 
U.S. Bureau of Labor Statistics. 
2 Computed from CPS microdata, January 1994–December 1999. 
3 The reasons behind declining response rates are not the focus of this paper. For discussion of 
CPS nonsampling error, see Current Population Survey Design and Methodology, Technical 
Paper 77 (TP77; Census 2019). 



 
Figure 1: Unweighted CPS household response rates, January 1994–September 2023. 
 
Current nonresponse adjustment procedures (§2) are essentially unchanged from two decades ago, 
when the nonresponse rate hovered around seven percent nationally; however, in the first nine 
months of 2023, the average nonresponse rate was about thirty percent, or 4.5 times higher. Thus, 
the CPS nonresponse adjustment factors (NRAFs) are doing nearly five times as much corrective 
work as they were in 2003. In the current environment, unrepresentativeness propagated throughout 
the nonresponse adjustment phase of weighting has much greater potential to bias labor force 
estimates at various demographic levels of detail. Overt or covert deficiencies in NRAF computation 
are now magnified. 
 
Nonresponse adjustment in the CPS utilizes single-cell weighting adjustments, in which the sample 
weights of all responding households within a given cell, or cluster, are increased by the same 
adjustment factor. The clusters themselves are constructed geographically, designed to include 
enough monthly respondents to ensure stability of the adjustment factors and avoid variance 
inflation. When response rate decline accelerates, the bias reduction achieved by these cells is of 
increasing importance, but eventually they must expand to guarantee sufficient respondent counts. 
The larger nonresponse cells grow, the more their ability to counteract nonresponse bias is 
attenuated. 
 
The Gordian Knot (Andrews, 2023) of modifying nonresponse adjustment procedures as a remedy 
against declining response rates—i.e., to do more with fewer respondents—is an obvious snarl to 
successfully mitigating biases associated with (or exacerbated by) said decline. Reconfiguring 
expanding cells to reduce potentially increasing nonresponse bias is akin to untangling the 
impossible knot, whereas the Alexandrian solution of slicing a sword through it might be analogized 
to reframing the problem itself: to do more with more respondents. 
 
In this paper, an overview of pertinent CPS sampling and weighting methods is presented (§2); 
Bayesian response propensities are computed to inform a novel pre-adjustment for nonresponse 
(§3); current one-dimensional nonresponse adjustment is expanded into two dimensions (§4); and 
lastly, some conclusions are drawn with recommendations for continuing research (§5). 
 

2. CPS Sampling & Weighting 
 
The CPS sample is "redesigned" once every ten years. Redesign comprises redefinition and 
stratification of primary sampling units (PSUs), allocation and selection of new and continuing 



PSUs within each state, and ultimately the 16-month phase-in/phase-out period4 as the previous 
sample is transitioned out and the new sample is rotated in (TP77). 
 
Crucial to the context of this paper, the selection of PSUs—either counties or groups of contiguous 
counties—remains in place ten years before either phasing out of or continuing into the succeeding 
sample. The majority of sampled PSUs are self-representing metropolitan areas, meaning their 
selection probabilities are equal to one. The overlap of self-representing (SR) PSUs from one 
decadal sample to the next is extremely high, as there are typically few if any major changes to the 
SR definitions (Nguyen and Gerstein, 2011). For non-self-representing (NSR) PSUs, CPS sampling 
methods average about 60-percent overlap (Rottach and Murphy, 2009), as the sample redesign has 
minimum continuity requirements for practical reasons related to budget and in-person data 
collection5. 
 
The CPS combines counties into nonresponse adjustment clusters based on metropolitan status, 
which is presumed to be a useful geographic proxy for response propensities and labor force 
conditions6: 
 

1. Metropolitan, principal city 
2. Metropolitan, not principal city 
3. Nonmetropolitan (or rural) 

 
Within these three categories, counties of similar size are combined such that the resultant 
nonresponse adjustment clusters are expected to be sufficiently large throughout the life of the 
corresponding sample7. The sample sizes in many county by metropolitan status subdomains are 
simply too small to apply adjustment factors directly. For example, the rural area of a mostly urban 
county might have zero or single-digit sample households in a given month. 
 
After nonresponse adjustment, a series of weighting steps are conducted: 
 

• First-stage weighting 
• National coverage step 
• State coverage step 
• Second-stage weighting 
• Composite estimation 

 
Unlike nonresponse adjustment, these five weighting steps all incorporate external population 
estimates. First-stage weighting and the national and state coverage steps are single ratio 
adjustments designed to improve coverage.  
 
The final two steps are iterative methods. Second-stage weighting further improves coverage, 
benchmarking to population controls by 
 

• State/sex/age 
• Ethnicity/sex/age 
• Race/sex/age 

 

 
4 The CPS utilizes a 4-8-4 rotation design. Households are in sample four months, out of sample 
the next eight months, then back in sample four additional months. 
5 Data is collected via personal visit interviews for the predominance of first month-in-sample and 
fifth month-in-sample households. 
6 Urban areas tend to have lower response rates than rural areas, and labor force conditions 
between urban and rural areas within a state often exhibit differences. 
7 The target minimum respondent size for CPS nonresponse adjustment clusters is 50 households. 
Occasionally, a few cells slip below this threshold, but the vast majority exceed it.  



The level of demographic detail in each of these categories varies by dimension. For example, the 
national ethnicity and race dimensions allow for greater sex by age detail, while the state dimension 
is more limited. 
 
Finally, composite estimation improves the precision of national estimates of over-the-month 
change, particularly for stable labor force conditions such as employment8. Unlike prior steps, 
compositing does not have a coverage benefit and induces some bias into labor force estimates 
(Erkens 2012, 2017). 
 
2.1 CPS Weighting Modifications 
Cross-sectionally, sample size and response rate practicalities prevent any meaningful 
reconfiguration of the nonresponse adjustment clusters, especially considering that long-term 
consistency of the labor force time series is imperative.  
 
Historically, modifications to CPS weighting procedures typically arose from expanded racial 
definitions and/or the desire to improve the precision of some facet of the estimator.  
 
Though not comprehensive, a few of these changes (TP77) were: 
 

• In 1953, racial definitions were first included in CPS weighting procedures, allowing for 
more precision of labor force estimates by White and non-White populations. 

• In 1968, racial definitions were expanded to White, Black, and Other. Other (using modern 
categories) comprised all non-White and non-Black persons, such as Asian; American 
Indian and Alaska Native; and Native Hawaiian or Pacific Islander. 

• In 1979, second-stage weighting was modified to improve the reliability of metropolitan 
and nonmetropolitan labor force estimates. 

• In 1985, Hispanic ethnicity was added as a population control, dramatically improving 
precision of Hispanic labor force estimates. 

• In 1998, composite estimation was first implemented in the CPS, placing weight on both 
past and current months' second-stage estimates to reduce the variance of over-the-month 
and over-the-year change. 

• In 2003, racial definitions were expanded to the 31 categories still in use as of October 
2023, consistent with the 2000 decennial Census, including information on mixed-race 
persons. The cellular detail of composite weighting was also expanded considerably to its 
current form. 

 
These illustrative examples focus on weighting modifications, as that is the focus of this paper, but 
omit many affective changes to sampling procedures and external population controls (to which 
CPS weights are benchmarked) as well as the introduction and evolution of seasonal adjustment 
techniques to labor force estimates.  
 
All are designed to improve coverage, representativeness, and precision via calibration and 
compositing, but none are direct modifications to the nonresponse adjustment step. This is hardly 
surprising, given the exceptional response rates noted in §1. Statistically interpreting this 
abbreviated history, throughout its first 60 years of existence, the CPS implemented substantial 
weighting changes primarily to compute better level and change estimates for an increasing number 
of racial and ethnic groups. The primary means of facilitating these changes were second-stage 
weighting and, between 1998 and 2003, composite estimation. The weighting modifications were 
responses to the demands of the times. 
 
Recent official research has not unearthed major systematic biases in primary labor force estimates 
as a result of decreasing response rates or the Covid-19 pandemic (McIllece 2020; Rothbaum and 

 
8 Over-the-month change estimates of unemployment gain little precision from compositing due to 
lower month-to-month correlations. 



Bee 20219), and the meta-analysis of response rates and estimation bias in surveys by Groves and 
Peytcheva (2008) suggests that surveys with response rates around 70 percent are somewhat less 
likely to suffer from major nonresponse bias than surveys with lesser response rates10. The CPS 
might be reasonably protected against labor force bias if able to maintain 2023 response rates into 
the future, but it would be foolish to assume so. Over the past 20 years, the response rate decline 
(Figure 1) indicates the need, at minimum, for some review of nonresponse adjustment procedures 
and research into enhancements or alternatives. 
 

3. Response Propensity Adjustment Factors 
 
Considering that the selected counties remain in the CPS sample for at least ten years, the idea from 
§1 to "do more with more respondents" can be viewed as a Bayesian solution to the response rate 
problem. Rather than compute static monthly NRAFs, longitudinal response propensity adjustment 
factors (RPAFs) can be utilized as an alternative, leveraging the history of CPS sample and 
respondent behavior in a particular area to inform an appropriate adjustment factor.  
 
The latter approach is strengthened by pooling past data to increase the effective sample size, not 
only mitigating the effects of declining response rates on the current nonresponse adjustment 
clusters but also enabling the disaggregation of them. Rather than combining multiple county by 
urbanicity areas in the longitudinal method—a necessity for independent NRAFs, despite response 
rate or measurement differentials—each detailed cluster can remain distinct if tethered to a 
reasonable prior for response propensity.  
 
The natural choice, which also maintains as much consistency as possible with current methodology, 
is the overall response propensity from its existing nonresponse adjustment cluster. Thus, for a 
newly sampled area, its nonresponse adjustment will most heavily depend on the overall response 
tendency of its usual cluster. As time goes by and the effective sample size increases, additional 
information can be combined with the prior to compute a posterior estimate of response propensity. 
The RPAF is simply the inverse of that posterior estimate.  
 
This method offers some attractive properties, fitting in neatly with current procedures rather than 
overhauling them (important for maintenance of time series) and only creating impactful 
adjustments in nonresponse clusters that need them. For instance, if a nonresponse cluster aggregates 
several detailed areas, and those areas all have similar response propensities, then the result of 
applying the Bayesian RPAF would be approximately the same as the static NRAF in production. 
Lastly, though the RPAFs are computed at a finer geographic detail, their behavior tends to be 
smoother overall, ameliorating concerns about variance inflation (§3.2.3).  
 
3.1 Longitudinal Response Rates 
Response propensity models are a common alternative to (or a definitional input into) traditional 
weighting class adjustments. These models can take various forms, such as logistic or probit 
regression, among other methods. Little (1986) explains the risk in direct application of inverse, 
modeled propensities as nonresponse-adjusted weights, warning that "respondents with very low 
(estimated response propensities) receive large weights that can inflate the variance of survey 
estimates excessively." Little continues: "Another argument for (response propensity) stratification 
is that it places less reliance on correct specification of the response propensity…since the 

 
9 Using linked administrative data, Rothbaum and Bee (2021) concluded that higher-income 
households were more likely to respond to the CPS Annual Social and Economic Supplement 
during the pandemic, but they did not associate this with bias in monthly labor force statistics like 
the unemployment rate. 
10 Groves and Peytcheva (2008) stress that "conclusions must be made with considerable caution" 
and, in the strongest of their four conclusions, state: "High response rates can reduce the risk of 
bias. They do this less when the causes of participation are highly correlated with the survey 
variables." 



predictions are used only to partially order the sample, rather than to supply probabilities to be 
directly used in weighting." 
 
A weighting class adjustment, then, might be viewed as a special case of general response propensity 
stratification, in which the implicit model is simply a uniform response likelihood for all sample 
units within a cluster, and differing response propensities are assumed between the clusters.  
 
The approach adopted here is most similar to traditional weighting class adjustment, the difference 
being that instead of assuming a response propensity for all sample units equal to the nonresponse 
cluster's monthly response rate, the response propensity is based on longitudinal response rates 
(LRRs), or accumulated response rates over time, exploiting the long-term inclusion of each CPS 
sample area. 
 
Defining 𝜋𝜋𝑗𝑗,𝑇𝑇 as the LRR of current nonresponse cluster j in estimation month T and 𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇 as the 
LRR of county k within cluster j in estimation month T: 
 

𝜋𝜋𝑗𝑗,𝑇𝑇 =
∑ 𝑟𝑟𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

∑ 𝑛𝑛𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

  

 

𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇 =
∑ 𝑟𝑟𝑘𝑘∈𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

∑ 𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

  

 
where 
 
𝑟𝑟𝑗𝑗,𝑡𝑡 = number of responding households in nonresponse cluster j in month t ∈ [1, …, T] 
 
𝑛𝑛𝑗𝑗,𝑡𝑡 = number of sampled households in j in month t 
 
𝑟𝑟𝑘𝑘∈𝑗𝑗,𝑡𝑡 = number of responding households in county k within nonresponse cluster j in month t 
 
𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡 = number of sampled households in 𝑘𝑘 ∈ 𝑗𝑗 in month t 
 
An apparent contradiction to the conditions that initiated this research (§1) is that declining response 
rates over time would mean that longitudinal response rates would be biased and unreflective of true 
response propensities in month t. If a county were newly selected in the 2010 sample design, it 
would first enter data collection in April 2014 based on the CPS phase-in/phase-out design (TP77) 
and would remain in sample at least until the 2020 sample design became fully integrated a decade 
later. As shown in Figure 1, response rates in 2014 or 2015 were considerably higher than response 
rates in 2021 or 2022. An LRR computed through month T would almost certainly overstate 
response propensity, as it would include prior years' response rate information11. 
 
A seamless solution to this problem is to compute LRRs at the component level relative to the LRR 
of its nonresponse cluster. Under this construction, the assumption is that the relative response 
propensity of a detailed sample area to its current nonresponse cluster is constant12. The current 
cluster will contain the information about declining (or other dynamic) response rates; within the 
detailed area, in this case county by urbanicity, only the relative propensity is required. 
 
To compute the relative propensity, first the expectation of 𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇 is calculated as the average 𝜋𝜋𝑗𝑗,𝑡𝑡 
over the time period from t = 1, …, T, weighted by 𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡, the monthly sample sizes of county k 

 
11 This problem could easily impact other types of models, as well. For instance, a logistic 
regression model would need to be restricted to time periods with comparable responsiveness, 
which limits model observations and can be difficult to ascertain. 
12 There may be a "fully Bayesian" construction that obviates this assumption, but that extension is 
not considered in this paper. 



within nonresponse cluster j. Weighting by the sample counts in k is critical to accurately reflect 
both the changing sample composition (such as during the phase-in/phase-out of newly sampled 
areas) and the expected response propensity of any county within the cluster. For example, if one 
county had a heavier sample density earlier in the timeframe, it would have a higher expected LRR 
than a county with more sample later in the reference period. 
 

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇� =
∑ �𝜋𝜋𝑗𝑗,𝑡𝑡𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡�𝑇𝑇
𝑡𝑡=1
∑ 𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

= expected LRR of county k in cluster j in month T 

 
𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 =

𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
= relative LRR of county k in cluster j in month T   (1) 

 
The ratio 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 can then be interpreted as an estimate of relative response propensity of county k 
within nonresponse cluster j in month T.  
 
3.2 Bayesian Response Propensities 
The distribution of the 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 values with a minimum cumulative sample size of 100 households (for 
stability) is plotted in Figure 2: 
 

 
Figure 2: Histogram of national 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 (relative response propensity) ratios from April 2014–Dec 
2022. Minimum cumulative sample size of 100 households.  
 
While diagnostic tests suggest the distribution is not quite Normal, in this paper it is treated as 
Normal for purposes of estimating the prior distribution of the relative response propensities. It is 
important that the mean of the prior distribution can be set to 1.00, which would indicate that any 
component county is initially expected to have equal response propensity as that of its membership 
nonresponse cluster. The estimated parameter of 1.0037 in Figure 2 suggests this assumption is 
reasonable.  
 
Thus, the prior distribution for the relative response propensity of county k in cluster j is estimated 
to be 
 
𝑓𝑓𝑘𝑘∈𝑗𝑗  ~ 𝑁𝑁(1.00, 0.0027) ∀ 𝑡𝑡 ∈ 1,⋯ ,𝑇𝑇      (2) 
 
where 0.0027 = 0.05222 is the estimated variance. 
 



At time T, the observed relative response propensities are also assumed to be Normally distributed 
with mean relative response propensity ratio 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 computed directly from the data using equation 
(1).  
 
To estimate the variance of the observed ratios, since the response rate components are proportions, 
the binomial approximation to a Normal distribution is applied, treating 𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�  in the 
denominator of (1) as a constant for computational simplicity 13. This results in the following 
variance approximation for the observed data in (1): 
 

𝑉𝑉�𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇� = 𝑉𝑉 �
𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
� ≅

𝑉𝑉�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
2 = � 1

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
2 ∗

𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�1−𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
∑ 𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1

�   (3) 

 
Another consideration for equation (3) is the sample size component of the binomial approximation. 
Due to the rotating panel design, households in a given month T may have been included up to eight 
times in the denominator, meaning that the observations are not all independent. It may be more 
reasonable to use effective sample size rather than pure sample size in this calculation, which would 
result in a larger variance estimate for the data distribution of 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇. However, the results presented 
in this section are based on pure household counts rather than effective sample size; the latter 
modification is left to future research (§5). 
 
Given the approximate variance in (3), the data distribution is estimated as: 
 

 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇  ~ 𝑁𝑁�𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 , � 1

𝐸𝐸�𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
2 ∗

𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�1−𝜋𝜋𝑘𝑘∈𝑗𝑗,𝑇𝑇�
∑ 𝑛𝑛𝑘𝑘∈𝑗𝑗,𝑡𝑡
𝑇𝑇
𝑡𝑡=1
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Lastly, the posterior mean of two Normal distributions is calculated as a weighted average of the 
prior mean and observed mean, where the weights are the inverses of the respective variances 
(Murphy 2007).  
 
If the weight for the observed 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇 is defined as 𝑤𝑤𝑘𝑘∈𝑗𝑗,𝑇𝑇, then: 
 
𝑤𝑤𝑘𝑘∈𝑗𝑗,𝑇𝑇 = 0.0027

0.0027+� 1
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and the weight on the prior 𝑓𝑓𝑘𝑘∈𝑗𝑗 is equal to �1 −𝑤𝑤𝑘𝑘∈𝑗𝑗,𝑇𝑇�. 
 
Recall that the mean of the prior distribution is equal to 1.00. Thus, the posterior mean 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇

∗  can be 
reduced to: 
 
𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇
∗ = �1 − 𝑤𝑤𝑘𝑘∈𝑗𝑗,𝑇𝑇� ∗ 1 + 𝑤𝑤𝑘𝑘∈𝑗𝑗,𝑇𝑇 ∗ 𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇  

 
𝑓𝑓𝑘𝑘∈𝑗𝑗,𝑇𝑇
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Because the factor in (4) is the posterior estimate of relative response propensity, the inverse of (4) 
becomes the RPAF of county k relative to nonresponse cluster j, calculated over the time period t = 

 
13 Alternatively, Taylor Series linearization or replication could be applied to the ratio in (1) to 
better estimate the data-based variance. 



1, …, T. In month T, for each k, the RPAF is multiplied by the monthly NRAF for the overall cluster, 
thereby accounting for response rate and labor force differentials among the member counties14.  
 
3.2.1 Constrained Response Propensity Adjustment Factors 
The RPAFs computed in §3.2 are uncontrolled. This can be problematic when the county 
composition of the nonresponse cluster changes, which commonly occurs during the phase-
in/phase-out of the decadal sample. In that 16-month transitional period, in the non-self-representing 
PSUs, some sample areas are phasing out of the sample while new areas are phasing in. As a result, 
the relative response propensities of continuing counties may be affected by the transition; i.e., if 
one or more new counties enters the nonresponse cluster with different response propensities than 
those they replaced, the relative propensities of the continuing counties will shift.  
 
One option is to avoid the problem entirely by restarting the response propensity computations at 
the beginning of the phase-in of a new sample design. In this approach, the cumulative sample of 
both the counties and the nonresponse cells are reset to zero before the first month of the phase-in. 
This would be appropriate if the probabilistic samples from one design to the next were completely 
independent with low overlap. 
 
However, in the CPS, the sample overlap is about 80 percent, as discussed in §1. In this setting, 
much information loss would be incurred by resetting the cumulative sample sizes to zero, and the 
loss of consistency in the weight adjustments would seem a heavy price to pay to sidestep a minor 
impediment. 
 
As a compromise between free, continuing estimation of the RPAFs and restarting them with the 
phase-in of the new sample, a constrained RPAF is computed to mitigate the issues associated with 
each of the above: 
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where 𝑟𝑟𝑘𝑘 is the household response count in county k = 1, …, K in nonresponse cluster j, and 𝑟𝑟𝑗𝑗 is 
the total household response count in cluster j. 
 
Here, the inverse response propensities are modified such that the sum of the RPAF-adjusted, 
weighted response counts of the K member counties is equal to the weighted response count of the 
nonresponse cluster15, which implies the simple ratio adjustment to the free response propensities 
computed in (4): 
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�       (5) 

 
Controlling the posterior estimates in (5) corrects some (but not all) of the compositional shift 
affecting (4) while still leveraging long-term response history to inform the RPAF calculations. 
Because the RPAFs resulting from (5) are controlled to the nonresponse cluster, the NRAFs are 

 
14 The hierarchical nature of this adjustment method is extensible, such that an RPAF for the 
current nonresponse cluster j would be computed as a Bayesian posterior estimate over the same 
time period relative to, for instance, the statewide response propensity. Statewide propensities 
relative to national could also be considered. However, RPAFs were restricted to county level in 
this paper because it integrates most naturally with current nonresponse adjustment methods.  
15 The set notation from previous sections is dropped here for legibility. 



unchanged16, allowing for simple comparisons of representativeness with or without the RPAF 
adjustment (§3.2.2). 
 
3.2.2 Case Study: New York City Demographics 
As a motivating example, consider the five Boroughs of New York City. Each Borough is its own 
county, and all five counties are in the CPS sample17: 
 

 
Figure 3: Longitudinal response rates and average Black alone and Hispanic percentages for the 
five Boroughs of New York City, January 2014–December 2022. Hispanic persons can be of any 
race. 
 
The Black and Hispanic populations of New York City vary considerably by Borough and, critically, 
so do the response rates. The Bronx stands out for having the densest Black and Hispanic 
populations and the weakest response rates across the five Boroughs. According to demographic 
analysis conducted by Passel, Lopez, and Cohn (2022), the Bronx is one of a small number of 
counties outside of California and the Southwest with a majority Hispanic population. And while 
not shown in Figure 3, there are differences in labor force tendencies across the Boroughs, as well, 
thereby meeting the two well-known conditions for corrective nonresponse adjustment described by 
Little (1986) and more recently summarized by Kreuter and Olson (2011): "(E)ffective survey 
nonresponse adjustment variables should be highly correlated with both the propensity to 
respond…and the survey variables of interest."  
 
Recalling the nonresponse adjustment methodology from §2, the five Boroughs are all combined 
into a single nonresponse cluster along with some other sample areas outside New York City. 
Therefore, each member county is upweighted by a single NRAF computed as the ratio of weighted 
sample households to weighted respondent households across the entire cluster, propagating the 
unrepresentativeness in Figure 3 into successive weighting adjustments.  
 
Applying the constrained RPAFs from §3.2.1 to December 2022, the nonresponse cluster 18 is 
brought into better demographic balance: 

 
16 Subsequent steps, such as second-stage weighting and compositing, would be affected because 
they are person-level rather than household-level adjustments. 
17 While CPS sample information is confidential for privacy protection, the five Boroughs of New 
York City are all clearly identified as sample counties in the CPS public-use microdata files 
because publishing that information does not create a disclosure risk. 
18 Non-New York City counties in the nonresponse cluster are omitted from Table 1. 



 
Table 1: Response Propensity Indicators in New York City  

Selected Demographics, December 2022 
(Based on January 2014–December 2022 data) 

 
 
Borough 

Black alone 
% 

Hispanic  
% 

LRR  
% 

RPAF LRR * RPAF 
% 

Brooklyn 33 19 80 0.97 78 
Manhattan 19 26 84 0.92 77 
Queens 21 28 76 1.02 78 
Staten Island 12 19 76 1.02 78 
The Bronx 44 56 66 1.16 77 

 
The complete nonresponse cluster has a 77-percent LRR over this timeframe. Of the five Boroughs, 
Queens and Staten Island (76 percent each) are most similar to the cluster as a whole, and their 
resulting RPAFs are close to one, indicating their base weights would be little changed due to 
relative response propensities. Brooklyn and Manhattan are overrepresented in the cluster and would 
be slightly downweighted by RPAFs of 0.97 and 0.92, respectively.  
 
Most significantly, the Bronx is underrepresented to an uncomfortable degree, as evidenced by a 
66-percent LRR, 11 percentage points below the total cluster. The RPAF method would inflate the 
weights of Bronx County respondents by the factor 1.16. In Table 1, comparing longitudinal 
response rates (column 4) to RPAF-adjusted response rates (column 6), the five Boroughs attain 
more balanced representativeness after accounting for county-level response propensities prior to 
the uniform nonresponse adjustment step.  
 
Past research by Motel and Patten (2012) identifies Bronx County of New York as home to the 
largest populations of Dominicans and Puerto Ricans in the 50 states and the District of Columbia. 
While second-stage weighting benchmarks Black and Hispanic persons to statewide population 
controls (§2), it does not correct for within-state interactions between geography and demography.  
  
Recently, the BLS began publishing monthly labor force estimates for Asian and Hispanic detailed 
ethnic groups (BLS, 2023), including Dominicans and Puerto Ricans, stressing the need to properly 
represent detailed labor force demographics as much as possible despite the sample size and 
response rate limitations of the CPS. Applying RPAFs at the county level could help in this regard19, 
as demonstrated in the New York City example in Table 1. 
 
3.2.3 National Representativeness and Efficiency 
True of any weighting modification, stability is paramount. Precision of the estimator must not be 
artificially inflated. As a brief, though incomprehensive, evaluation of the efficiency of using 
Bayesian response propensities to inform a nonresponse pre-adjustment, national average RPAFs 
are computed for a few major racial and ethnic groups. Average coefficient of variation (CV) ratios 
are also calculated, relating the efficiency of the RPAFs to the current NRAF method. Both sets of 
metrics are presented in Table 2. 
 

Table 2: Average RPAFs and CV Ratios 
Selected Demographics, December 2022  

(Based on January 2014–December 2022 data) 
 

 
19 Benchmarking to additional population controls in second-stage weighting is another possibility, 
either alongside or in place of modifications to nonresponse adjustment. The estimates that serve 
as population controls, subject to sources of error (Population Estimates Program, 2022), must be 
reliable and stable to improve efficiency of the estimates—not always the case with relatively 
small subpopulations.  



 
Demographic 

Average 
RPAF 

Average 
CV Ratio 

White 0.999 1.001 
Black 1.003 1.001 
Hispanic 1.001 0.999 
Asian 1.001 1.000 
AIAN (American Indian / 
Alaska Native) 

1.001 1.003 

NHPI (Native Hawaiian / 
Pacific Islander) 

1.001 1.001 

 
At the national level, there is little overall difference in representativeness or efficiency for the 
demographic groups included in Table 2. This is a nationally stable adjustment step that corrects for 
local imbalances, as shown in New York City (Table 1). Disruptions to major CPS time series seem 
unlikely but would require a more fulsome analysis to verify.   
 

4. Two-Dimensional Nonresponse Adjustment 
 
Besides the geographic component, there are well-known and -documented differences in response 
rates and labor force tendencies at the month-in-sample (MIS), or rotation group, level (Bailar, 1975; 
Breau and Ernst, 1983; Lent et al., 1994 and 1999; Erkens 2012 and 2017; McIllece 2020 and 2022).    
 
MIS 1 represents a household's first month in sample, MIS 2 the second, etc., until MIS 8, its final 
month in sample20. Each MIS is designed to be a representative sample, and under ideal conditions, 
all eight would have equal response propensities and each would provide unbiased estimates of the 
labor force. In reality, there are clear and consistent differences across the eight MIS in both response 
and labor force tendency21. Prominently, MIS 1 typically has the lowest response rate (Figure 4) but 
the highest inclination of reporting employed or unemployed persons relative to the other rotation 
groups. 
 

 
Figure 4: MIS response rate (RR) indexes, relative to total response rate. January 2023–June 2023 
average. 

 
20 From the CPS 4-8-4 in-out-in rotation, MIS 5 occurs in the ninth month of the 16-month cycle, 
as a household then returns after being held out of the sample for eight months. 
21 There are likely various reasons for these disparities. A notable distinction is that most MIS 1 
and MIS 5 interviews are conducted in person, while most MIS 2–4 and MIS 6–8 interviews are 
conducted by phone. MIS 1 and MIS 5, on average, have lower response rates and higher labor 
force tendencies. 



 
Current CPS weighting procedures address MIS disparities in second-stage weighting, in which MIS 
are paired (1 and 5, 2 and 6, etc.) and benchmarked to external population controls (§2). However, 
considering the response rate differentials across the eight MIS, it makes intuitive sense to correct 
them individually in the nonresponse adjustment stage before pairing them for benchmarking.  
 
4.1 Raking Coverage Rates 
Empirically, MIS differentials appear to be a national phenomenon that cuts through all geographies 
and urbanicities, the categories that form the nonresponse adjustment clusters (§1). The lack of 
interactional evidence suggests a reasonable approach might be to apply standard CPS raking 
procedures to each state22, where the current nonresponse clusters and the eight MIS are the two 
dimensions of iterative proportional fitting.  
 
Self-evidently, if the current nonresponse clusters are sufficient for a one-dimensional NRAF, they 
are sufficient for the first dimension of a two-dimensional rake. The most recent CPS sample 
allocation guaranteed a minimum sample size of about 700 households per state (Rottach and 
Erkens, 2012); divided by eight, each state by MIS should comprise at least 85 households in any 
given month, on average. Assuming the 70-percent response rate observed in 2023 (Figure 1) would 
yield a minimum of about 60 responding households in the second dimension of the rake, exceeding 
the criterion established for the current nonresponse clusters23.  
 
The raking methodology in this extension is standard, the same as applied in CPS second-stage 
weighting, so it need not be restated here. Instead, summary results are presented below, 
highlighting potential benefits of expanding the nonresponse adjustment into two dimensions.  
 

 
 

Figure 5: Comparison of 95-percent coverage intervals of the NR cluster by MIS cells using one-
dimensional and two-dimensional nonresponse adjustment, May 2005–February 2020. 
 

 
22 For weighting purposes, CPS identifies 53 state or substates. Washington, DC, is treated as a 
state, while New York is separated into New York City and balance of state, and California is 
separated into Los Angeles County and balance of state.  
23 Due to variation in response propensities, some state by MIS cells would fall below 50 
responding households. 



As shown in Figure 5, expanding CPS nonresponse adjustment into two-dimensional raking 
improves coverage without appearing to destabilize the weights at this step. Presuming convergence, 
the post-nonresponse adjustment coverage of the raking procedure should be centered at 100 
percent, as demonstrated here, whereas the coverage using one-dimensional NRAFs reflects the 
response rate index pattern observed in Figure 4. Additionally, the coverage distributions at the 
cluster by MIS level are tighter, indicating better representativeness of the cells in the two-
dimensional grid.  
 
4.2 Propensity-Adjusted Raking 
Leveraging the benefits of the weighting modifications in sections §3.2.1 and §4.1, propensity-
adjusted raking (PAR), as defined in this paper, combines the novelty of the Bayesian RPAFs with 
the foundational methods of CPS weighting. Because the two methods are independent24, both the 
RPAF correction of local (county-based) response imbalances and the improved representativeness 
at the nonresponse cluster by MIS level should be retained. 
 
In Figure 6, stacked histograms display county-level coverage rates using the CPS production 
NRAFs (top) and the PAR method (bottom): 
 

 
Figure 6: County coverage rates using current CPS nonresponse adjustment procedure 
(Coverage_P) and alternative PAR method (Coverage_R). May 2005–February 2020. 
 
All counties nationally are included in the histograms. The PAR distribution has a substantially 
higher peak at 100-percent coverage, a smaller standard deviation, and less density in the tails. 
Overall, county representativeness is improved. 
 

 
24 In this context, independence means that the two weighting steps do not affect each other. They 
could be reversed in order and still produce the same results. Independence holds in this 
construction only when using the constrained RPAFs in equation (5). 



 
Figure 7: Comparison of 95-percent coverage intervals of the NR cluster by MIS cells using two-
dimensional and PAR nonresponse adjustment, May 2005–February 2020. 
 
Lastly, Figure 7 plots coverage rates at the same cluster by MIS level as Figure 5 but compares the 
two-dimensional rake to the hybrid PAR method. The two sets of coverage bars are almost identical, 
indicating that county-level RPAFs do not induce heightened variation in the nonresponse 
adjustment weights. 
 

5. Conclusions 
 
The golden age of CPS response rates ended around the turn of the century, as nonresponse gradually 
but inexorably accelerated throughout the 2000s and the 2010s before (excepting the temporal shock 
and recovery caused by the Covid-19 pandemic) reaching a recent equilibrium in the 2020s. Whether 
the consistence of 70-percent response rates in 2023 endures in the coming years is, of course, 
unknowable. 
 
While there are other household surveys and data sources that contain direct or auxiliary information 
about the U.S. labor force, none offer both the quality and timeliness of the Current Population 
Survey. Thus, useful solutions to the problem of increasing CPS nonresponse must first come from 
within the survey itself. 
 
In this research, longitudinal response rates inform Bayesian posterior estimates of county-level 
response propensities, relative to nonresponse clusters, thereby increasing the effective sample size 
for nonresponse adjustment despite nationally decreasing response rates. These response propensity 
adjustment factors are shown to be stable in their application while improving representativeness at 
the county level, an important step forward considering that the Bureau of Labor Statistics continues 
to publish more demographic labor force detail than in years past.  
 
Nonresponse adjustment is expanded from one to two dimensions, incorporating household month-
in-sample, a source of response rate and labor force differentials well known to CPS researchers of 
each decade back to the 1970s. Though understood for nearly half a century, MIS biases have been 
left for second-stage weighting to reconcile during that era. MIS bias can be efficiently addressed 
in nonresponse adjustment, improving coverage at the cluster by MIS level of cellular detail. 
 



These two modifications are combined into propensity-adjusted raking for nonresponse, realizing 
both the benefits of better county representativeness—important for local geographies, such as the 
Bronx in New York City, home to the largest Puerto Rican and Dominican communities in the 50 
states and Washington, D.C.—and improved coverage rates that account for MIS bias. 
 
There are important limitations to the results presented in this paper, offering avenues for ongoing 
research: 
 
The transition from one sample design to the next introduces changes to county composition in some 
nonresponse clusters, for which the Bayesian response propensities cannot perfectly account. The 
posterior estimates of relative response propensities may be biased by ignoring the repeated 
sampling of households in the rotation design. And county itself is not the end-all, be-all for 
correcting response rate differentials. Response propensities are likely more dependent upon 
socioeconomic characteristics; available on the sample frame, geographic information is used as a 
pragmatic proxy for such traits unknown about nonresponding households.  
 
Thorough analysis of any weighting modifications requires more complete evaluation of the results 
than presented in this preliminary research summary. Changes must be fully tested by recreating the 
entire CPS weighting process resulting from the introduced methods, including all the post-
nonresponse adjustment steps listed in §2. The bias and precision of labor force estimates—such as 
monthly levels, over-the-month changes, and statewide annual averages—must be compared to 
current estimation procedures for many important demographics, such as (minimally) those included 
in direct compositing. Avoiding substantial shifts or breaks in important time series is also critical, 
as the extensive, reliable history of CPS estimates is one of its core strengths. 
 
Despite the noted limitations, given global response rate declines that have impacted virtually all 
official surveys, it seems incumbent upon CPS researchers to continue exploring potential 
improvements to the classical methods of nonresponse adjustment that have served the program 
well for many decades.  
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