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Abstract 

There are many papers discussing the estimation of variances for seasonally adjusted data. Serious 

research extends back to at least the early 1980s, yet there are few instances of official adoption by 

statistical agencies. Although there are several proposed methods to do so, there are no options in 

widely used seasonal adjustment software packages. Because of this, users often apply variance 

measures estimated with not seasonally adjusted data to seasonally adjusted data and assume there 

are no differences. We apply two methods to estimate variances of seasonally adjusted national 

Current Population Survey series and compare the results. The first method uses replication 

variances for seasonally adjusted estimates and the second incorporates linear filter weights based 

on the seasonal adjustment model. 
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1. Introduction 
 

There is much interest in producing confidence intervals for month-to-month changes (MTMC) for 

national Current Population Survey (CPS) seasonally adjusted (SA) series. BLS produces variance 

estimates for MTMC of national not seasonally adjusted (NSA) series for many years using 

generalized variance functions (GVF) (see McIllece, 2019). Most of the proposed methods to create 

variances for SA series use the X-11 method. Work increased during the 1980s and has continued 

until now. Regardless, variances for NSA data are often applied to SA data. The focus of this paper 

is to show that variances based on SA series are doable and useful. This work is an extension of 

Evans, McIllece, and Miller (2015) where replicate series are seasonally adjusted to create 

variances. Evans, et al., looked at total employment, total unemployment, and the national 

unemployment rate. 

 

Brief histories of research on variances for SA series is in Bell and Kramer (1999) and Evans, et 

al. (2015). Bell and Kramer’s method accounts for sampling error (SE) and errors from forecasting 

extension. Our work here is based primarily on Pfeffermann (1993) with some influences from later 

work by Pfeffermann, Sverchkov, and others. Pfeffermann’s approach can also capture error 

contributions from the irregular component. Bell (2005) focuses more on contributions of error to 

the SA error from the regression parameters and other model parameters, forecast extension errors, 

and parameter estimation errors. Another major difference between Bell and Kramer (1999) and 

Pfeffermann (1993) is in the definition of the signal and error for a series. Pfeffermann defines the 

error to be a combined error that makes up the irregular component (irregular + SE). Bell and 

Kramer differ in this case by assuming the irregular is part of the signal. Pfeffermann and 

Sverchkov (2014) explain the different approaches in much detail. 

 

The irregular component in most seasonal adjustment procedures can be a combined error 

component that includes both the irregulars and sampling errors. An option is to estimate the real 
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irregular and use its contribution in calculating variances. While most research applies to X-11, our 

method can easily be applied to model-based procedures such as SEATS or structural time series 

models. Evans and Sverchkov (2016) use a parametric bootstrap approach for weekly data as the 

seasonal adjustment model currently used for weekly seasonal adjustment is not suitable for 

Pfeffermann’s approach. Richard Tiller of BLS uses a methodology similar to ours for state CPS 

employment and unemployment variances, but he utilizes structural time series models with 

Kalman filtering/smoothing that account for SE (Tiller 2012). Tiller’s models produce lower 

variances for SA series than other methods. 

 

The research in this paper explores the use of replicates to create variances for CPS national SA 

series. Section 2 describes our data; Section 3 discusses the methodologies used in this paper to 

create variances; Section 4 covers our results; and Section 5 offers a summary. Figures and tables 

are in the Appendix and are preceded by references. 

 

2. Data 

 

Fourteen monthly employment (EM) and unemployment (UN) national CPS series were used in 

this study. The series were selected based primarily on sample sizes to give a range of different 

noise levels. Each series covers the period from 2003-2022 (same period used for official seasonal 

adjustments). The EM and UN series are for Total 16+ years, White 16+, Black 16+, Hispanic (or 

Latino) 16+, Asian 16+, Males 16-19, and Black Females 16-19. Most of the series are not directly 

seasonally adjusted by BLS for publication, so we seasonally adjusted those series using the SEATS 

methodology in X-13ARIMA-SEATS (U.S. Census Bureau 2023). Details on how BLS adjusts 

CPS national series are in Tiller, Evans, and Monsell (2022). 

 

The CPS is a monthly household sample labor force survey conducted by the U.S. Census Bureau 

for the Bureau of Labor Statistics. The survey covers about 60,000 eligible households that leads 

to approximately 110,000 individuals each month. The CPS survey has a complex sample design 

with a 4-8-4 rotation pattern where households are in the sample for four months, out for eight 

months, and back in for four more months. This pattern is important since it means that 

approximately 75% of the sample is the same from month to month and 50% from year to year. 

This rotation pattern thus improves the reliability of estimates for month-to-month and year-to-

change. 

 

The Census Bureau provides BLS with 160 replicate weights monthly for each of our CPS national 

series. The method for creating those weights is consistent back to 2003. We can thus create 160 

replicate series for any CPS series to estimate SE covariance matrices and sampling correlations. 

See Bureau of Labor Statistics and U.S. Census Bureau (2019) for detailed information on CPS 

methodology. 

 

3. Methodologies 

 

3.1 Linear Approximation to Seasonal Adjustment 

 

Papers such as Pfefferman (1993) discuss linear approximations to estimates of seasonal adjustment 

components, where the coefficients applied to the not seasonally adjusted series are referred to as 

observation weights. The first step to constructing observation weights is to create an identity 

matrix of size N x N. Using the same model and holding the program settings fixed, each column 

of the identity matrix is seasonally adjusted to get weights for the SA series and the irregular 

component (X-13 output files s11 and s13). Any outlier effects are removed from the original series 

and SEATS is run again to get the settings for adjusting the identity matrix columns. Following 
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Findley and Martin (2006), the SEATS options imean=0 and qmax=900 are applied to prevent 

mean correction of the input series and to prevent SEATS from re-estimating the fixed model 

coefficients. 

 

A classical seasonal adjustment decomposition at time t is: 

 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐼𝑡 
 

where 𝑌𝑡  is the observed series without error, 𝑇𝑡 is the trend component, 𝑆𝑡 the seasonal, and 𝐼𝑡 the 

irregular. For CPS series, we could add another unobserved component,  

 

t t ty Y e= +  

 

where 
te  is the sampling error (SE), independent of 𝑌𝑡. Tiller (2012) explains this in more detail. 

Since we cannot explicitly account for SE with the SEATS approach, the irregular component is a 

combined error containing both the SE and the irregular. Following Pfeffermann (1993), we can 

either ignore or account for the contribution of the irregular when calculating variances. 

 

The real irregular is computed by using a nonlinear optimization routine to minimize the difference 

between the irregular and combined variances. The correlations of the irregular can be treated as 

white noise or low-order moving average processes can be fit to the correlations. 

 

Row t of the matrix W that follows represents the observation weights for the seasonally adjusted 

estimate at time t. For the observation weight notation, the second index identifies the estimation 

month, and the first index is the difference between the estimation month and the month that the 

weight is applied to. For example, the diagonal elements are the weights applied to the NSA 

estimate for the SA estimate in the same month. 

 

𝐖 = [

𝑤0,1               𝑤1,1           … 𝑤𝑁−1,1

𝑤−1,2             𝑤0,2           … 𝑤𝑁−2,2
            …

𝑤−𝑁+1,𝑁       𝑤−𝑁+2,𝑁    … 𝑤0,𝑁

] 

 

The vector of seasonally adjusted estimates for t=1, …, N is approximately 𝐘𝑆𝐴 = 𝐖(�̂�𝑁𝑆𝐴 − �̌�), 

where 𝐘𝑁𝑆𝐴 is the N-dimensional vector of NSA estimates and �̌� is a vector of outliers. The impact 

of outliers is important to consider, since large outliers have been seen in our labor force series in 

recent years, leading to some large differences between 𝐘𝑆𝐴 and 𝐖�̂�𝑁𝑆𝐴. Treating the weights and 

outliers as fixed parameters, the variance of 𝐖(�̂�𝑁𝑆𝐴 − �̌�) is equal to the variance of 𝐖𝐘𝑁𝑆𝐴. The 

results that follow ignore the impact of outliers on variances. 

 

The seasonal component weight matrix is the complement of the weight matrix, W. 

 

�̃� = 𝐈 − 𝐖 = [

�̃�0,1               �̃�1,1           … �̃�𝑁−1,1

�̃�−1,2             �̃�0,2           … �̃�𝑁−2,2
            …

�̃�−𝑁+1,𝑁       �̃�−𝑁+2,𝑁    … �̃�0,𝑁

] 

 

The observation weights are used to estimate the variance of any seasonal adjustment component, 

or the estimate itself, from covariance matrices of the not seasonally adjusted estimates. The results 

presented in this paper include linear transformations of monthly seasonally adjusted estimates, 
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such as change statistics and averages. For this reason, variance estimators described in prior 

literature are extended to covariances of the seasonally adjusted estimates. 

 

3.2 Replication Variance Estimators 

 

Variances for both the unadjusted and SA series are calculated using a replicate weighting estimator 

developed by Bob Fay, involving replication analogues to successive differencing (Fay and Train 

1992), and collapsed stratum estimators (Fay 1989). Variances are calculated as: 

 
160
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where K=0.5, ˆ
rY  is the estimate for the rth set of replicate weights, and 0Ŷ  is the full sample 

estimate using the estimator weights. This approach is followed by both BLS and the Census 

Bureau for direct estimates of variance. 

 

The replicate series were seasonally adjusted with SEATS holding the model, coefficients, outliers, 

and other settings fixed. In this paper, the seasonally adjusted estimates were replicated by fixing 

the observation weights and replicating the not seasonally adjusted estimates.  

 

In April 2014, following a CPS sample design change, the replication variance estimator was 

redesigned. Correlations between estimates before and after this design change cannot be estimated 

directly with the replicates. This can lead to discontinuities in variance estimates of seasonally 

adjusted statistics around those months. To a lesser extent, there may be discontinuities in April 

2004, following the previous sample design change.  

 

3.3 Variance Estimation Using Smoothed Covariance Matrices 

 

Replicate variance estimates tend to be noisy. To address this, and to resolve the problems 

estimating variances around the time of a sample design change, covariance matrices may be 

smoothed in two ways: modeling the variances of the monthly estimates and modeling the 

correlation matrices. In monthly production of the BLS series, generalized variance functions 

(GVFs) are used to smooth out the monthly variances (see McIllece 2019), and correlation matrices 

are averaged across time. For the numerical results in this paper, the variances using observation 

weights are not smoothed, but the correlation matrices are averaged, excluding correlations that 

cannot be reliably estimated due to a change in the variance estimator. Correlations are modeled 

using an AR (15) model. Tiller (2006) explains the selection of the AR (15) model for CPS SE 

correlations. 

 

This paper focuses on the use of observation (filter) weights using the current model for seasonal 

adjustment. BLS uses SEATS for all directly adjusted national CPS series so naturally we use it 

here. It is also expected that model-based approaches will perform better than X-11 at the tails of 

the series. Using X-11 can often lead to unreasonable dips in standard errors near the tails of the 

series. See Scott, Pfeffermann, and Sverchkov (2012) for examples using X-11. 

 

This leads to the following equivalent expressions for the covariance matrix of 𝐘𝑆𝐴, Г, where Ʌ is 

the sampling error covariance matrix, and Ω is the irregular error covariance matrix. 

 

Г = Ʌ − �̃�Ʌ − Ʌ�̃�′ + �̃�(Ʌ + Ω)�̃�′ 

Г = 𝐖Ʌ𝐖′ + �̃�Ω�̃�′ 
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Assuming the irregular error covariances are zero, Г = 𝐖Ʌ𝐖′. 
 

3.4 Change Statistics, Averages, and the Impact of Revisions 

 

Although we are primarily concerned with estimates of the change between the most recent 

monthly estimate and the previous month’s estimate, there are several other statistics that are 

released each month in the Employment Situation that are of interest. These include changes across 

different time periods, quarterly and annual averages, as well as changes of averages. The statistics 

that depend on prior month estimates are based on revisions of those estimates which generally 

have lower variance than estimates at the end of the series. So, for example, even if a current 

month’s seasonally adjusted estimate has variance similar to that of the not seasonally adjusted 

estimate, the month-to-month change statistic is likely to have lower variance. The statistics of 

interest are linear, so can be expressed as 𝑔𝑇Ŷ𝑆𝐴. A few examples are shown. 

 

Table 1: Examples of Vectors used for Estimation 

 

Statistic Estimation vector 

Month-to-month change at the end of 

the series 
𝑔𝑇 = [0 0 … 0 −1 1] 

Most recent quarterly average 𝑔𝑇 =
1

4
[0 0 … 0 1 1 1 1]  

Revised previous quarterly average 𝑔𝑇 =
1

4
[0 . . . 0 1 1 1 1 0 0 0 0]  

 

The ratio of the variance of a seasonally adjusted estimate to the not seasonally adjusted estimate 

is then:  

 

𝑣𝑟𝑎𝑡𝑖𝑜 =
𝑔𝑇𝐖Ʌ𝐖𝑻𝑔

𝑔𝑇Ʌ𝑔
 

 

Under the simplifying assumption that the variance of monthly NSA estimates remains constant, 

the variance cancels out of the numerator and denominator, which leaves:  

 

𝑣𝑟𝑎𝑡𝑖𝑜 =
𝑔𝑇𝐖�̂�𝐖𝑻𝑔

𝑔𝑇�̂�𝑔
 

 

Where �̂� is the smoothed correlation matrix. A straightforward approach like this to estimating the 

variance ratio should help to integrate variance estimates into BLS production systems, which 

update correlation matrices and GVF estimates for not seasonally adjusted estimates monthly. The 

frequency with which the variance ratios should be updated needs further study, as does the 

feasibility of updating factors in a production schedule, which would require recalculating 

observation weights. 

 

4. Results 

 

Of the fourteen national series chosen for this study, all have a zero or very small irregular 

components when we explicitly account for SE with a structural time series model. This is 

confirmed when we account for the irregular when estimating variances for the SA series. Thus, 
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we do not account for the irregular component while calculating variances for these SA series as 

the combined irregular component in our series are clearly dominated by SE. 

 

Figures 1-14 in the Appendix contain plots of the standard errors for MTMC for the fourteen SA 

series using Pfeffermann’s method with 90% confidence intervals (CIs). The CIs for the replicate 

weight approach are included for comparisons. As expected, the CIs for the SA series are always 

lower than for the NSA series. While it varies by series and different time periods, there are many 

instances where the MTMC value falls in between the CIs for the SA and NSA series. Failing to 

use standard errors for MTMC changes with SA series can lead data users to assume that changes 

are not significant.2 

 

Table 2 gives the ratios of the variances of the SA series divided by those for the NSA series. The 

gains for MTMC vary between 15-35 percentage points among the series. Table 2 gives an overall 

picture of how variances for SA series are different from NSA series. 

 

5. Summary 

 

Major findings are: 

• The observation weight approach is doable for many types of seasonally adjusted series and should 

integrate relatively easily into a production system that currently provides variance estimates only 

for the NSA estimates. 

 

• Besides the relative simplicity of the approach, it resolves issues that replication estimators have 

with regard to stability and estimation problems around the phase in of new sample designs.  

 

• Variances for SA CPS series are not equal to those for the NSA series. SA variances are needed, 

important, and useful. 

 

• More work needs to be done on variances for STS models that account for SE.  
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Appendix 

 

Table 2: Variance Ratios of SA vs NSA Series 

 

  Total White Black Hispanic Asian Black F 16-19 M 16-19 

 EM UN EM UN EM UN EM UN EM UN EM UN EM UN 

Current Month .973 .939 .967 .939 .907 1.01 .938 1.01 .953 .895 .936 .768 .925 .912 

Revisions:                

   Previous Month .839 .829 .840 .828 .914 .733 .894 .722 .931 .877 .928 .762 .901 .896 

   Two months ago .798 .777 .799 .777 .918 .696 .872 .690 .914 .865 .917 .761 .886 .883 

   Three months ago .780 .765 .780 .765 .918 .684 .860 .678 .903 .855 .908 .757 .874 .874 

   One year ago .780 .769 .780 .769 .934 .687 .863 .681 .894 .855 .910 .805 .877 .878 

   Two years ago .822 .810 .821 .811 .938 .763 .878 .757 .897 .871 .918 .829 .891 .891 

   Three years ago .844 .836 .843 .836 .939 .794 .893 .790 .906 .884 .926 .844 .903 .902 

               

Month-Month Change .626 .706 .622 .706 .848 .646 .767 .644 .846 .810 .847 .706 .795 .843 

Year-Year Change .996 .995 .994 .995 .992 1.01 .994 1.01 .997 .993 .997 .969 .993 .996 

Quarterly Avg .953 .955 .951 .956 .938 .952 .960 .954 .967 .937 .970 .833 .959 .955 

Quarterly Avg Change .692 .765 .688 .766 .845 .707 .797 .708 .863 .820 .866 .702 .818 .860 

Annual Avg .998 .999 .998 .999 1.00 .998 .999 .999 1.00 1.00 1.00 .999 1.00 1.00 

Annual Avg Change .992 .995 .992 .995 .999 .990 .997 .990 .999 .998 .999 .993 .998 .999 
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Legend for all Graphs 

 
lci = lower 90% CI, uci = upper 90% CI, rep =replicate, SA = seasonally adjusted, NSA = not 

seasonally adjusted 

 

 

 

 
 Figure 1: Total Employment    Figure 2: Total Unemployment 

 

 

 
Figure 3: Total Employment, White   Figure 4: Total Unemployment, White 
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 Figure 5: Total Employment, Black   Figure 6: Total Unemployment, Black 

 

 

 
Figure 7: Total Employment, Hispanic   Figure 8: Total Unemployment, Hispanic 
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 Figure 9: Total Employment, Asian   Figure 10: Total Unemployment, Asian 

 

 

 
 Figure 11: Employment, 16-19   Figure 12: Unemployment, 16-19 
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Figure 13: Employment, Black F, 16-19   Figure 14: Unemployment, Black, F, 16-19 


