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We propose a novel Bayesian framework for the joint modeling of sur-
vey point and variance estimates for count data. The approach incorporates
an induced prior distribution on the modeled true variance that sets it equal
to the generating variance of the point estimate, a key property more readily
achieved for continuous data response type models. Our count data model
formulation allows the input of domains at multiple resolutions (e.g., states,
regions, nation) and simultaneously benchmarks modeled estimates at higher
resolutions (e.g., states) to those at lower resolutions (e.g., regions) in a fash-
ion that borrows more strength to sharpen our domain estimates at higher res-
olutions. We conduct a simulation study that generates a population of units
within domains to produce ground truth statistics to compare to direct and
modeled estimates performed on samples taken from the population where
we show improved reductions in error across domains. The model is applied
to the job openings variable and other data items published in the Job Open-
ings and Labor Turnover Survey administered by the U.S. Bureau of Labor
Statistics.

1. Introduction. Count data response variables are commonly measured by government sur-
veys; for example, the American Community Survey administered by the U.S. Census Bureau
counts the population below a poverty threshold for household domains indexed by geography
(e.g., census tracts). The U.S. Census Bureau administer the Consumer Expenditures surveys of
consumer units (independent households) for the U.S. Bureau of Labor Statistics (BLS) that in-
clude count variables related to local and regional locations of the consumer units. BLS adminis-
ters surveys and a census instrument of business establishments related to total employment and
its components (e.g., job openings, hires, separations).

As with surveys conducted for continuous data response types, surveys that include count data
responses aggregate respondent-level counts, such as total employment for a business establish-
ment respondent, to a collection of domains (such as state-by-industry classification) and produce
both a point estimate and an estimated variance statistic for each domain. Small domain estimation
models for the continuous response type that jointly model the point estimates and the estimated
variances for the domains exist within both frequentist and Bayesian frameworks; see, for example,
Maiti et al. (2014) and Sugasawa et al. (2017). These models borrow strength from the underly-
ing correlations among the domain estimates to provide de-noised model-based estimators that are
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characterized by lower mean squared errors. The inferential goal for these models is to extract
model-smoothed point and variance estimates for publication to their data users. It is important
to note that the domain-indexed variances are not known, but estimated, such that small domain
models provide an opportunity to enhance the quality of both point and variance estimates through
their joint estimation since they are typically correlated.

Bayesian models for continuous data point and variance estimates are easily designed such that
the mean of the marginal likelihood for the estimated variances represents a denoised “true” vari-
ance. The true variance, in turn, is set to be the “generating” variance for the noisy point estimate in
its likelihood centered around the estimated true mean value (Sugasawa et al. 2017); for example,
suppose vy represents the estimated sampling variance for domain d € (1,. .., N) associated with
continuous response, y4. In the case of unknown, latent true domain variance, afl, one may impose

a likelihood, vg | o2 nd f(c%) with mean 0. One typically chooses the conditional likelihood,
Ya | 0a,03 ESY (04,03%), where N/(-) denotes the normal distribution. We see that the variance in
the conditional likelihood for continuous y, is readily and naturally set to equal the latent true
variance, 03. This connection between the point and variance estimates where the true modeled
variance is set as the generating variance of the noisy point estimate ties together the likelihoods
for the point and variance estimates in a single model framework.

We are not aware of a (small area) model for count data in the small estimation literature where
the estimated sampling variance is modeled jointly with the direct point estimate such that the gen-
erating variance of the direct point estimate is set equal to the mean of estimated sampling variance
(where we interpret the mean as the latent “true” domain variance). In their recent comprehensive
review article of small estimation methods, Sugasawa & Kubokawa (2020) note the possibility
to model the point estimate with a non-normal distribution and more broadly discuss the use of
generalized linear models. They do not, however, explicate a count data model that incorporates
estimated variances. Similarly, Rao & Molina (2015) discuss over-dispersed Poisson models for
count data, but none that incorporate estimated domain variances. Tzavidis, Nikos and Ranalli, M
Giovanna and Salvati, Nicola and Dreassi, Emanuela and Chambers, Ray (2015) develop a Pois-
son small area model for count data, but assume the domain variance is equal to the mean of the
Poisson likelihood for the domain point estimate. So, they do not input domain variances, at all.

The literature does, however, provide a recent example where Bradley et al. (2016) construct
a joint model for geographically-indexed point and variance estimates under a count data re-
sponse. They define a Poisson likelihood such that the model conditional variance (of the point
estimate) is defined as Var (y,4 | x4) = exp (A\q) for count data response, y,4, associated to domain
de(1,...,N); where z, is a set of covariates and )\ is the log-mean parameter. By contrast,
under a normal likelihood with mean Ay and variance ¢, for logarithm, log(v,), of true variance
vg of yg, the associated mean is E (vq | zq) = 03 = exp (Mg + 03/2) # Var (yq | z4). Although
Bradley et al. (2016) utilize a random effect by specifying a likelihood for the log-variance, this
construction does not produce a true variance that is equal to the generating variance of the count
data response. All to say, the literature is more limited for small area models for count data that
incorporate estimated variances and there are no implementations to our knowledge that ensure
the 0 = Var (y, | z4). Perhaps the reason for the limited literature focused on count data models
for small area estimation is that for many datasets domain level counts are sufficiently large to
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approximate with a continuous data distribution, though we have mentioned some data examples
above with count data variables that express low counts for some domains.

This paper, by contrast, constructs a joint model for a count data point estimate yg and its
estimated variance vy where the modeled true variance afl (the mean of the conditional likelihood
for vy) is set equal to the variance Var(yy | 4) of the point estimate likelihood. We extend a
multiplicative random effect in our model specification for the point estimate as suggested by Zhou
et al. (2012) for non-survey data where there is no associated variance estimate. They discuss that
a Poisson-Lognormal prior set-up better fits the data with more appealing large sample theoretical
properties as compared to the Negative Binomial model because the more flexible formulation of
the former allows the data to learn a higher degree of over-dispersion. We extend their Poisson-
Lognormal set-up in our Bayesian hierarchical model framework to indirectly induce a prior on
the true variance of the likelihood for the estimated variance such that the true variance equals the
generating variance for the point estimate.

Our formulation further leverages a Bayesian hierarchical probability model construction by
including the variable of interest at multiple resolutions (e.g., nested geographic levels, such as
states, regions, nation). The model simultaneously benchmarks modeled point estimates at higher
resolutions (e.g., states) to those at lower resolutions (e.g., regions) in a fashion that sharpens the
estimation quality at higher resolutions. Traditional benchmarking discussed in Rao & Molina
(2015), by contrast, is often performed as a second step after modeling is completed such that it
tends to add back some of the variance removed by modeling. We avoid this loss of efficiency by
including the benchmarking as part of performing estimation at multiple resolutions in a single
step as is done in Savitsky (2016).

1.1. Job Opening and Labor Turnover Survey (JOLTS) Motivating Dataset. This paper was
motivated by the JOLTS survey conducted by the U.S. Bureau of Labor Statistics. JOLTS mea-
sures dynamic trends in the labor market by tracking job openings, hires and separations, among
other variables, on a monthly basis. The survey is conducted nationally with the intent to provide
a national-level estimator for a collection of industries (defined based on the North American in-
dustry classification codes (NAICS)). Users, however, desire to have state-level estimates of these
labor market dynamic variables for each industry. A major challenge to produce state-level esti-
mates of JOLTS variables is the small number of surveyed business establishments in many states;
in fact, in some industries there are states that may not have any sample responses in a given
month. It is cost prohibitive for BLS to increase their sample size and to use blocking by state in
order to support state level estimation. Our goal in this paper is to model the collection of state-
by-industry point estimates and variances constructed from the national survey to extract more
efficient, higher quality estimators and to impute estimated values for state-level domains with no
underlying sample. The Bayesian hierarchical model that we construct in the sequel for each in-
dustry will simultaneously impute missing point estimates and variances for those states excluded
from the sample in any given month.

The remainder of this paper is organized, as follows: Section 2 provides the mathematical for-
mulation of our joint model for state-level point and variance estimates for each month in each
industry.We then extend this cross-sectional by-month model to a time-series construction that
jointly models a collection of state-indexed time-series for each of the point and variance esti-
mates in each industry. We design a simulation study in Section 3 that generates respondent level
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population of count data and constructs true values for point estimates over a collection of domains.
Our simulation design then takes a sample of respondents and produces domain-based point and
both true and estimated variances of direct point estimates for the sampled respondents in each do-
main. We compare the MSE performances of the sample-based direct estimator and our modeled
estimator based on the population ground truth. In Section 4, we proceed to apply our model to
provide JOLTS state-based point and variance estimates and we illustrate the smoothing property
of our models. We conclude with a brief discussion in Section 5.

2. Model for Count Data Point and Variance Estimates.

2.1. Cross-sectional Model Under Assumed Known Variances. We proceed to describe the
formulation of a cross-sectional model for the joint estimation of count data point in a given month.
We utilize the structure of JOLTS data to describe our model, for ease-of-understanding. Domains
in JOLTS are defined by intersections of states and industries. We consider separate models by
industry, each estimated over the collection of states. For each domain d € (1,..., N) we observe
sample based estimates, y,;, and respective estimates of their variances, vq, where N denotes the
total number of domains in a given industry.

We construct a model for a count data response, rather than treating point estimate, y4, as con-
tinuous because the JOLTS variables of interest, such as job openings, are often characterized by
very small counts for a given industry and state such that the conditional likelihood is expected
to be very skewed (unlike a symmetric normal distribution). Our model will specify a Poisson-
lognormal model that allows for an over-dispersed marginal likelihood for point estimate 4 for
domain d € (1,...,N) where the data may estimate the variance, Var(y, | z4) > E(yq | 24). We
assume that the constructed domain variances, (vd)évzl, are known such that we treat them as fixed.
So, we specify a likelihood for y4 | x4 and set its variance equal to vy, which we see below is not
trivial.

2.1.1. Poisson-lognormal Mixture Likelihood Formulation. We allow for overdispersion
through a Poisson-lognormal joint likelihood with:

() Yql04,€a ¢ Poisson (0424) »

where the use of latent random effects €; with a mean fixed to 1 allows for the variance to be
greater than or equal to the mean by specifying the following distribution for the latent likelihood,
) calpa ™ LN (<0503, ¢3) -

Together, Equations 1 and 2 for observed direct sample-based estimates y, (of job openings, hires,
separations, or other JOLTS items) follow a lognormal scale mixture of Poisson distributions pa-
rameterized so that mean F (y,|0,) = 6, where 0, represents the parameter of interest. We ac-
complish setting the mean of the mixture likelihood to 6, through our use of —0.5g03 in Equation 2
that restricts the prior mean of 4 to be 1. If we had instead chosen a Gamma distribution for g4
the resulting likelihood after marginalizing over £; would have produced a closed-form negative
binomial distribution which is not the case for our Poisson-lognormal mixture. We, nevertheless,
select the lognormal instead of the Gamma because Zhou et al. (2012) highlight that the lognormal
has proven more flexible for the modeling of heavy tails that we express in the JOLTS data to the
presence of domains with very small counts.
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2.1.2. Linking Model for Conditional Mean, 64. The conditional mean parameter, 64, are used
to borrow strength across domains and is constructed with the formulation

(3) 0d = Xd exp ()\d) s

where X is an “offset”. The use of an offset allows specification of the regression model for
a normalized rate, exp (A\g) which allows the data to estimate correlations among domains for
smoothing among domains of different sizes. The use of a magnitude offset is typical for count
data models; for example, in estimating disease prevalance (Gelman et al. 2014). The offset X,
is assumed known and does not contain error. In application to JOLTS, we use the employment
level, derived from the Current Employment Statistics (CES) survey conducted by the Bureau of
Labor Statistics, as the offset. The total employment values are typically much larger in magnitude
that the JOLTS variables (e.g., job openings, quits, hires) and the rate of JOLTS variables to total
employment composes a natural ratio in a similar fashion to the number with a disease over the total
population in disease mapping Gelman et al. (2014). Although the CES-based X is an estimate, it
is based on a much larger sample than the JOLTS estimate, and so we ignore the variance associated
with estimation of X ;.

We model )\; in Equation 3 on the log-scale such that Ay € R and we may specify a normal dis-
tribution prior distribution. We specify a linking model for A\; in Equation 4 that allows “borrowing
strength” across domains from a set of covariates with,

0) M~ N (Brg,72) .

The prior specifies that rate A\ follows a normal distribution, centered at Sz ; with variance 2% d
is a set of covariates and 3 is a vector of regression coefficients. Hyperparameters 3 and 72 are
“global” in the sense that their values are shared for all domains.

2.1.3. Setting Conditional Variance of yq to Equal Known Variance, vy. The Poisson-
lognormal mixture likelihood of Equations 1 and 2 produces the marginal variance,

(5) Var (yq | 04, 0a) = 0a + 03 (exp(p3) — 1),

where the marginal variance is a function of parameters (64, p4). By construction, vy = Var(y, |
X4), so we need to set the marginal variance (after integrating out £,4) of the Poisson-lognormal
mixture equal to vy (treated as known and fixed) with,

(6) vg = Var (yq | 0a, a) = 0a + 03 (exp(p7) — 1) .

Our inferential interest is in 6, the conditional mean for y; and we specify the linking model
for 6, to borrow strength among domains to produce a smoothed estimator. So, we accomplish
setting vy to be the marginal variance for y, by solving for goz in Equation 7 to achieve,

vg — b4
(7) %:m<92+ﬁ,
d
where we have induced a prior on ¢, through our linking model distribution imposed on A4 (where

we recall Equation 3). In other words, unlike the typical set-up in Bayesian models, we do not
directly set a prior distribution for ¢4 but induce it through 6, and the functional relationship of
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Equation 7 to guarantee that Equation 6 is achieved. As discussed in the introduction, Sugasawa
& Kubokawa (2020) mention the possibility for use of non-normal likelihoods and generalized
linear models, but do not include the joint modeling of point estimates and variances for count
data. Similarly is the case for Rao & Molina (2015). All to say, ours is the first treatment of a count
data model for domain level data that enforces the variance condition of Equation 6.

2.2. Model Extension for Joint Modeling of Point Estimates and Variances, (Yq,vq)-

2.2.1. Likelihood for Observed Variances, vy. We next address the case where the true, under-
lying domain variances are unknown such that we construct an additional likelihood statement for
the observed variances, vy, centered on the true, latent variances.

We denote the true latent variance of sample-based point estimate y,; by 03 such that afl =
Var (y,|6,, ¢a). We achieve this equality by altering Equation 6 to,

(®) of =Var(yq | 0, 0a) = 04+ 03 (exp(p3) — 1) .

Note, however, that true sampling variances ag are not observed. Instead, we observe estimated
variances v,;. We choose to work with observed squared coefficient of variation, cvg =v,/ yﬁ , as
doing so allows us to better identify both ¢4 and 6, by avoiding a multiplicative formulation for
the induced prior on afl. We select a gamma distribution prior for cvg with mean

2
© r?z:%:giﬂew(wi)—l)-

d d
We specify the prior precision of cv?l to depend on sample size n,; and on a random scale hyper-
parameter ag that represents a latent concentration property of the population that affects the prior
precision of cv3:

ind 1
(10) cv3lag, r3 '~ Gamma <0.5agnd,0.5a0nd2 ) )
r
d
Under this Gamma distribution likelihood, the observed cvﬁ concentrates to a greater degree on
the truth, rﬁ, if the domain sample size is relatively large.

2.2.2. Prior distribution for Overdispersion, @3. The latent random effects ¢4 of Equation 2
are interpreted as overdispersion of the Poisson with mean ¢,. We suppose that overdispersion is
driven mostly because observed y,’s are sample-based estimates (rather than population measure-
ments). Hence, it is natural to assume that the value of parameter ¢, depends on the (domain)
sample size nq. We let

1

(11) SOdNN-i- <70\/n—d701>7
where A, (-) denotes a half normal distribution for some hyperparameter 7y, where this prior
specifies a smaller overdispersion for domains with relatively larger sample sizes because relatively
larger values of ng4 result in smaller values of ¢4 which, in turn, produce a lower variance for €.

Note that we induce a prior on the latent true variance, 02, from Equation 8 through our
direct priors on ¢4 and Ay specified in Equations 4 and 11, respectively, to ensure that ag =
Var (y,|0,, ¢a4); that is, we do not directly specify a prior distribution for o2.



BAYESIAN MODEL FOR SURVEY COUNT DATA 7

2.3. Model Extension to Incorporate Regional Data. 'We have now fully specified the portion
of our hierarchical model for the state-level. We simultaneously model likelihoods for point and
variance estimates at the regional level (where for a given industry each region nests a collection
of contiguous states) since these aggregated survey estimates are more reliable. We proceed to
constrain the modeled point estimates at the state level to sum to those at the region level, which
accomplishes simultaneous benchmarking of the states to regions.

In addition, sample based point estimates y, and respective estimated variances v, are also
available for regions, r = 1,..., R. The United States is subdivided into four regions that nest the
states, so R = 4.

To the degree that the regional estimates can be viewed as more reliable compared to the domain
estimates, this part of the model serves as a denoised “benchmarking constraint” for domain-level
estimates. Yet, because the benchmarking is performed simultaneously with estimation, it produces
a lower variance estimate than separately estimating the domain modeled estimates followed by
a subsequent benchmarking step. The benchmarking of modeled state estimates to modeled re-
gional estimates also provides a practical benefit by adding stability to estimation of the model
parameters. The model for region 7 is specified as:

Mixture likelihood for y,

(12a) Y0, 2 Poisson 0,e,),0,= Z 6,
der
(12b) el ~ LN (=0.5¢7, ¢7)

Benchmarking step for 6,

(13) b= ba

der

Prior for overdispersion ¢,

1
(14) Pr NN—F (71\/m701> ) Ny :an

der

2

Likelihood for estimated (square of) coefficient of variation cv? = v, /3>

(15) cv3|a1,r3 nd Gamma <0.5a1nr,0.5a1nr7}2 > ,
=

where 72 = 9% + (exp (go%) — 1) . We accomplish a benchmarking step in Equation 13 where the
mean 6, set edual to the sum of the domain-level parameter values over the domains belonging to
a given region. Thus, the model for the domain means, (6,) are able to borrow strength from the
regional (y, ) through their links to (6,.) in Equation 13. We emphasize that this benchmarking step
is accomplished simultaneously with estimation of model parameters because the benchmarking is
performed among parameters rather than the observed, estimated point estimates. So, the Bayesian
implementation of benchmarking further borrows strength and aids in estimation. By contrast,
the benchmarking discussed in Rao & Molina (2015) is performed after modeling is performed
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by benchmarking the modeled estimates to external data benchmarks. This two-step process, by
contrast, adds back some of the noise removed in the model estimation, so it reduces estimation
quality.

We proceed to specify a further model extension that benchmarks regional estimates, 6., to
national point and variance estimates. The form of the extension is analogous to that provided for
the regions above, so we omit it for brevity and clarity of exposition.

Model hyperparameters are drawn from the following distributions: 8 ~ N <0, 0%) 0y T ™
student-t3; (0, 1) (half-Student with 3 degrees of freedom), 70,71, /a0, /a1, /a2 ~ N4 (0,1).

2.4. A Time-series Extension. In our JOLTS application presented in Section 4, we compare
the cross-sectional model with an extension that models a collection of (domain-indexed) time-
series of point and variance estimates with the intent to borrow more strength from an autocorre-
lation among the monthly estimates. We use the same model set-up as the cross-sectional Poisson-
lognormal mixture, but now index our parameters by both domain, d and time index (month),
t.

Mixture likelihood for 14

(162) YarlOge ar S Poisson (B4, )

(16b) EatlPar ~ LN (_0-5903“ @Zt)
Prior distribution for smoothed point estimate 6

(17a) 04t = Xarexp (Aat)

(17b) Ait ~ N (B gy, 7°)

Likelihood for estimated (square of) coefficient of variation cvgt =gt/ ygt

2 2 ind 2
(18) cvglaz, g, ~ Gamma (0.5a2n4:,0.5a2n4: /15, ) ,

Prior for overdispersion ¢,

(19) it~ Ny (%Tp,02)
Nonparametric autoregressive priors of order 1 for (5;,7:)

(20a) Bi ~ N (B-1,0%)

(20b) Y~ N (e-1,03)

We construct z,; = <1N, \/%Tt) , = (N, ...,nN,t)T in Equation 19 similarly to the cross-
sectional model such the degree of overdispersion is inversely proportional to \/ng. The prior
distributions of Equation 20 is formulated as a dynamic linear model of order 1 (West 2013) with
normally distributed innovations that represents a non-parametric local smoother that allows the
data to estimate varying patterns of autocorrelation.

Analogous models are formulated for regions and for the total.
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3. Simulation Study. Our goal in this section is to evaluate the model performance when
we know the truth (for both a population indexed by units and domains in which the units nest)
under a procedure that draws samples from a known population to produce domain estimates for
an observed sample that we then compare to the population ground truth.

We construct a simulation scenario that resembles important characteristics of real data and the
survey sampling mechanism. We first generate a finite population stratified by “geography” and a
“size class” (e.g., discretized categories for number of employees for a business establishment unit)
indicator and construct domain true statistics. Secondly, we draw a stratified simple random sample
with replacement from the finite population and obtain direct sample-based and model-based esti-
mates for the population domains. We note that all domains are not guaranteed to be sampled as is
the case for states in the JOLTS sample where some states have no sample in a given month. These
steps are repeated a large number of times to capture the variation of population generation and
the taking of a sample. The estimates are evaluated against domains true finite population totals,
where biases and mean squared errors of competing estimators are calculated over the simulations.
Please see Technical Supplement in Savitsky et al. (2022) for details about population generation,
the taking of a sample and construction of the direct estimator and its associated variance.

We do not generally have information about the true values of the domain variables when apply-
ing candidate models to real data in BLS. Using a fit statistic to assess the performance of models
on the real data would be inappropriate because the purpose of the models is to uncover a latent
truth, not to reproduce the observed survey estimates. So, BLS use simulation studies to assess the
relative performance of proposed models as compared to direct estimation in realistic situations
that mimic the real world setting as a basis for decision making.

We proceed to use our simulated data in a Monte Carlo simulation study to compare the model
formulation of Section 2.1 that treats the domain sampling variances as known and fixed with the
extension of Section 2.2 that treats the underlying true domain variances as unknown and specifies
a likelihood for the estimated variances. Both formulations are compared to the direct estimator
and we expect to see substantial reductions in estimation error relatively small-sized domains (with
a small sample size).

3.1. Simulation Results. The models are estimated with the Hamiltonian Monte Carlo version
of Metropolis-Hastings posterior sampling of Stan (Gelman et al. 2015) where each posterior sam-
pling iteration provides a draw from the joint posterior distribution over the model parameters. We
choose Stan over the use of a Gibbs sampler primarily because of the induced priors for ¢, and
afl in Equations 7 and 8, respectively. The induced prior distributions are not of closed form (and
therefore highly non-conjugate) such that a Gibbs sampler would be relatively inefficient (due to
the need to use some form of slice sampling (Neal 2003)). By contrast, Stan samples the joint
parameter space on each posterior sampling (MCMC) iteration in a single sweep that utilizes the
unnormalized joint log posterior distribution, so it doesn’t care about conjugacy. Stan tends to also
be more efficient than Gibbs sampling in terms of generating a larger effective number of parameter
draws per posterior sampling (MCMC) iteration because the partial suppression of random walk
Metropolis-Hastings in HMC makes the sampler less sensitive to a posteriori correlation among
the parameters.

Each model run employed 5,000 MCMC iterations, with 2,500 iterations reserved for the warm-
up and 2,500 iterations are used to compute model estimates as respective posterior means. We



10

domain  units ave no
type per of Bias RMSE ratio of RMSEs
sample  samples . & CS.FV €S Direct CS-FV CS CSFV  CS
1 31.7 200.0 1,494 983 -39 83,126 67,157 62,370 0.81 0.75
2 24.6 200.0 -365 -1,096 -604 64,401 47,732 43,006 0.74 0.67
3 16.4 200.0 -617 -1,058 973 49,855 39,159 30,334 0.79  0.61
4 8.1 199.8 -440 369 95 35,176 29,636 16,679 0.84 047
5 1.5 111.7 9 1,390 129 6,445 5,385 2,014 0.84 0.31
Overall 182.3 17 -6 -318 56,990 44,967 39,022 0.79  0.68

Table 1: Bias and RMSE results for domains, grouped by five domain (population size) types
(based on A = 200 runs) where “Direct" denotes the direct estimator, “CS-FV", the cross-sectional
model under known true variances and “CS", the cross-sectional model under unknown true vari-
ances.

present results after A = 200 Monte Carlo simulations of the finite populations and respective
samples.

We compare the direct estimator that we label as “direct” with our two model estimators. We
label the cross-sectional model of Section 2.2 that jointly models the point estimates and variances,
(Y4, vq), under an assumption that the true variance is unknown as “CS". We also include a simpler
model that supposes the estimated variance v, is the known true variance that is treated as fixed,
such that we only model the point estimate, y4, as specified in Section 2.1. We label this model
treating the domain variances as known as “CS-FV".

The usual statistics to evaluate estimators are an empirical bias of estimator Y, B, (ffd> =

A, .
ALY (Yd(a) — Yd(a)) , and the square root of the mean of squared errors (RMSE), RM SE; (Yd) =

a=1

A
\/ Al azl (Yd(a) — Yd(a)> 2,where Yd’s are respective estimators, direct sample-based or model-
based; Yd(a) is true finite population value and Yd(a) is a realization of Yd at simulation run «,
wherea=1,..., A

We present biases and RMSE results in Tables 1-3. Table 1 shows results for domains, grouped
by five domain (population size) types, as defined above, where type 5 contains the smallest num-
ber of population units and type 1, the largest. The employment size classes are equally distributed
across each domain. While units (business establishments) containing relatively more employees
are over-sampled in each domain, the probability that a domain appears in the sample (through the
sampling of at least one nested unit) is proportional to its population size types (number of units).
Domains containing more units are more likely to appear in each (Monte Carlo) sample than do-
mains containing relatively few units. The number of units sampled within each domain is random
such that it varies across realized samples.

Table 1 presents an average number of sampled domains over the repeated 200 Monte Carlo
samples. Note that domains of type 5 are small and are not necessarily represented in each sample.
This is reflected in the third column of Table 1, showing an average number of times a domain
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units

per Bias RMSE ratio of RMSEs
sample . .

Direct CS-FV CS Direct  CS-FV CS CS-Fv CS
163 11,838 9,011 9,381 173,344 138,994 121,371 0.80  0.70
163 4,301 7,326 -304 175,199 147,740 128,409 0.84 0.73
163 6 -4864  -3,085 204,108 157,705 143,692 0.77  0.70
163 -14,651  -11,566  -20,781 256,677 213,853 196,755 0.83  0.77
Overall 373 -23 -3,697 205,113 167,145 150,483 0.81 0.73

Table 2: Bias and RMSE results, regional (based on A = 200 runs) where “Direct" denotes the
direct estimator, "CS-FV", the cross-sectional model under known true variances and "CS", the
cross-sectional model under unknown true variances.

units

per Bias RMSE ratio of RMSEs
sample . .

Direct CS-FV CS Direct CS-FV CS CS-Fv CS
817 1,494 -93  -14,789 403,256 360,231 358,282 0.89  0.89

Table 3: Bias and RMSE results, national (based on A = 200 runs) where “Direct" denotes the
direct estimator, "CS-FV", the cross-sectional model under known true variances and "CS", the
cross-sectional model under unknown true variances.

of type 5 gets into a sample: this value is 111.7, whereas the larger domains are represented in
all 200 sample realizations. In the case a domain does not appear in a sample realization in some
Monte Carlo iteration, its point estimate is imputed under both the CS and CS-FV models and
the sampling variance is also imputed under CS. Table 1 reveals that the RMSE ratios between
both models and survey direct estimate are always less than 1 for every domain type, but the
improvement in error is particularly large for domains of types 4 and 5 at the expense of a relatively
small amount of increased bias as compared to the survey-based direct estimator. The CS model
produces a lower RMSE ratio to the direct estimator than does CS-FV for every size class owing
to the additional estimation strength borrowed by co-modeling the domain variances.

Table 2 presents results for domains rolled up to “regions”, and Table 3 shows results for the
overall population total.

Figure 1 presents results in a graphical form for the comparison of fit performance between the
survey-based direct estimate and the modeled estimate by plotting the distribution over the Monte

. . . .. Y .
Carlo iterations of the log of relative deviations constructed as, log Y‘“‘”) , for domains that are
d(ax)

present in each sample, over simulations o, o = 1, ..., A, where the numerator is the estimated
and the denominator is the truth. A distribution is rendered for each domain type where type 5
represents domains containing the smallest number of population units and type 1, the largest. Each
distribution is presented in the form of a “violin" plot that mirrors the distribution. Its interpretation
is similar to a box plot with additional information for the distribution shape. The distribution
plots on the right represent the survey-based direct estimates and those in the middle represent
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Fig 1: Relative errors of point estimates, over simulations, by domain type (where 5 contains the
smallest number of population units and type 1 contains the largest), presented on a log scale. ”CS"
denotes the cross-sectional model under unknown true variances, "CS-FV", the cross-sectional
model under known true variances and “Direct" denotes the direct estimator, from left-to-right.

the CS-FV model-based posterior means, while those on the left represent the CS model-based
posterior means. The solid horizontal line in each plot panel represents the population true value
of the domain point estimates. We see that while the Monte Carlo distribution over all estimators is
centered on the true value, the distributions for the model-based estimators are more concentrated
on the true values, with the CS model expressing the smallest variance around the truth.

Figure 2 is an analogous presentation of log <;;]E”;> for the sample-based estimates of vari-
ances of direct estimator and posterior means of the CS model fitted/smoothed estimates of sam-
pling variances (03). The solid horizontal line contained in each plot panel of Figure 2 represents
the true sampling variance of the point estimator that is approximated over the Monte Carlo it-
erations by each of the direct sampling variance and the CS model. In the case that there are no
sampled units for small domains (that contain relatively few sampled units) the sampling variances
are imputed by the CS model for those missing domains. The CS-imputed variances represent the
quality of the point estimator based on the pattern of borrowing strength from other domains and
their underlying estimated variances. The figure reveals that the modeled variances under the CS
model (in the left-hand set of plots) are more concentrated than the direct estimates (in the right-

hand set of plots), similar to the point estimates.
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Fig 2: Relative errors of variances of direct estimates, over simulations, by domain type (presented
on a log scale). ”CS" denotes the cross-sectional model under unknown true variances and “Direct"
denotes the direct estimator, from left-to-right.

There is the appearance of a slight positive bias in the fitted sample-based variance estimates
(on the left) for domains of types 4 and 5 with fewer population units shown in Figure 2, but this
apparent bias is likely not real. Our Monte Carlo approximation procedure for the true variance
suffers from the exclusion of the null sample realizations for type 4 and 5 domains. The proce-
dure excludes the null cases for any domain because we are not able to form a sample-based point
estimate in any case where the realized sample in any Monte Carlo iteration excludes a domain.
As a result, our Monte Carlo approximation method is expected to under-estimate the true sam-
pling variance for such smaller domains by excluding the null sampling event. The higher is the
probability of the event that a sample realization excludes a domain, the larger would be the under-
estimation for our Monte Carlo approximation for the true variance. Such is likely why we see the
appearance of a larger bias for type 5 domains than type 4 (since the probability of a null sample
for type 5 domains is higher).

N A [y
Figure 3a draws a line plot of relative biases rel B, <Yd> =AY <Y"’(‘§}Y"(°)> and Fig-

a=1 (@)

A N 2
. . 5 Vi —Y.
ure 3b draws a line plot of relative root MSE rel RM SE, (Yd> = \/Al > <M> ,
a=1 ()
where the x-axis indexes domain labels sorted by the average number of sampled units in each
domain from left-to-right. The line connecting dots represents the direct estimator, the line con-
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Fig 3: Relative biases and square root of relative MSE of point estimates for 50 domains sorted by
the number of respondents. The line connecting dots represent our baseline direct estimator, stars
represent the CS model, whereas triangles represent the CS-FV model.

necting triangles represents the CS-FV model estimator and the line connecting stars represents
the CS model estimator.

Figure 1 demonstrates that the modeled estimates produce lower true sampling variances than
do the survey-based direct estimators. Figure 3a highlights that the absolute bias is slightly higher,
however, particularly for domains with smaller number of sampled units, though the relative MSE
improvement for these domains with lower sample sizes are much larger as seen in Figure 3b.

Our model would be expected to outperform direct estimation under any positive correlation
between x4 and y4 because in the worst case setting of no correlation there would be less shrinkage
away the direct estimator in the mean parameter, 6,4, that we use our model-based estimator. The
correlation between y4 and v4, however, would provide additional estimation for 6.

As the sample size per domain increases, the model estimate will generally contract on the direct
estimate, particularly in a flexible model such as ours. In our experience, one may use the direct
estimate in lieu of the model estimate when the number of units per domain is greater than 100,
though some may focus on a target coefficient of variation for favoring the direct estimate. The
direct estimate has the advantage that it is both design unbiased and immune to model misspecifi-
cation.

In summary, our Poisson-lognormal joint model for (y,4, v4) would be expected to perform well
in the case where there are domains with small counts as we see in the JOLTS due to its ability to
handle distribution skewness induced by overdispersion. The performance on domains with larger
counts would also be robust, but at the expense of less efficient computation than with a model
that treats these domain point estimates as continuous. We would recommend our model under the
set-up where some domains express small counts that induce overdispersion.
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4. Application to JOLTS. We now consider state/industry by-month estimation for the
JOLTS job openings variable using a predictor formed from a census instrument that we describe
below. Our model estimations for job openings covers the period from January 2014 to December
2018 for up to 52 states (including Puerto Rico and Washington, DC) depending on the industry
being modeled. We compare the smoothing and imputation performances of our 3 model formu-
lations: 1. The cross-sectional (CS) model is separately estimated for each industry and month. In
other words, each model is fitted on a set of States in a given industry at a given month; 2. The
cross-sectional model under fixed and known variances (CS-FV); 3. The multivariate time series
(MV) model jointly models the collection of months in the measurement period for the set of states
in each industry, unlike the CS model which estimates one month, at-a-time.

Our model formulations, in addition to state levels, includes likelihood contributions for regional
and national levels (for each industry). As a result, model-fitted estimates for regions and national
estimates for job openings are also available as a by-product of the model. It is expected that at
higher levels / lower resolutions model-fitted estimates should be close to respective sample-based
estimates. A benefit of incorporating these lower resolution regional and national sample-based
direct estimates into the model is that higher resolution state-level model-fitted estimates are forced
to add up to respective model-fitted regional estimates, which in turn add up to the model-fitted
national estimates. This construction is similar to traditional benchmarking, except that we do not
require additivity exactly to sample-based lower resolution estimates; instead, we require additivity
to model-based lower resolution estimates, which, as we have mentioned are close, yet not exactly
equal to, sample-based estimates.

Another feature of the models is that they simultaneously imputes a value for those months
where sample-based estimates are not available (i.e., when there is zero number of respondents.)

4.1. Synthetic Predictor, x4, for JOLTS Estimation. JOLTS has designed a synthetic estimator
for each state-level domain that we use as a predictor in our modeling. We now briefly describe
this estimator. The JOLTS synthetic estimator is constructed by leveraging a census instrument of
business establishments, the Quarterly Census of Employment and Wages (QCEW), maintained
by BLS for the purpose of measuring employment. The QCEW is administered quarterly and
processing time results in a lag of many months before results are published. The QCEW does not
publish the components of employment measured by JOLTS, but to obtain the synthetic estimator,
the necessary JOLTS variables are “imputed” in a Hot Deck-like procedure to each record in the
QCEW (in a 1 year lag to the current month). This is done, for each month, by stratifying the
QCEW records by the intersection of employment change trend (e.g., increasing, decreasing, flat),
industry classification and employment size. A data record is randomly drawn from the JOLTS
survey data within each stratum and the ratio job openings to total employment for that JOLTS data
record is used to impute job openings values of every QCEW record (that contains the employment
level for some business establishment) in that stratum. The procedure is repeated until the level of
job openings is imputed for every record in the QCEW. The sum of such imputed job openings,
across the QCEW records, to each state — by - industry (labeled state/industry) domain provides a
“synthetic” estimate. These imputed state/industry synthetic estimates constructed for job openings
are further benchmarked to the actual JOLTS sample estimates, by region, to ensure the imputed
state levels for job openings equates to the actual JOLTS survey openings levels at the regional
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and national levels. Similar procedure is performed for other JOLTS data items. As noted, such
a synthetic estimator is available based on the lagged QCEW data and does not use the current
period JOLTS information.

The synthetic predictor encodes historical expectations (on a one year lag) for each state/industry
domain, while the “direct” sample-based estimates supply current information. Synthetic estimates
are less variable but they may be biased. By contrast, direct estimates are considered unbiased, but
they have large variance when the sample is small. Model-fitted estimates represent a compromise
between “synthetic” and “direct” estimates. The model automatically “decides” on the balance
between the synthetic and direct components. This “decision” is made based on the relative vari-
ability of the direct sample-based domain estimates and quality of the model fit, which, roughly
speaking, depends on how well overall synthetic estimates explain sample-based results.

4.2. Results. Figures 4 and 5 illustrate and compare the relative smoothing and imputation
performances of our CS, CS-FV and MV model formulations with the sample-based direct esti-
mate. Each figure shows alternative estimates for the January 2014-December 2018 period for a
single state/industry domain. The dotted line represents CS-FV, the dotdash line represents the CS
estimates and the dashed line, the MV estimates. The solid line represents sample-based direct
estimates. Figure 4 presents results for a relatively smaller domain with fewer population business
establishment units such that we note the monthly gaps in the solid line where there are no sample-
based direct estimates available for that state/industry domain from the national sample in those
months. We observe that all of the models, nevertheless, provide imputed values for these missing
months. The models borrow strength among states with similar patterns of job openings, as well
as additionally borrowing strength from the associated regional estimates.

The MV borrows further information from the autocorrelation of the monthly estimates co-
modeled under this formulation for each state/industry domain. This additional time-indexed de-
pendence induces a higher degree of over-the-month smoothing. While the MV model estimation is
too computationally-intensive to include within our Monte Carlo simulation study (due to repeated
estimations), we ran a few iterations under a simulated dataset generated with autocorrelations and
observed that the greater smoothing provided by the MV relative to CS resulted in a slightly, but
not notable, improvement in performance as compared to the CS, which is what we also observe
in the JOLTS application. For the models estimated on the mining and logging industry, the CS
model estimates in about 500 seconds, while the 12 month MV model estimates in about 5500
seconds. For this domain containing relatively few business establishment units we see that both
models substantially smooth the noisy sample-based direct estimate.

Figure 5 presents the estimation results for a relatively large domain that contains many business
establishment population units such that all months are observed. As expected, the models perform
relatively less smoothing of the survey-based direct estimates as these direct estimates are more
reliable such that they express lower variances. For this domain, the CS and MV are relatively
coincident with one another with only a small degree of additional smoothing induced by MV. The
CS-FV shows somewhat less smoothing of the direct estimator with more pronounced peaks due
to excluding the variances that are useful to strengthen estimation. The MV model is expected to
outperform the CS model in the presence of any autocorrelation so long as the time series pattern
doesn’t dramatically change due to a “regime shift" event, such as an economic downturn. During
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Fig 4: Example 1 of domain direct vs cross-sectional (CS) and cross-sectional under known vari-
ances (CS-FV) vs multivatiate (MV) time series model fitted estimates, over the period from Jan-
uary 2014 — December 2018, average number of respondents over the period is 4.5

and after a regime shift event, the correlation structure over time between JOLTS variables would
be expected to change such that past month observations before the regime shift would no longer
be as useful. In such a case the CS model would outperform.

5. Discussion. We introduce a novel general Bayesian hierarchical model formulation for the
analysis of survey variables of the count data type that extends the automatic property from con-
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Fig 5: Example 2 of domain direct vs cross-sectional (CS) and cross-sectional under known vari-
ances (CS-FV) vs multivatiate (MV) time series model fitted estimates, over the period from Jan-
uary 2014 — December 2018, average number of respondents over the period is 53.2

tinuous data model formulations that the estimated true variance is set equal to the generating
variance for the point estimate. We set the variance of our Poisson-lognormal construction for the
point estimate to the true variance mean of the gamma distribution prior on the observed survey
variances. The prior on the true variances is induced by from the prior on the mean and overdis-
persion parameter of the Poisson-lognormal set-up.
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Our modeling approaches further incorporates benchmarking of higher resolution (e.g., state
level) estimated totals (which are functions of model parameters) to lower resolution (e.g., re-
gions) totals simultaneously with their estimation. This multiresolution construction both sharpens
estimates of the higher resolution totals through their nesting in more reliable lower resolution
aggregations of domains linked to lower resolution survey-based direct estimates and collapses
the usual two-step process of estimating the higher resolution quantities in a model and bench-
marking those to lower resolution totals. Our procedure avoids the reintroduction of noise to lower
resolution estimates that typically occurs under the two-step process.

We demonstrated in a simulation study that constructed ground truth estimates for population
domains containing varying numbers of underlying units that our count data modeling framework
produces lower error estimates than the sample-based direct survey estimates and those improve-
ments are dramatic in domains contain relatively few population units. The model provides these
reduction in errors while simultaneously producing imputed estimates for non-sampled domains.
Lastly, our application to the JOLTS job openings variable demonstrated that our multivariate
model extension provides more smoothing than our base, cross-sectional model by borrowing in-
formation from over-the-month correlations.

SUPPLEMENTARY MATERIAL

Technical Supplement: Technical Appendices
The online supplement contains three technical appendices with detailed material on the following
topics:

1. Simulation study detailed design;
2. Stan (Gelman et al. 2015) scripts for models;
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