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Abstract

Nonprobability (convenience) samples are increasingly sought to reduce the estimation vari-
ance for one or more population variables of interest that are estimated using a randomized
survey (reference) sample by increasing the effective sample size. Estimation of a population
quantity derived from a convenience sample will typically result in bias since the distribution
of variables of interest in the convenience sample is different from the population distribu-
tion. A recent set of approaches estimates inclusion probabilities for convenience sample
units by specifying reference sample-weighted pseudo likelihoods. This paper introduces a
novel approach that derives the propensity score for the observed sample as a function of
inclusion probabilities for the reference and convenience samples as our main result. Our
approach allows specification of a likelihood directly for the observed sample as opposed
to the approximate or pseudo likelihood. We construct a Bayesian hierarchical formulation
that simultaneously estimates sample propensity scores and the convenience sample inclu-
sion probabilities. We use a Monte Carlo simulation study to compare our likelihood based
results with the pseudo likelihood based approaches considered in the literature.

Key words: Survey sampling, Nonprobability sampling, Data combining, Inclusion proba-
bilities, Exact sample likelihood, Bayesian hierarchical modeling.

1. Introduction

1.1 Motivation

With the proliferation of powerful computers and internet technologies, private data ag-
gregators and research organizations gained the ability to relatively easily collect and store
information from samples of respondents. Usually such opportunistic or “convenience"
samples are not selected using a probability based sampling design. The non-random par-
ticipation of units in such a convenience sample limits its ability to be used to construct
an estimator (e.g., average income) of a target population quantity because the convenience
sample, in general, is not expected to be representative of that population.
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By contrast, probability based samples or random surveys of units represent the gold
standard for cost-effectively sampling a population in a manner that allows provable guar-
antees about the population representativeness of target estimators (e.g., total employment,
vaccination rate) composed from the observed sample where units are randomly invited to
participate. We term such a random-inclusions sample as a “reference" sample.

Yet, probability based samples are often relatively small, especially at finer domain
levels; hence, probability based sample estimators often have large variances. In other cases,
reference samples may not include particular variables of interest, while such variables may
be collected with the convenience sample.

Statistical agencies and other survey administrators are increasingly seeking ways to
leverage convenience samples to construct estimators of target population quantities with
measurable statistical properties. This paper focuses on a class of approaches that suppose
the nonrandom convenience sample was drawn from an unknown or latent random sampling
design process such that we may treat the convenience sample as a “pseudo" random sam-
ple. The sampling design for the random reference sample is set by the governing statistical
agency and is encoded in known sample inclusion probabilities assigned to the population
of units. These inclusion probabilities are used to form inverse probability sampling weights
that are published with other variables collected in the reference sample. So, the task for
combining the convenience sample with the reference sample to strengthen estimation (and
lower the variance of estimators) is in estimation of the unknown convenience sample in-
clusion probabilities to form “pseudo" weights. We assume the existence of covariates,
measured on both the reference and convenience samples, that encode the sampling de-
sign. Then, estimated convenience sample pseudo weights may be used with any response
variable to form a weighted estimator of the target population quantity.

1.2 Literature Review

Early attempts to address estimation of the convenience sample inclusion probabilities
using combined convenience and reference probability samples include Elliott (2009), Val-
liant and Dever (2011), DiSogra et al. (2011). See recent reviews in Valliant (2020) and
Beaumont (2020), and Wu (2022).

Our goal in this paper is to estimate the convenience sample inclusion probabilities
based on observed indicator zi that is defined on the combined convenience and probability
samples set as zi = 1 for a unit in the convenience sample, and 0 for a unit in the reference
sample.

Elliott (2009) and Elliott and Valliant (2017) consider Bernoulli variable zi and uses
relationship between πzi = P{zi = 1}, on the one hand, and the convenience and reference
sample inclusion probabilities, πci and πri (respectively), on the other hand. One is then
able to specify a logistic regression for estimation of πci. While their result implies a prac-
tical approach, their derivation requires an assumption that the convenience and reference
samples must be disjoint. That is, no unit may be included in both the convenience and
reference samples. They also use a two-step model estimation process that is suboptimal
and often produces unbounded estimates for πci. A more efficient, one-step likelihood based
estimation procedure, was proposed by Beresovsky (2019).
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More recently, Chen et al. (2020) approached the problem by considering the conve-
nience sample inclusion indicator Ri, where Ri = 1 for unit i in the convenience sample,
and 0 for unit i in the finite population less those units which are members of the conve-
nience sample. Ri is a Bernoulli variate; however, convenience sample inclusion proba-
bilities πci = P{Ri = 1} cannot be estimated directly from the Bernoulli likelihood of Ri

because the finite population is not generally available and indicator Ri is not observed for
the whole population; in particular, one does not know which units from the finite popu-
lation are selected into the convenience sample. To overcome this difficulty, they partition
the log-likelihood of Ri into two terms: the sum over convenience sample units and the
sum over the finite population. The latter term is approximated by a ‘’pseudo” likelihood,
using inverse probability based weights, defined by observed reference sample inclusion
probabilities.

There are two shortcomings in Chen et al. (2020)’s approach. First, the pseudo like-
lihood approximation is suboptimal because it is a noisy approximation on the observed
sample that will produce a higher estimation variance. Second, convenience sample mem-
bership indicators Ri are generally not observable. The partitioning proposed by Chen et al.
(2020) implies the existence of a different, observable, indicator that is defined as follows.
Stack together the convenience sample and finite population, so that the sample units appear
in the stacked set twice: as part of the population and as the added set; let indicator Zi = 1
for unit i in the convenience sample, and 0 for any unit i in the finite population (regard-
less of whether it is also a part of the convenience sample). Note, however, that Chen et al.
(2020)’s likelihood does not treat observed Zi as a Bernoulli variate, thus potentially leading
to suboptimal results.

Wang et al. (2021) propose an improvement of Chen et al. (2020) by formulating
the Bernoulli likelihood for Zi and providing a formula specifying a relationship between
probabilities P{Zi = 1} and convenience sample inclusion probabilities πci. Would the finite
population be observed, this approach would lead to efficient estimation of πci based on the
likelihood of observed Zi. However, since the finite population is not observed, they still
have to rely on the pseudo likelihood approach in their estimation. Wang et al. (2021) apply
a two-step estimation procedure, which can be improved by solving the pseudo-likelihood
based estimating equations using the one-step approach of Beresovsky (2019).

1.3 Contribution of this Paper

We use first principles to derive a relationship between probability of being in the conve-
nience sample set πzi, on the one hand, and the convenience and reference sample inclusion
probabilities, πci and πri (respectively), on the other hand. The result of Elliott (2009) can
be viewed as a special case of our formula. Importantly, our approach dispenses with the
requirement of disjointness between the two sample arms. We show that our method for
estimating πci is valid under any degree of overlapping units among the two sampling arms.
Unlike Chen et al. (2020) and Wang et al. (2021), our result is defined directly on the
observed pooled sample with no approximation required. So, the resulting estimator of πci

from our method is more efficient than the approximate, pseudo likelihoods.
Differently from the two-step estimation process of Elliott (2009) or Wang et al. (2021),
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we construct a Bayesian hierarchical modeling formulation discussed in the sequel that
estimates both (πzi,πci) in a single step. Our method accounts for all sources of uncertainty
to produce more accurate uncertainty quantification.

Our approach is fully Bayesian for estimation of the unknown inclusion probabilities
for the convenience sample units. Notions of informativeness do not apply because the
likelihood is formulated directly on the observed set. The model-estimated inclusion prob-
abilities are subsequently used to compute sampling weights and those weights and the
response variable are together used to construct a survey-based population estimator (such
as the population mean of y).

We introduce notation and list assumptions in Section 2. In Section 3, we detail the setup
and provide the proof of the main formula underlying the proposed approach. Namely, we
derive the relationship between the propensity score (defined as the probability of belong-
ing to the convenience sample for a unit from the pooled sample), on the one hand, and the
inclusion probabilities for the reference and convenience samples, on the other hand. We
construct a Bayesian hierarchical modeling formulation in Section 4 that simultaneously es-
timates all unknown quantities, including unknown reference sample inclusion probabilities
for convenience units, in a single step that accounts for all sources of uncertainty. A Monte
Carlo simulation study to compare our approach with competitor methods is presented in
Section 5. In Section 6, we apply the proposed method to the Current Employment Statistics
data, where we estimate pseudo weights for the non-probability based sample for local gov-
ernment in California and compute domain estimates based on these weights. We conclude
with a discussion in Section 7.

2. Preliminaries

We begin by introducing notation used in the exposition of our method developed in the
following section. We follow by listing common assumptions used to develop the method.

Our set-up consists of a sample acquired under a random sampling design that we label
as a “reference" sample to contrast with availability of a nonrandom “convenience" sample.
We term the observed pooled sample as a “two-arm" sample with one arm denoting the
reference (probability) sample and the other arm the convenience (nonprobability) sample.

Let Sc represent a non-probability (convenience) sample set drawn from sampling frame
or population Uc, where |Uc|= Nc and |Sc|= nc represent the number of units in sets Uc and
Sc, respectively; let Sr denote a probability (reference) sample drawn from population Ur,
with |Ur|= Nr and |Sr|= nr, the number of units, respectively, in Ur and Sr.

Let Ũ = Ur +Uc denote an imaginary combined set. Operator "+" here is meant to
signify that sets Ur and Uc are ”stacked together" in such a way that overlapping units, that
belong to both sets Ur and Uc, would be included into Ũ twice. Similarly, let S = Sr + Sc

denote a pooled (stacked) sample. Under such a setup, |Ũ |=Nr+Nc =N and |S|= nr+nc =

n.
In an abuse of notation, we index a unit contained in any population or observed sample

realization by i, which may indicate a unit in any of the sample or population sets where the
context is clear.
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Let πc (xi) = P(i ∈ Sc|i ∈Uc,xi) denote the probability of inclusion into observed sam-
ple set Sc from Uc conditional on associated design variables, xi. We will use the term
“conditional inclusion probability" for an inclusion probability whose specification or es-
timation is conditioned on a set of design variables, X = {xi}. These variables are used
to construct the sampling design that governs the observed samples. The design variables
typically don’t include one or more response variables, yi, of inferential interest because
they are not observed for the full underlying population (such their estimation motivates the
administration of the survey).

Let πr (xi) = P(i ∈ Sr|i ∈Ur,xi) denote the conditional inclusion probability in Sr from
Ur.

Let indicator variable zi on set S take a value of 1 when i ∈ Sc, and 0 when i ∈ Sr; and let
πz(xi) denote probabilities of zi = 1, given xi: πz(xi) = P{zi = 1|xi} = P{i ∈ Sc|i ∈ S,xi}.
We label πz(xi) as the “propensity score" that measures the propensity or probability for a
unit in the observed joint sample, S, to be included in Sc.

We will use πci as a shorthand notation for πc(xi) in the sequel when the context is clear
and the same for πri.

(C1) (Latent Random Mechanism)
The observed convenience sample, Sc, is governed by an underlying, latent random
mechanism with unknown sample inclusion probabilities, πci.

(C2) (Design Variables)
p× 1 variables, X ∈ X , fully determine the unit conditional inclusion probabilities
into Sr and Sc for the random selection mechanisms. A consequence of the above
set-up is that both Uc and Ur contain variables {Xr,Xc} ∈ X on the same measure
space.

(C3) (Overlapping Populations)
Populations, (Uc,Ur), may overlap where units are jointly contained in each set such
that overlapping units will each appear exactly twice in Ũ . As a result, observed
samples (Sc,Sr) may also contain overlapping units such that overlapping units each
appear twice in S.

(C4) (Independence of Samples)
Conditional on X , Sr ⊥ Sc | X . Inclusions of units into each sample arm are indepen-
dent, no matter the degree of overlap between Ur and Uc.

(C5) (Positive Inclusion Probabilities)
For all i ∈ 1, . . . ,n and for all x ∈ X , conditional inclusion probabilities in each
sampling arm are strictly positive / non-zero, such that P(i ∈ Sr | xi, i ∈ Ũ)> 0, P(i ∈
Sc | xi, i ∈ Ũ) > 0, which leads to P(i ∈ S | xi,Ũ) > 0. These conditions result in
P(i ∈ S | i ∈ Ũ) =

∫
P(i ∈ S | x, i ∈ Ũ)F(dx)> 0.

Assumption (C1) states that the non-random convenience sample may be understood as
governed by a latent random process that we seek to uncover. The focus of this paper is the
estimation of unknown inclusion probabilities into the convenience sample.
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Convenience sample inclusion probabilities, πci, are generally not observed for units
in the convenience sample; e.g., ∀i ∈ Sc. Reference sample inclusion probabilities are not
generally observed for those units sampled solely into the convenience sample (and not
included in the reference sample); e.g., ∀ j ∈ Sc \Sr.

Assumption (C3) allows for a general case of non-perfectly overlapping convenience
and reference frames (from which the associated two samples are taken).

Our method requires Assumption (C4) on the independence of the reference and inclu-
sion samples, but makes no assumptions about the degree of unit overlaps between the two
samples.

It is typical to assume positive inclusion probabilities for all units as we do in Assump-
tion (C5) for any rational sampling design in order to ensure that every unit in population U
may be sampled, which in turn allows for unbiased inference about the population for the
observed samples taken under this assumption.

3. Likelihood Based Estimation of Inclusion Probabilities Under Two-
arm Samples

In this section we prove an identity that is central to our proposed approach for estima-
tion of convenience sample inclusion probabilities. The proof is made from the first princi-
pals and under no requirement for disjointness among the sample arms. Namely, we derive
the relationship between the propensity for the observed set of reference and convenience
inclusion indicators and the associated inclusion probabilities in each sample.

Suppose, each frame is a subset of target population U0, such that Uc ⊆ U0 and Ur ⊆
U0. Define probabilities pc (xi) = P

{
i ∈Uc|i ∈U0,xi

}
and pr (xi) = P

{
i ∈Ur|i ∈U0,xi

}
.

Quantities pr(xi) and pc(xi) are known coverage probabilities of population U0 by frames
Uc and Ur for a set of design variables xi. These probabilities depend on the same design
variables, xi, though units will express differing values for the common design variables.
For example, frame Uc could be the subset of individuals in U0 with broadband internet
access and frame Ur could be the subset of individuals in U0 with mailable addresses.

While conditional inclusion probabilities πr (xi) = P{i ∈ Sr|i ∈Ur,xi} for sample Sr are
known, convenience sample conditional inclusion probabilities πc (xi)=P{i ∈ Sc|i ∈Uc,xi}
are unknown and can be inferred from combined sample S = Sc +Sr, where samples Sc and
Sr are stacked together. As already mentioned in previous sections, samples Sc and Sr may
overlap. The overlapping units appear in (stacked) set S twice: as units from Sc (with zi = 1)
and as units from Sr (with zi = 0).

Proposition: Assume Conditions (C1)-(C5). Then, the following relationship between re-
spective probabilities holds:

πz (xi) =
πc (xi) pc (xi)

πc (xi) pc (xi)+πr (xi) pr (xi)
. (1)

Proof : The combined set S emerges from the following scheme displayed in Figure 1 where
we stack identical populations U0 of units. The set of units in U0 are duplicated from the
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top-to-the-bottom stack. In the top layer we define Ur from which we draw sample, Sr and
we do the same for the convenience population, Uc, and sample, Sc, in the bottom stack.
We see that units in Ur and Uc may overlap in this scheme, which allows units in Sr and
Sc to also overlap, though we don’t know the identities of overlapping units because we
have duplicated them in each stack, so our notation separately indexes the same unit in the
reference and convenience frames and observed samples. This means that the sampling
processes in each stack are independent from one another, but readily permit overlaps in
(Ur,Uc) and (Sr,Sc). We next outline the scheme of Figure 1 in our proof.

To summarize, we consider two copies of target population U0, where one copy of the
population includes frame Uc, the other copy includes Ur. We stack the two copies of U0

together and denote the result by U : U =U0 +U0.

For such a setup, by the Law of Total Probability (LTP), we have:

P{i ∈ Sc|i ∈U,xi}= P
{

i ∈ Sc|i ∈Uc, i ∈U0,xi
}

P
{

i ∈Uc|i ∈U0,xi
}

P{i ∈U0 | i ∈U}

=
1
2

πc (xi) pc (xi)

(2)

We note that i ∈ Sc implies that i ∈ Uc since we draw the convenience sample from its
associated frame, Uc. Similarly,

P{i ∈ Sr|i ∈U,xi}= P
{

i ∈ Sr|i ∈Ur, i ∈U0,xi
}

P
{

i ∈Ur|i ∈U0,xi
}

P{i ∈U0 | i ∈U}

=
1
2

πr (xi) pr (xi) .

(3)

Now, because we have stacked U0 twice - once for the convenience sampling process and
again for the reference sampling process - thus ”shifted" sets Sc and Sr do not overlap (as
illustrated in Figure 1), so we may sum them below to compute the total probability of being
included into the pooled sample,

P{i ∈ S|i ∈U,xi}= P{i ∈ Sc|i ∈U,xi}+P{i ∈ Sr|i ∈U,xi}

=
1
2

πc (xi) pc (xi)+
1
2

πr (xi) pr (xi) .
(4)

Finally, by the definition of conditional probability,

P{i ∈ Sc|i ∈ S, i ∈U,xi}=
P{i ∈ Sc|i ∈U,xi}
P{i ∈ S|i ∈U,xi}

. (5)

Equation 1 directly follows from Equations 2, 4, and 5.

We may now parameterize a likelihood for the observed indicator zi using Equation 1:

zi | xi,β
ind∼ Bernoulli(πz(xi,β )). (6)
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Figure 1 Gridded area represents observed convenience Sc and reference Sr samples stacked together to form com-
bined sample S: S = Sc + Sr; under this scheme, if samples Sc and Sr overlap, the overlapping units are
included in S twice. Convenience sample Sc is selected from population Uc, and reference sample Sr is
selected from population Ur , where Uc and Ur are subsets of target population U0: Uc ⊆U0 and Ur ⊆U0.
In this setup, two identical copies of target population U0 are stacked together, so that U =U0 +U0.

The likelihood of Equation 6 implicitly depends on parameter πc(xi) through Equation 1.
We may specify a model for πc(xi) = f (xi,β ) and fit parameters using either Frequentist or
Bayesian approaches. We use a Bayesian approach in the sequel for its flexibility.

Remark 1: Our formulation for the propensity score does not rely on disjointness among
the sampling arms. Our method explicitly allows for the unknown overlapping of units in Sr

and Sc.

Remark 2: We can view the process as a two-phase selection. First, units are selected from
target population U0 to subpopulations Uc and Ur with probabilities pc(xi) and pr(xi), re-
spectively. At the second phase, units are selected to respective samples with probabilities
πc(xi) and πr(xi).

Remark 3: The equal frame scenario. If frames Uc and Ur coincide, we have pc (xi) =

pr (xi), and Equation 1 becomes

πz (xi) =
πc (xi)

πc (xi)+πr (xi)
. (7)

A similar expression was derived by [?] under the assumption of non-overlapping conve-
nience and reference samples. Our approach does not require this assumption.

Equation 7 holds even when the reference sample is the entire target population frame
U . In this case, πr (xi) = 1 for all units and Equation 7 reduces to

πz (xi) =
πc (xi)

πc (xi)+1
, (8)

which is the same as that of 2021valliant before they approximate it on the observed sample.
We label this as a “one-arm" case. One important simplification in the “one-arm" case is
that πr’s are known (and equal to 1) for all units in combined set S.

We derive the same result as presented in Equation 1 under perfectly overlapping frames
by extending a different result from the economics literature in Appendix A.
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4. Hierarchical Estimation Model

We next specify a hierarchical probability model to estimate convenience sample inclu-
sion probabilities for the units in the convenience sample.

We focus on the equal frame scenario where both the reference and convenience samples
are assumed to be drawn from the same underlying frame to define our Bayesian hierarchical
model and simulation setup. We do so for ease and clarity of explanation, with no loss of
generality. In the common case where the frames do not perfectly overlap, we would use
Equation 1 which inputs coverage probabilities pc (xi) and pr (xi) as known quantities.

We assume that our covariates x fully account for the sampling design. Thus, our goal
is to formulate a model to estimate the inclusion probabilities of convenience sample units
given covariates x. We use them to formulate inverse probabilities based pseudo sampling
weights to construct a survey expansion estimator using response variable of interest y.

4.1 Construction of unknown marginal inclusion probabilities, (πℓi)

We parameterize our model using πℓi = P{i ∈ Sℓ | i ∈Uℓ,xi} to be the conditional inclu-
sion probability for unit i ∈ 1, . . . ,(n = nr +nc) in sampling arm ℓ ∈ (r,c); that is, ℓ indexes
whether the conditional inclusion probability for unit i is specified for the reference (ℓ= r)
or the convenience (ℓ = c) sampling arms. This modeling set-up only assumes that we ob-
serve πℓi for ℓ = r and i ∈ Sr, the conditional sampling inclusion probabilities for the units
observed in the reference sample.

Our model, however, will estimate (πℓi) for all units, i ∈ (1, . . . ,n), for both ℓ = r and
ℓ = c sampling arms. Of particular note, our model estimates πri for i ∈ Sc, the reference
sample inclusion probabilities for the convenience units. So, estimation of the model does
not require known πri for all units. The model will further simultaneously estimate πci for
i ∈ Sc, the convenience sample inclusion probabilities for the convenience units (units in the
convenience sampling arm), which is the primary goal of the model.

A Bayesian hierarchical model is able to be richly parameterized to estimate this ma-
trix of only partially observed conditional inclusion probabilities through the borrowing of
strength in the specifications of functional forms and prior distributions to follow.

4.2 Spline functional form for logit(πℓi)

We input an n×K matrix of design variables, X = (x1, . . . ,xK), where xk denotes the
n× 1 vector for design variable k. We want our model specification to express a flexible
functional form,

logit(πℓi) = f (x1i, . . . ,xKi), (9)

where f (·) may be estimated as non-linear by the data. Complex sampling designs may
utilize design variables with different emphases on different portions of the design space,
which will induce such non-linearity. Two common examples are (i) scaling inclusion prob-
abilities to exactly meet target sample sizes and (ii) thresholding size measures to create
certainty units (with πℓi = 1). Both features induce non-linearity on the logit scale.
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To accomplish the above non-linear formulation we utilize a B-spline basis due to its
flexibility and computational tractability for illustration (of an implementation of our main
result in Equation 1). We may also choose alternative non-linear formulations, such as
a Gaussian process, to achieve similar results, but computation for the Gaussian process
scales poorly in the number of data observations. The use of Bayesian adaptive regression
trees is not easily purposed to our modeling set-up for estimating latent convenience sample
inclusion probabilities. See Chipman et al. (2010).

A B-spline basis is specified for each predictor where Q× 1, g(xki) is a B-spline basis
vector with C denoting the number of bases set equal to the number of knots + number of
spline degrees - 1. We use the vector of B-splines for each predictor k to formulate,

logit(πℓi) = µx,ℓi = x⊤i γx,ℓ+
K

∑
k=1

g(xki)
⊤

βℓk, (10)

where x⊤i γx,ℓ is a linear component and βℓk is a Q× 1 vector of coefficients for the spline
term for each predictor k (column of X) that parameterizes the possibility for a non-linear
functional form for each of the K predictors. The spline term specifies distinct regression
coefficients for each sampling arm, ℓ, and design variable, k, to allow estimation flexibility
that makes few assumptions about the functional form for logit(πℓi). In this sense, even if
we had only used the linear term, the use of distinct spline term regression coefficients for
each predictor and sampling arm makes the model marginally non-linear across the data.

4.3 Random walk of order 1 (autoregressive) horseshoe prior on βℓk

We select a random walk of order 1 (based on first differences) formulation for the prior
on each component of the Q×1, βℓk of the spline term with,

βℓkq | βℓkq−1,κℓkτℓ ∼ N
(
βℓkq−1,κℓkτℓ

)
, c = 2, . . . ,Q, (11)

and βℓk1 ∼ N (0,κℓkτℓ) denotes a spline basis (used for each predictor k ∈ 1, . . . ,K). All
to say, the random walk prior is constructed for the B-spline coefficients defined on each
predictor, xk. This random walk form for the prior enforces smoothness over the estimated
regression coefficients such that the resulting estimated fit is less sensitive to the number
of (spline) knots used and avoids overfitting. The overall mean intercept is identified by
excluding an intercept from the linear term in Equation 10.

We also encourage sparsity in the number of estimated non-zero, (βℓk)
K
k=1, as a group

for predictor K, by using a set of K “local" scale (standard deviation) shrinkage parameters,
κℓk, where a value for κ

ℓk′ near 0 for some predictor k
′

will shrink all Q× 1 coefficients,
β
ℓk′ , to 0. Similarly, global scale (standard deviation) shrinkage parameter, τℓ, would shrink

all (βℓk)
K
k=1 to 0, which favors the linear model term in this limit. We place half Cauchy

priors, κℓk
ind∼ C+(0,1) and τℓ ∼C+(0,1), respectively.

This use of local and global shrinkage parameters under a half Cauchy prior is known as
the horseshoe prior. See Carvalho et al. (2009). If one marginalizes out the global and local
scale shrinkage parameters under the half Cauchy priors, the marginal prior distribution
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for βℓkq will have a large spike at 0 (driving sparsity), but with very heavy tails allowing
the coefficient values to “escape" the shrinkage where the data provide support. By tying
together the priors for (βℓkq)

Q
q=1 the spline coefficients for predictor k escaping shrinkage to

0 will be correlated and relatively smooth.
The vector of K ×1 fixed effects parameters for sampling arm ℓ are each drawn as,

γx,ℓk
iid∼ N

(
0,τγ

)
, (12)

where τγ ∼ student-t+(d.f. = 3,0,1), where we use a relatively flat prior for τγ .

4.4 Joint likelihood for (zi)i∈S and (πri)i∈Sr

We connect our parameters to the data with two likelihood terms. The first term con-
structs a Bernoulli likelihood for the observed sample,

zi | πzi
ind∼ Bernoulli(πzi), (13)

where we recall from Equation 7 that, πzi = πci/(πci+πri) such that this likelihood provides
information for estimation of πci for i ∈ 1, . . . ,n, as well as πri for i ∈ Sc.

We further borrow strength from the known reference sample conditional inclusion
probabilities for the observed reference sample to estimate the unknown conditional in-
clusion probabilities by modeling the known reference sample inclusion probabilities for
the observed reference sample units as a function of our parameters with,

logit(πri)
ind∼ N (µx,ri,φ), (14)

only for units i ∈ Sr such that observed πri is used to provide information about latent µx,ℓi

for both sampling arms (ℓ ∈ (r,c) and all units (i ∈ 1, . . . ,n) based on their intercorrelations
allowed by the prior distribution (and updated by the data). We recall from Equation 10 that
each µx,ℓi is, in turn, connected with each πℓi.

The detailed Stan (Gelman et al., 2015) script that enumerates the likelihood and prior
distributions for all parameters and hyper-parameters is included in Appendix B.

4.5 Bayesian hierarchical model implementations for pseudo likelihoods

We implement the pseudo likelihood formulations of Chen et al. (2020) and Wang et
al. (2021) in the simulation study of Section 5 under our Bayesian hierarchical formula-
tion. We accomplish these implementations by replacing the exact Bernoulli likelihood for
the observed sample under our method of Section 3 with approximate likelihoods for the
underlying population estimated on the sample. Both methods parameterize only πci for
convenience units and use the inclusion probabilities for the reference sample as a plug-in.
Let vector θc =

(
γx,c,(βck)

K
k=1

)
denote the parameters in the non-linear logistic regression

model for πci(xi,θc). Chen et al. (2020) specify the following pseudo log-likelihood,
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ℓ(θc) = ∑
i∈Sc

log
(

πci(xi,θc)

1−πci(xi,θc)

)
+ ∑

i∈Sr

dri log(1−πci (xi,θc)) , (15)

where dr = 1/πri. Equation 15 uses a survey approximation for the population in the second
term by inverse probability weighting the reference sample contribution. This pseudo likeli-
hood will tend to produce overly optimistic (narrow) credibility intervals because it uses πri

as a plug-in (rather than co-modeling it). The first term will also induce a noisy estimator
for unit with low values for πci, which will occur when there is a lot of separation in the
covariate, x, values between the convenience and reference samples.

As discussed in the introduction, Wang et al. (2021) develop a Bernoulli likelihood for
the population augmented by the convenience sample. This approach specifies indicator
Zi = 1 if unit i is in the convenience sample, or 0 if it is the finite population and develops
an associated propensity score, πZi = πci/(πci + 1). This expression is a special case of
our formula derived in Section 3 where one arm is the convenience sample and the other
arm is the entire population. So the exact likelihood specified in Wang et al. (2021) is a
special case of our method under a one-arm sample set-up. As with Chen et al. (2020), they
approximate their log-likelihood on the observed sample with

ℓ(θc) = ∑
i∈Sc

log(πZi(xi,θc))+ ∑
i∈Sr

dri log(1−πZi(xi,θc)) . (16)

This approximate likelihood will also tend to produce overly optimistic credibility intervals
because it doesn’t account for the uncertainty in the generation of samples (by plugging in
the reference sample weights, dri, instead of modeling them).

Both comparator methods are implemented under our hierarchical Bayesian model such
that they are benefited from our flexible, nonlinear formulation for the logit of the conve-
nience sample inclusion probabilities and our autoregressive smoothing on spline coeffi-
cients. In this sense, these implementations are more robust than the estimating equation
approaches used by the authors. In addition, in our implementation of Wang et al. (2021),
we estimate convenience sample probabilities in a single step.

5. Simulation Study

We construct a finite population and two sets each of reference and convenience samples
characterized by low and high overlaps in number of overlapping units between the two
sampling arms. We perform this construction in each iteration of a Monte Carlo simulation
study designed to compare the repeated sample (frequentist) properties of our two-arm exact
likelihood approach with those of the pseudo likelihood approaches. We compare bias, root
mean squared error and coverage of 90% credibility intervals.

5.1 Simulation Settings

To compare performance variability across multiple realized populations, we generate
M = 30 distinct populations of size N = 4000. We chose a relatively small population size
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and large sampling fractions to explore the full range of πc ∈ [0,1]. A large sampling frac-
tion and large inclusions probabilities is also reasonable in establishment surveys. We set
the reference sample size at nr = 400 using a proportion-to-size (PPS) sampling. We select
convenience samples of size nc ≈ 800 using Poisson sampling. We recall our assumption
that the convenience sample arises from a latent random sampling mechanism with un-
known inclusion probabilities. We select two distinct independent convenience samples
from each population, which we deem ‘high’ and ‘low’ overlap in comparison to the ref-
erence sample. High-overlap convenience samples have selection probabilities πc with a
similar relationship with population covariates X compared to the selection probabilities
πr for the reference sample. In constrast, low-overlap convenience sample probabilities πc

have the opposite relationship with covariates.
For each population, we let X have K = 5 columns, including an intercept, three inde-

pendent binary variables (A,B,C) with P(xi = 1) = 0.5, and a continuous predictor drawn
from a standard normal distribution N(0,1). We do not explore the situation of correlated
design variables in this simulation study. We generate the outcome yi as a lognormal dis-
tribution with centrality parameter µi = xiβ and scale parameter 2: log(yi) ∼ N (µi,2).
The generating parameters are (βcont ,β0,βA,βB,βC) = (1.0,0.5,0.0,−0.5,−1.0). The in-
clusion probabilities for the reference sample are constructed by first setting size measure
sri = log(exp(µi) + 1). We then convert size to inclusion probabilities πri via the inclu-
sionprobabilities() function from the ‘sampling’ package in R. See Tillé and Matei (2021)..
Most sizes of sri ∝ πri , however the largest size values get mapped to πri = 1, thus induc-
ing a non-linear ‘kink’ in the mapping from sri → πri . We note that our estimation model
logit(πri) = µi is misspecified leading to a non-linear relationship with the xi. This moti-
vates the use of splines to capture non-linear relationships and add robustness to the model
estimation. It is common for the largest-sized units to be included in the sample with prob-
ability 1.

The inclusion probabilities for the convenience samples are inverse logit transformations
of linear predictors with an offset adjustment to the intercept to approximately meet a target
sample size: πci = logit−1(xiβ +off). For the high-overlap sample:
(βcont ,β0,βA,βB,βC,off) = (0.500,0.175,−0.150,−0.475,−0.800,−0.900). For the low
overlap sample: (βcont ,β0,βA,βB,βC,off) = (−1.00,−0.50,0.00,0.50,1.00,−2.23). It is
generally more challenging to estimate convenience sample inclusion probabilities when
there is a lower overlap of predictor values with the reference sample.

Each plot panel in Figure 2 compares the generated reference sample inclusion probabil-
ities to the convenience sample inclusion probabilities for under a high-overlap size-based
sampling design on the left and a low-overlap sampling design on the right. Each plot
panel orders units by reference sample inclusion probabilities low-to-high along the x-axis.
The degrees of similarity in the reference and convenience sample inclusion probabilities
are achieved by manipulating the size and direction of the vector of coefficients β for the
design variables.

Figure 3 compares the percent of the total combined sample (reference and convenience)
units which overlap (e.g. is present in both samples) for realizations of ‘high’ and ‘low’
overlap convenience samples as well as a baseline expected overlap from two independent
simple random samples. As indicated by their labels, ‘high’ overlap samples have a larger
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Figure 2: Comparison of inclusion probabilities for a single realization of reference and
convenience samples for high overlap (left) and low overlap (right) designs. Units index the
combined sample.
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Figure 3: Percent of pooled sample present in both reference and convenience samples by
type of convenience sample (High and Low). Distributions over 30 population and sample
realizations. Expected percent for two independent simple random samples (solid horizontal
line).
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proportion of individuals in both the reference and convenience sample than each of a sam-
ple of the same sizes based on SRS and a ‘low’ overlap sample.

5.2 Results - Estimating convenience sample inclusion probabilities,
πci

We begin our presentation of results by comparing the relative performances of exact
(two-arm) and pseudo likelihood methods for the estimation of the convenience sample
inclusion probabilities, πci i ∈ Sc based on our known true values.

The plot panels of Figure 4 present the mean of bias (over the Monte Carlo iterations),
the square root of the mean squared error and the (frequentist) coverage and average widths
of 90% credibility intervals from left-to-right in the matrix of plot panels. These values
are computed pointwise for increasing values of the true conditional inclusion probabilities
from left-to-right in each plot panel. The top row of plot panels presents results for high-
overlap (convenience and reference) sample datasets and the bottom row presents results for
low-overlap sample datasets.

We compare 3 methods:

1. two-arm - constructs an exact likelihood from our main method of Equation 7 under
a two-arm convenience and reference sample set-up.

2. CLW - The pseudo likelihood method of Chen et al. (2020).

3. WVL - The pseudo likelihood method of Wang et al. (2021).

For the two pseudo likehood methods, we implement each directly as pseudo posteriors and
with a post-processing adjustment using a sandwich estimate of an asymptotic covariance
matrix. See Williams and Savitsky (2021). The stability of estimation of the sandwich
estimator for CLW was poor. In order to compensate, we first used a scalar down-weighting
(or tempering) of all observations (both convenience and reference) such that the sum of
the sum of the individual weights was equal to the total sample size. See Bhattacharya et
al. (2019) for a detailed discussion on the stabilization of posterior estimation using such
fractional weights.

We see that our two-arm method produces little mean bias for both small and large
values of the true convenience sample inclusion probabilities and achieves nominal coverage
of the 90% credibility intervals.

By contrast, both pseudo likelihood methods perform similarly to one another with high
variability (RMSE) and severe undercoverage for medium-to-larger values of true conve-
nience sample inclusion probabilities πc. The collapse in coverage becomes worse for the
low overlap dataset as the use of reference sample weights as a plug-in both under-estimates
the uncertainty introduced by the reference sample design and induces noise over repeated
samples. For high overlap, a post-processing adjustment for the pseudo likelihood methods
improves coverage at the expense of increasing the width of the corresponding interval be-
yond that of the two-arm method. For low overlap, the post-processing adjustment can only
adjust variance but not bias. In fact it may even amplify bias. Coverage is improved, but at
the cost of very wide intervals.
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samples across repeated simulations. Using informative reference sample for main approach
(red), compare to pseudo-likehood based methods CLW (yellow) and WVL (blue). Ad-
justed versions of pseudo-likehood adjust based on an estimated sandwich covariance ma-
trix: CLW-A (green) and WVL-A (purple). Left to Right: Mean Bias, Square Root Mean
Squared Error, and Coverage and Interval Width for 90% intervals for predicting conve-
nience sample inclusion probabilities πc
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Figure 5: Average and pointwise 95% frequentist confidence intervals for the posterior
mean estimator of πc over the Monte Carlo iterations for high overlap (top) and low overlap
(bottom) samples. Using informative reference sample for main approach (red), compare
to pseudo-likehood based methods CLW (yellow) and WVL (blue). Adjusted versions of
pseudo-likehood adjust based on an estimated sandwich covariance matrix: CLW-A (green)
and WVL-A (purple).

Each plot panel in Figure 5 compares the average and pointwise 95% frequentist confi-
dence intervals for the posterior mean estimator of πc over the Monte Carlo iterations. The
left-hand panel represents the results for the high-overlap datasets and the right-hand panel
for the low-overlap datasets. We see that the two-arm exact likelihood method produces
little-to-no bias.

By contrast, the pseudo likelihood methods produce an enormous amount of variability.
While we would expect the performance of the pseudo likelihood methods to improve as the
sample sizes increases since both methods produce consistent estimators, our chosen sample
size is a very typical domain sample size for a survey such that the superior performance of
our exact likelihood methods at these moderate sample sizes (for (nr,nc)) is an important
result that demonstrates much faster convergence for our approach.

We use our method to combine convenience and reference sample inclusion probabilities
(πci,πri) to construct a non-model-based survey direct estimator for the population mean, µ ,
of some response variable of interest, y, that is correlated with the survey design variables, x
in Appendix C. We compare our resulting population mean estimator to that estimated from
the two pseudo likelihood methods.

6. Application

We next present results from applying our proposed method to estimate pseudo weights
for a quota sample of government employment collected in the Current Employment Statis-
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tics (CES) survey administered by the U.S. Bureau of Labor Statistics (BLS). We subse-
quently apply the pseudo weights to estimate local government employment for the Metropoli-
tan Statistical Areas (MSA) of California.

The CES uses probability-based sampling design for private industries. For government
employers, however, the CES estimates are based on a non-probability sample. The employ-
ment coverage in government industries is generally high, so that the resulting unweighted
estimates based on such a non-probability sample usually provide acceptable level of preci-
sion. For measuring employment of local governments, however, such an unweighted quota
(convenience) sample based estimate may be biased.

We will use the quarterly census of employment and wages (QCEW), which is a census
instrument administered by BLS that measures establishment employment, as our “refer-
ence sample" to estimate the pseudo weights for the CES government convenience sample.
As a large census instrument, QCEW quality checking and reporting are lagged by many
months, so the CES is used to provide the current month employment. The QCEW em-
ployment levels are maintained in an administrative source called the longitudinal database
(LDB).

To estimate pseudo weights, we stack together the LDB and the CES sample and apply
Equation 1 that links the propensity score for the pooled sample, πzi, to the convenience
(CES) inclusion probabilities, πci, and the reference sample inclusion probabilities, πri.

The LDB is designed to cover the target population; therefore, we set πr = 1 for all
units in LDB, regardless of xi. In addition, coverage probabilities are set pr = 1 and pc = 1
for all units. In the case that LDB frame were insufficient and didn’t cover all of the CES
sample we could set pr < 1 in our set-up to account for it. We observe: z = 1 for units in
the CES sample and z = 0 for units in the LDB. Note, even though CES units are a subset of
LDB, we are not concerned with matching the CES to LDB. Instead, we stack the two sets
together. Thus, CES units appear in the stacked set twice: once with z = 1 and again with
z = 0.

We apply our model to estimate probabilities πc (xi) of inclusion into the CES sample,
where xi is employment level of unit i in September (the benchmark month). We formulate
our model with domain level random effects ud and use splines as described in Section 4.

The fit performance is assessed by comparing CES based estimates to QCEW-based
employment levels that become available to researchers on a lagged basis. Due to different
seasonality patterns between the employment series derived from QCEW data and CES, the
most meaningful comparison of the two series is after 12 months of estimation. Mimicking
the production setup, we obtain level estimates after 12 months of estimation from monthly
ratio estimates, R̂d,τ , for a set of domains d ∈ 1, . . . ,N at month τ . The monthly ratio
estimates are multiplied together and by the September starting level, Yd,0, that is available
to CES at the start of the estimation cycle,

Ŷd,12 = Yd,0

12

∏
τ=1

R̂d,τ .

Monthly ratio estimates R̂d,τ are obtained using a link relative (LR) estimator, that is a ratio
of the sum of the current month to the sum of previous month responses, over set sd,τ of CES
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respondents at a given month τ in domain d: R̂LR
d,τ =∑i∈sd,τ

yi,τ/∑i∈sd,τ
yi,τ−1. Once we apply

our approach to obtain pseudo weights wi, we use them in the analogous formula to form a
”pseudo" weighted link relative (WLR) estimator, R̂WLR

d,τ = ∑i∈sd,τ
wiyi,τ/∑i∈sd,τ

wiyi,τ−1.
We extract the posterior means of the pseudo weights and apply them to each month in

the estimation cycle. Figure 6 displays examples of estimates of employment levels over
the 12 months of the estimation cycle for California MSAs under both the LR and WLR
estimators, both compared to the QCEW Historical (Hist) truth (that we obtain on a lagged
basis). We readily see that our pseudo weighted WLR estimator generally does a better job
of estimating the truth.

Figure 7 shows the distribution of annual revisions of the level estimates based on LR
and WLR methods, respectively, over the set of MSAs in California. The annual revision,
revd,12, is defined as the difference between the respective estimate, Ŷd,12, and “true" popu-
lation level Yd,12 that becomes available after the fact, at the 12th month after the benchmark
month:

revd,12 = Ŷd,12 −Yd,12.

Again, the WLR estimator demonstrates better fit performance than does the LR estimator
in that the distribution of revision magnitudes is more compact.

To compute variance vWLR
d,τ of the WLR estimate of relative change Rd,τ , we extract

10 draws from the posterior distribution of the fitted pseudo weights, estimate sampling
variance for each draw of the pseudo-weights and then use a multiple imputation proce-
dure described in a Appendix C to compute the total variance of Rd,τ in a manner that
accounts for the uncertainty in the estimation of weights. Coefficients of variations, cvd,τ =√

vWLR
d,τ /Rd,τ , are presented in Figure 8, where they are plotted against the employment

level of respective domains. It can be observed that variances tend to be smaller in larger
domains, as is expected.

7. Discussion

We introduced a novel approach that derived an exact relationship between the sample
propensity score, πzi, on the one hand, and the reference and convenience samples condi-
tional inclusion probabilities, πri, and πci, on the other hand for an observed pooled sample.
Our expression is valid for any size of the overlap between the reference and convenience
samples. It allows us to specify a likelihood directly for the sample using πzi and our speci-
fication of a Bayesian hierarchical probability model to simultaneously estimate all of them.

A. Estimation of Inclusion Probabilities Under Symmetric Two-arm Sam-
pling

Our main method derives an expression connecting (πzi,πci,πri) on the observed sample
from first principles using the survey sampling literature. We proceed on an alternative path
that also connects these quantities based on the economics literature. We will see in the
sequel that this alternate path produces the same estimator, though they are derived from
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September 2019, for California MSAs.

completely different approaches.
Lancaster and Imbens (1996) provide a modeling formulation for estimation of the con-

ditional sample inclusion probabilities for case observations of interest under a two-arm
experimental design with one-arm consisting of cases and the other consisting of an un-
known collection of both case observations and control observations. Under an observed
sample from each arm, they assume a 2−step sample observation process where the first
step is a Bernoulli draw for the observed sub-sample indicator into either a case sample arm
or a mixed case and control sample arm, given the observed sample. The second step con-
sists of the realization or appearance of units from the selected arm in the first stage. The
process parameterizes an exact likelihood for the distribution for predictors, x, conditioned
on the sub-population of cases in that sampling arm and a marginal population distribution
for x in the mixed arm. Using the distribution for x allows a clever and simple specification
of the marginal distribution for x since they don’t know the mix of cases and controls in the
second arm. The conditional distribution in the case sampling arm is a function of the case
sample conditional inclusion probability (by Bayes rule) parameterized by regression coef-
ficients. This approach has the virtue of simultaneous estimation of conditional propensity
scores and the conditional inclusion probabilities for cases.

We proceed to specialize and extend their 2−step sample observation process and use of
conditional distributions for x to our set-up of reference and control sampling arms and will
specify a likelihood in each arm based on the sub-population of units linked to each type of
sample.

Let zi ∈ {0,1} be the same binary inclusion indicator of selection into the convenience
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sample for unit i ∈ (1, . . . ,n) used in the previous section. When zi = 0 unit i is drawn
from the reference sample. We suppose the observed two-arm sample (with convenience
and reference sample arms) arises from a Bernoulli draw into either arm with probability
P(zi = 1) = P(i ∈ Sc | i ∈ S) and subsequently specify a conditional sub-population dis-
tribution for xi whose form depends on the outcome of the Bernoulli draw for each unit,
i ∈ (1, . . . ,n). In particular, p(xi | i ∈ Sc) = πc(xi | βc)× f (xi)/P(i ∈ Sc | i ∈ S, i ∈ Uc) for
the convenience sample by Bayes rule where we recall that πc(xi | βc) = P(i ∈ Sc|xi,βc).
We drop the conditioning on Uc and Ur in the sequel where the context is obvious for read-
ability. We have included regression parameters βc that parameterizes a model for unknown
πc(xi | βc) that we wish to estimate. By a symmetric process for the reference sample we
have, p(xi | i ∈ Sr) = πr(xi | βr)× f (xi)/P(i ∈ Sr | i ∈ S).

We note that both specifications for conditional distributions for xi in each sampling arm
use the same marginal distribution, f (xi), because both samples are drawn from the same
underlying population.

Let q = P(i ∈ Sc) =
∫

πc(xi | βc) f (x)dx and t = P(i ∈ Sr) =
∫

πr(xi | βr) f (x)dx denote
the unknown marginal probabilities used above to specify the conditional distributions for xi

in each sampling arm. The marginal (over predictors, x) probability for a unit to be selected
into a sampling arm is denoted by h = P(zi = 1) = P(i ∈ Sc | i ∈ S). All of (h,q, t,βc,βr)

are unknown parameters that will receive prior distributions to be updated by the data.

The conditional distributions for xi in each arm and the marginal probabilities for selec-
tion into each arm parameterize the likelihood for (h,q, t,βc,βr),

L(h,q, t,βc,βr | z,X)×
n

∏
i=1

f (xi) =
n

∏
i=1

(hπc(xi | βc)/q)zi × (((1−h)πr(xi | βr)/t)1−zi

× f (xi),

(17)

where we factor out the f (xi) on both sides and subsequently propose to drop these marginal
distributions for the covariates because we don’t believe they are random. We use f (xi) as
a computation device to allow us to specify a likelihood with conditional distributions of xi

in each sampling arm.

We proceed to reparameterize Equation 17 by extending an approach of Johnson et al.
(2021) from the case-control setting to our two-arm sampling set-up. We construct the
following transformed parameters:

ψ = q(1−h)/th

πzi = πc(xi | βc)/(πc(xi | βc)+ψπr(xi | βr))

1− q̃i = (1−h)πr(xi | βr)/t.

(18)

Using the transformations of Equation 18 allows us to reparameterize the conditional
likelihood (after dropping f (xi) in Equation 17) to,

L(h,q, t,βc,βr | z,X) =
n

∏
i=1

π
zi
zi (1−πzi)

1−zi × 1− q̃i

1−πzi
, (19)
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which is a product of a Bernoulli distributed term and a ratio of transformed parameters.

We examine the non-Bernoulli likelihood contribution, ∏
n
i=1

1−q̃i
1−πzi

asymptotically as the
reference sample size, nr ↑ ∞, under a fixed convenience sample size, nc. We present a
theoretical result in the following section that demonstrates the log of this ratio contribution
to the likelihood limits to 0, asymptotically for nr and nr/nc both sufficiently large to allow
the ignoring or dropping of this term.

We may construct a model using the Bernoulli likelihood,

L(h,q, t,βc,βr | z,X) =
n

∏
i=1

π
zi
zi (1−πzi)

1−zi , (20)

with associated propensity,

πzi = πc(xi)/(πc(xi)+ψπr(xi)) (21)

where we have suppressed (βc,βr) to facilitate comparison with πz(xi) = πc(xi)/(πc(xi)+

πr(xi)) from our main method.

We see that the propensity formulation here and under our main method are nearly iden-
tical, up to an inclusion of ψ in the denominator under the Symmetric two-arm approach,
despite both being derived from different principles. We prove in the next section that un-
der the above definitions for (h,q, t) that ψ must equal 1, which may be seen intuitively
by noting that for a sample size, n, sufficiently large we may plug in modal quantities,
(h = nc/n,q = nc/N, t = nr/N), for those marginal probabilities which produces ψ = 1.
Our proof for ψ = 1 is true, however, for any sample size. The implication is that we
have arrived at the very same result for the likelihood and conditional propensity, πzi, as
developed under our main approach. The reverse implication is that the classical setting
for Lancaster and Imbens (1996) could be estimated more efficiently by setting ψ = 1. In-
vestigating whether this simplification for ψ = 1 holds for more complex applications such
as k-indexed simultaneous outcomes with uniques values for ψk (Johnson et al., 2021) is a
subject for future work.

A.1 Proof that log
(

1−q̃i
1−πzi

)
asymptotically contracts on 0.

This proof performs an extension to the corresponding proof for stratified use-availability
designs found in Johnson et al. (2021) to our case of a the two-arm sampling design under
an arbitrary sampling design.

The pseudo log likelihood contribution ∑
n
i=1 log

(
1−q̃i
1−pzi

)
contracts on 0 as the reference

sample grows, nr ↑ ∞ and h = nc/n ↓ 0. We begin with some simple algebra to state the
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likelihood term with marginal probabilities, (h,q, t),

n

∏
i=1

1− q̃i

1−πzi
=

n

∏
i=1

(1−h)πri

t
× πci +ψπri

ψπri

=
n

∏
i=1

(1−h)×
(

πci

ψt
+

πri

t

)
=

n

∏
i=1

(1−h)×
(

πci

ψc
+

πri

t

) (22)

where for readability we simplify the expression of πc(xi | βc) with the short-hand, πci, and
the same for πri. We plug in for ψ = q(1−h)

h × 1
t = ψc

t into the last equation in the series
where ψc is composed of quantities solely related to the convenience sample.

We take the logarithm of the last equation of Equation 22,

log

(
n

∏
i=1

(1−h)×
(

πci

ψc
+

πri

t

))
= n log(1−h)+

n

∑
i=1

log
(

πci

ψc
+

πri

t

)
. (23)

We proceed to take a Taylor series expansion of log
(

πci
ψc

+ πri
t

)
about πci

ψc
= 0 and use the

first term, which we may do since πci
ψc

grows vanishingly small in the limit as n ↑ ∞ (since
h ↓ 0 such that ψc ↑ ∞). This produces,

n log(1−h)+
n

∑
i=1

log
(

πci

ψc
+

πri

t

)
= n log(1−h)+

n

∑
i=1

πci

ψc

t
πri

(24)

= n log(1−h)+
t

ψc

n

∑
i=1

πci

πri
(25)

= n log(1−h)+
t

ψc
×
[

πc

πr

]
(26)

= n log(n−nc)−n logn+
nc

n−nc
× nt

q

[
πc

πr

]
, (27)

where we have plugged in h = nc/n for n sufficiently large and
[

πc
πr

]
represents the mean of

the ratio, 1
n ∑

n
i=1

πci
πri

.

We next evaluate the limit of the above expression as nr ↑ ∞ under a constant value for
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nc,

lim
nr↑∞

n log(n−nc)−n logn+
nc

n−nc
× nt

q

[
πc

πr

]
=−nc +nc

t
q

[
πc

πr

]
(28a)

=−nc +nc
t
q

πc

πr
(28b)

=−nc +nc
t
q

q
t

(28c)

=−nc +nc. (28d)

In Equation 28b, the mean of the ratios contracts on the ratio of the means as n ↑ ∞

because πci limits to 0 as n increases since nc is fixed such that the limn↑∞
πcn
πrn

exists and is
finite. Also required is that πrn be non-decreasing as n increases, which we may achieve
through reordering the terms. Next, we apply the Law of Large Numbers for the conver-
gence of the sample mean under the assumption of absolutely bounded values in expectation
for q and t.

A.2 Proof that ψ = 1 under the Symmetric Two-arm Method of Sec-
tion A

Let marginal (over xi) probabilities be defined as, h = P(i ∈ Sc | i ∈ S), q = P(i ∈ Sc |
i ∈ U), t = P(i ∈ Sr | i ∈ U) and further define ψ = q(1− h)/th. Let S denote the space
of all two-arm samples, (Sc,Sr) of size (nc,nr), respectively. Recall that U is the set of
two stacked populations {U0,U0} corresponding to each arm. Then if we assume strictly
positive conditional inclusion probabilities for all units and that the convenience sample
arises from an underlying latent random sampling design then,

ψ = 1 a.s. Pπ , where Pπ is the unknown true joint generating distribution for all (Sc,Sr) ∈
U ⊂ S , given U . For any S = Sc + Sr ∈U ⊂ S ,

ψ =
q(1−h)

th
(29a)

ψ
h
q
=

1−h
t

(29b)

ψ
P(i ∈ Sc | i ∈ S)
P(i ∈ Sc | i ∈U)

=
P(i ∈ Sr | i ∈ S)
P(i ∈ Sr | i ∈U)

(29c)

ψ
P(i ∈ Sc | i ∈ S)P(i ∈ S | i ∈U)

P(i ∈ Sc | i ∈U)
=

P(i ∈ Sr | i ∈ S)P(i ∈ S | i ∈U)

P(i ∈ Sr | i ∈U)
(29d)

ψP(i ∈ S | i ∈ Sc) = P(i ∈ S | i ∈ Sr) (29e)

ψ = 1, (29f)

where in Equation 29d we multiply both left- and right-hand side of Equation 29c by P(i ∈
S | i ∈U)> 0.
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Remark: When  the  reference sample  is  the population  Sr = U0,  the proof holds without 
modification.

B. Stan Model Estimation Script

We present the Stan estimation script (Gelman et al., 2015) for our two-arm exact like-
lihood method, below. The script is built around Stan’s partial_sum function to allow 
within chain parallelization for computational scalability.
functions {

vector build_b_spline(vector t, vector ext_knots , int ind , int order );
matrix build_mux(int N, int start , int end , int K_sp, matrix X, matrix [] G,

matrix beta_x, matrix [] beta_w);
row_vector build_muxi(int K_sp, int num_basis , row_vector x_i, vector [] g_i,

matrix beta_x, matrix [] beta_w);
vector build_b_spline(vector t, vector ext_knots , int ind , int order) {

// INPUTS:
// t: the points at which the b_spline is calculated
// ext_knots: the set of extended knots
// ind: the index of the b_spline
// order: the order of the b-spline
vector[num_elements(t)] b_spline;
vector[num_elements(t)] w1 = rep_vector(0, num_elements(t));
vector[num_elements(t)] w2 = rep_vector(0, num_elements(t));
if (order==1)

for (i in 1:num_elements(t)) // B-splines of order 1 are piece -wise constant
b_spline[i] = (ext_knots[ind] <= t[i]) && (t[i] < ext_knots[ind+1]);

else {
if (ext_knots[ind] != ext_knots[ind+order -1])

w1 = (to_vector(t) - rep_vector(ext_knots[ind], num_elements(t))) /
(ext_knots[ind+order -1] - ext_knots[ind]);

if (ext_knots[ind+1] != ext_knots[ind+order])
w2 = 1 - (to_vector(t) - rep_vector(ext_knots[ind+1], num_elements(t))) /

(ext_knots[ind+order] - ext_knots[ind+1]);
// Calculating the B-spline recursively as linear interpolation of two lower -order splines
b_spline = w1 .* build_b_spline(t, ext_knots , ind , order -1) +

w2 .* build_b_spline(t, ext_knots , ind+1, order -1);
}
return b_spline;

}

matrix build_mux(int N, int start , int end , int K_sp, matrix X, matrix [] G, matrix beta_x, matrix [] beta_w){
matrix[N,2] mu_x;
for( arm in 1:2 )
{

mu_x[1:N,arm] = X[start:end ,] * to_vector(beta_x[,arm]); /* N x l for each arm */
// spline term
for( k in 1:K_sp )
{

mu_x[1:N,arm] += to_vector(beta_w[arm][,k]’ * G[k][,start:end ]); /* N x 1 */
} /* end loop k over K predictors */

}/* end loop arm over convenience and reference sample arms */

return mu_x;
}

row_vector build_muxi(int K_sp, int num_basis ,
row_vector x_i, vector [] g_i, matrix beta_x, matrix [] beta_w){

row_vector[2] mu_xi;

for( arm in 1:2 )
{

mu_xi[arm] = dot_product(x_i,beta_x[,arm]); /* scalar */
// spline term
for( k in 1:K_sp )
{

mu_xi[arm] += dot_product(beta_w[arm][1:num_basis ,k], g_i[k][1:num_basis ]); /* scalar */
} /* end loop k over K predictors */

}/* end loop arm over convenience and reference sample arms */

return mu_xi;

} /* end function build_mu */

real partial_sum(int[] s,
int start , int end , real[] logit_pw , int K_sp, int n_c, int n,
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int num_basis , matrix X, matrix [] G, matrix beta_x, matrix [] beta_w,
real phi_w) {

int N = end - start + 1;
matrix[N,2] mu_x;
matrix[N,2] p;
vector[N] p_tilde; // this pseudoprobability must be in [0,1]
real fred = 0;

// memo: slicing on all of mu_x[li,arm], p[li,arm], p_tilde[li] for li in 1:(end -start+1)
// where p_tilde is the mean vector for binary data vector , s, and mu_x[,2]
// is the mean vector for data vector logit_pw.
// Also slicing data vectors s and logit_pw in their respective
// log -likelihood contributions.

mu_x = build_mux(N, start , end , K_sp, X, G, beta_x, beta_w);

p = inv_logit( mu_x );

// 1. bernoulli likelihood contribution
p_tilde = p[1:N,1] ./ ( p[1:N,1] + p[1:N,2] );
fred += bernoulli_lpmf( s[1:N] | p_tilde );

// 2. normal likelihood contribution
// In non -threaded model , likelihood statement for n - n_c, logit_pw
// logit_pw ~ normal( mu_x[(n_c+1):n,2], phi_w );
// slicing on n length vector mu_x[,2]
// subsetting portion of mu_x[,2] linked to logit_pw
if( start > n_c ) ## all units in this chunk increment likelihood contribution for logit_pw
{

fred += normal_lpdf( logit_pw[start -n_c:end -n_c] | mu_x[1:N,2], phi_w );
}else{ /* start <= n_c */

if( end > n_c ) /* some units in chunk < n_c and some > n_c; only those > n_c increment likelihood */
{

fred += normal_lpdf( logit_pw[1:end -n_c] | mu_x[n_c-start+2:N,2], phi_w );

} /* end if statement on whether n_c \in (start ,end ) */
} /* end if-else statement on whether add logit_pw likelihood contributions */

return fred;
}/* end function partial_sum() */

} /* end function block */

data{
int <lower=1> n_c; // observed convenience (non -probability) sample size

int <lower=1> n_r; // observed reference (probability) sample size
int <lower=1> N; // estimate of population size underlying reference and convenience samples
int <lower=1> n; // total sample size , n = n_c + n_r
int <lower=1> num_cores;
int <lower=1> multiplier;
int <lower=1> K; // number of fixed effects
int <lower=0> K_sp; // number of predictors to model under a spline basis
int <lower=1> num_knots;

int <lower=1> spline_degree;
matrix[num_knots ,K_sp] knots;
real <lower=0> weights[n_r]; // sampling weights for n_r observed reference sample units
matrix[n_c, K] X_c; // *All* predictors - continuous and categorical - for the convenience units
matrix[n_r, K] X_r; // *All* predictors - continuous and categorical - for the reference units
matrix[n_c, K_sp] Xsp_c; // *Continuous* predictors under a spline basis for convenience units
matrix[n_r, K_sp] Xsp_r; // *Continuous* predictors under a spline basis for convenience units
int <lower=1> n_df;

} /* end data block */

transformed data{
// create indicator variable of membership in convenience or reference samples
// indicator of observation membership in the convenience sample
int grainsize = ( n / num_cores ) / multiplier;
real logit_pw[n_r] = logit(inv(weights ));
int <lower=0, upper = 1> s[n] = to_array_1d( append_array(rep_array(1,n_c),rep_array(0,n_r)) );
matrix[n,K] X = append_row( X_c,X_r );
matrix[n,K_sp] X_sp = append_row( Xsp_c,Xsp_r );
/* formulate spline basis matrix , B */
int num_basis = num_knots + spline_degree - 1; // total number of B-splines
matrix[spline_degree + num_knots ,K_sp] ext_knots_temp;
matrix[2*spline_degree + num_knots ,K_sp] ext_knots;
matrix[num_basis ,n] G[K_sp]; /* basis for model on p_c */
for(k in 1:K_sp)
{

ext_knots_temp[,k] = append_row(rep_vector(knots[1,k], spline_degree), knots[,k]);
// set of extended knots
ext_knots[,k] = append_row(ext_knots_temp[,k], rep_vector(knots[num_knots ,k], spline_degree ));
for (ind in 1:num_basis)
{

G[k][ind ,] = to_row_vector(build_b_spline(X_sp[,k], ext_knots[,k], ind , (spline_degree + 1)));
}
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G[k][num_knots + spline_degree - 1, n] = 1;
}

} /* end transformed data block */

parameters {
matrix <lower=0>[K,2] sigma2_betax; /* standard deviations of K x 2, beta_x */

/* first column is convenience sample , "c", and second column is "r" */

matrix[K,2] betaraw_x; /* fixed effects coefficients - first colum for p_c; second column for p_r */
// spline coefficients
vector <lower=0>[2] sigma2_global; /* set this equal to 1 if having estimation difficulties */
matrix <lower=0>[2,K_sp] sigma2_w;
matrix[num_basis ,K_sp] betaraw_w[2]; // vector of B-spline regression coefficients for each predictor , k

// and 2 sample arms
real <lower=0> phi2_w; /* scale parameter in model for -1og(weights) */

} /* end parameters block */

transformed parameters {
matrix[K,2] beta_x;
matrix[num_basis ,K_sp] beta_w[2];
matrix <lower=0>[K,2] sigma_betax;
vector <lower=0>[2] sigma_global; /* set this equal to 1 if having estimation difficulties */
matrix <lower=0>[2,K_sp] sigma_w;
real <lower=0> phi_w;

sigma_betax = sqrt( sigma2_betax );
sigma_global = sqrt( sigma2_global );
sigma_w = sqrt( sigma2_w );
phi_w = sqrt( phi2_w );

// for scale parameters for interaction effects from those for main effects to which they link
for( arm in 1:2 )
{

beta_x[,arm] = betaraw_x[,arm] .* sigma_betax[,arm]; /* Non -central parameterization */
}/* end loop arm over convenience and reference sample arms */

// spline regression coefficients
for(arm in 1:2)
{

for( k in 1:K_sp )
{

beta_w[arm][,k] = cumulative_sum(betaraw_w[arm][,k]);
beta_w[arm][,k] *= sigma_w[arm ,k] * sigma_global[arm];

} /* end loop k over K predictors */
}

} /* end transformed parameters block */

model {
to_vector(sigma2_betax) ~ gamma(1,1);
to_vector(sigma2_w) ~ gamma(1,1);
sigma_global ~ gamma(1,1);
phi2_w ~ gamma(1,1);

to_vector(betaraw_x) ~ std_normal ();
for(arm in 1:2)

to_vector(betaraw_w[arm]) ~ std_normal ();

/* Model likelihood for y, logit_pw */
// Sum terms 1 to n in the likelihood
target += reduce_sum(partial_sum , s, grainsize ,

logit_pw , K_sp, n_c, n, num_basis , X, G,
beta_x, beta_w, phi_w);

} /* end model block */

generated quantities{
matrix[n,2] p;
matrix[n,2] mu_x;

for( arm in 1:2 )
{

mu_x[,arm] = X[,] * to_vector(beta_x[,arm]); /* n x l for each arm */
// spline term
for( k in 1:K_sp )
{

mu_x[,arm] += to_vector(beta_w[arm][,k]’ * G[k][,1:n]); /* n x 1 */
} /* end loop k over K predictors */

}/* end loop arm over convenience and reference sample arms */

p = inv_logit( mu_x );

// smoothed sampling weights for convenience and reference units
vector[n] weights_smooth_c = inv(p[,1]);
vector[n] weights_smooth_r = inv(p[,2]);
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// inclusion probabilities in convenience and reference units for convenience units
// use for soft thresholding
vector[n_c] pi_c = p[1:n_c,1];
vector[n_c] pi_r_c = p[1:n_c,2];
// normalized weights
weights_smooth_c *= ((n_c+0.0)/(n+0.0)) * (sum(weights_smooth_r)/sum(weights_smooth_c));
weights_smooth_r *= ((n_r+0.0)/(n+0.0));

} /* end generated quantities block */

C. Simulation Results for Estimating Population Mean, µ

We use the convenience sample inclusion probabilities, πcmi, i ∈ Sc, estimated from
models on each Monte Carlo iteration, m = 1, . . . ,(M = 30), to form a population mean
estimator, µm. As discussed in the introduction, we use our Bayesian hierarchical model
to estimate πcmi, such these latent sampling probabilities may be used to construct survey
estimators for focus response variables. We construct µm =

∑i∈Sc yi/π̂cmi+∑ j∈Sr y j/πrm j
∑i∈Sc 1/π̂cmi+∑ j∈Sr 1/πrm j

as a
sample-weighted (Hajek) survey direct estimator, so there is no additional model specified;
that is, the estimator each µm assumes the underlying population values for ymi are fixed such
the estimator is random with respect to the distribution that governs the taking of samples
from that fixed population.

We propagate uncertainty in the model-based estimation of the convenience sample in-
clusion probabilities by taking multiple draws or imputes (e.g., J = 10) of each inclusion
probability from its posterior distribution. We formulate the survey direct estimator using
that draw of the inclusion probabilities. We compute the variance of the survey estimator for
the population mean with respect to the survey sampling distribution. We repeat this proce-
dure for each draw and then compute the between draws variance variance with respect to
the modeling distribution. We put it together by using multiple imputation combining rules
to construct a total variance for our survey direct estimate that now incorporates uncertainty
with respect to both the model for estimating inclusion probabilities and the distribution
governing the taking of samples.

More specifically, we construct a total, combined variance of the form T = (1+1/J)B+

Ū based on multiple imputation rules of Reiter and Raghunathan (2007, See section 2.1.1),
where T denotes the total variance of our µ estimator that accounts for both uncertainty with
respect to drawing samples and with respect to the modeling of the inclusion probabilities
used to form sampling weights. Let j ∈ 1, . . . ,M index a randomly drawn imputation for
(π̂c ji)i∈Sc , (π̂r ji′ )i′∈Sr

from the set of MCMC samples for a model run. Ū denotes the within
imputation sampling variance of µ j and B denotes the between modeled variance of µ j

across the J imputations.
Once the total variance is computed, we then generate symmetric asymptotic intervals

using the t− distribution. The use of multiple imputation allows us to propagate the uncer-
tainty in estimation of πc ji into the variance estimate for our direct estimator of µ j. We next
present details to construct the within impute variance, Ū , and the between impute variance,
B.

In what follows, we assume that we use the model-smoothed estimator, π̂r ji = µx,r ji

(from Equation 14) for the reference sample inclusion probabilities to construct the mean
statistic. We compare simulation study results for µ using both using the fixed πr ji and the
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model-smoothed π̂r ji in the sequel.
Binder (1996) provides a general approach to Taylor linearization for computing the

within impute variance. We fix an imputation j ∈ (1, . . . ,M). For a simple weighted lin-
ear statistic such as µ j, the approach simplifies to calculating the variance of the weighted

residuals w ji(yi − µ j) with weights w ji = π̂c ji/
(

∑i∈Sc 1/π̂c ji +∑i′∈Sr
1/π̂r ji′

)
for conve-

nience sample units or
w ji′ = π̂r ji′/

(
∑i∈Sc 1/π̂c ji +∑i′∈Sr

1/π̂r ji′
)

for reference sample units. We average over the
J within-impute design (sample)-based variance estimates of µ j (via Taylor linearization)
to get Ū .

We proceed to construct the model-based, between variance B by computing the vari-
ance over the J imputations for µ j.

We first illustrate the benefit of incorporating the sample weighted convenience units
with the reference sample units into the computation of µ . We then proceed to compare
the pseudo likelihood methods for πci with our two-arm exact likelihood method under
combined reference and convenience sample estimation of µ .

Finally, the two-arm method co-estimates πri, i ∈ Sc simultaneously with estimating
πci. So, on each Monte Carlo iteration, m, we threshold or exclude those convenience
sample units, {ℓ ∈ Sc : πrmℓ < ε}; that is, we exclude those convenience units that express
small reference sample inclusion probabilities in order to reduce noisiness in our estimator.
We experiment with setting ε = (Q1,Q5,Q10), where Qp is the pth percent quantile of the
distribution of smoothed πri, i ∈ Sr.

Results are presented in the Figures 9 - 11. Each plot panel from left to right measures
the bias, root mean squared error, mean absolute deviation and coverage for estimated µ .

We construct separate convenience samples under both the low- and high-overlap sam-
pling designs used in the previous results for estimating the conditional convenience sample
inclusion probabilities. In each row of every plot panel we present the result for the low-
overlap sampling design, labeled “L" and the high-overlap sampling design, labeled "H"
with those results connected by a horizontal bar. In practice, a convenience dataset will
probably lie somewhere in between L and H.

Lastly, we lay in the result for the base case that constructs µ solely from the reference
sample as a dashed black vertical line in each plot panel in all of the figures.

Figure 9 compares constructing µ solely from the convenience sample in the first row
to using both the reference and convenience samples (both under true inclusion weights)
in the second row. We see a dramatic improvement in the quality of estimated µ under
the high-overlap convenience samples and a smaller, but still notable improvement under
the low-overlap convenience samples, on the one hand, from use of solely the convenience
samples, on the other hand.

Figure 10 compares the quality of estimated µ between our exact two-arm method (us-
ing published / known reference sample inclusion probabilities) with the pseudo likelihood
methods. The first row presents the combined reference and convenience sample using the
true values for the latent convenience sample weights as a comparator for all methods. The
second row presents the combined reference and convenience samples now using the esti-
mated convenience sample inclusion weights under our two-arm method. The performance
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Figure 9: Performance of the weighted mean estimator between high (H) and low (L) over-
lapping samples using the convenience and reference sample with true weights across Monte
Carlo Simulations for (top to bottom) Only Convenience, Convenience and Reference Sam-
ple. Left to right: Bias, root mean square error, mean absolute deviation, coverage of 90%
intervals. Vertical reference line corresponds to using the reference sample only.

is very similar to using the true inclusion weights for the convenience sample. The third
row presents the CLW method of Chen et al. (2020), which performs relatively poorly due
to high estimation variation expressed by this method in estimation of πcmi for our mod-
erate sample sizes (nr,nc) = (400,∼ 800). We achieve best performance for high-overlap
convenience samples (labeled (H)). The last row presents the same, but using the WVL
pseudo likelihood method of Wang et al. (2021) that expresses less variation in estimation
of πcmi than does CLW (though still substantially higher than our two-arm method). Yet,
even though the estimated weights under WVL are biased under both low- and high-overlap
samples, the method performs similarly in estimation of µ to our two-arm method because
the bias for WVL is largest at high values for πci while most sampled units are assigned
πci < 0.75. The low-overlap samples produce notably worse coverage under WVL due to
the bias and failure to account for uncertainty in πrmi by using them as plug-in.

It bears mention that even when using the true values for πci the coverage of the estima-
tor for µ under the low-overlap datasets fails to achieve nominal coverage because of our
moderate sample sizes. These moderate sample sizes realistically reflect the sampling of do-
mains (e.g., geographic-by-industry for establishment surveys) used in practice. We render
an estimator using the true sampling weights in each plot panel so that we may understand
the performance of the methods in context of the best possible performance.

We conclude the exploration of methods for estimating πci on the quality of the resultant
mean estimator, µ , by comparing versions or variations of the two-arm method for estimat-
ing πci. So far we have seen that the two-arm method outperforms the other methods and,
in particular, the pseudo likelihood methods for estimation of µ in terms of bias, means
squared error and converge (uncertainty quantification).

Since the two-arm method co-models πri to borrow strength in estimation of πci, we may
use either fixed πri or modeled / smoothed values for πri to form our combined reference and
convenience estimator for µ . The first row of Figure 11 presents the combined reference
and convenience-based estimator for µ that uses true sample weights as the benchmark
comparator. The second row uses fixed (and published) πri along with our two-arm method
for estimating πci to produce the combined reference and convenience sample inclusion
probability for µ . The third row is the same as the second except that we replace the fixed
πri with modeled or smoothed values from our two-arm model. We observe that using
smoothed weights improves the coverage for high-overlap datasets because co-modeling
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Figure 10: Performance of the weighted mean estimator between high (H) and low (L)
overlapping samples using the convenience with modeled weights and reference sample
with true weights across Monte Carlo Simulations for (top to bottom) True weights, Two-
Arm weights, CLW weights, WVL weights. Left to right: Bias, root mean square error,
mean absolute deviation, coverage of 90% intervals. Vertical reference line corresponds to
using the reference sample only.

the πri accounts for uncertainty in the generation of samples (Leon-Novelo and Savitsky,
2019).

Lastly, we next leverage our co-estimation of πri for i ∈ Sc, which are typically unknown
for non-overlapping units between the two sample arms, to threshold inclusion of units
from the convenience sample. We seek to exclude those convenience sample units, ℓ ∈ Sc

where the associated πrℓ < ε; that is, we exclude units from the convenience sample that are
estimated with very small values for πrℓ in order to remove units that would induce noise
in our estimator for µ . We see that the estimator for µ that results from setting ε = Q1

notably improves bias performance in the estimator for µ for low overlap samples while
leading to only a slight increases in RMSE for high overlap. When we increase to ε = Q5,
bias increases slightly for the high-overlap datasets but further decreases for the low-overlap
dataset. The coverage performance, however, notably improves under ε = Q5 as compared
to the non-thresholded two-arm-based estimator. The general pattern continues with ε =

Q10. This result suggests thresholding using ε ≈ Q5 would be advisable, particularly for
lower overlapping samples.
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Figure 11: Performance of the weighted mean estimator between high (H) and low (L) over-
lapping samples using variations of the two-arm method across Monte Carlo Simulations
for (top to bottom) True weights for both samples, Original weights for Reference Sample,
Smoothed weights for reference sample, Subset of convenience sample meeting 1%, 5%,
and 10% overlap threshold. Left to right: Bias, root mean square error, mean absolute devi-
ation, coverage of 90% intervals. Vertical reference line corresponds to using the reference
sample only.
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