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PROPER POSTERIORS FROM IMPROPER PRIORS FOR AN 
UNIDENTIFIED ERRORS-IN-VARIABLES MODEL 

BY TIMOTHY ERICKSON1 

The problem considered is inference in a simple errors-in-variables model where 
consistent estimation is impossible without introducing additional exact prior information. 
The probabilistic prior information required for Bayesian analysis is found to be surpris- 
ingly light: despite the model's lack of identification a proper posterior is guaranteed for 
any bounded prior density, including those representing improper priors. This result is 
illustrated with the improper uniform prior, which implies marginal posterior densities 
obtainable by integrating the likelihood function; surprisingly, the posterior mode for the 
regression slope is the usual least squares estimate. 

KEYwoRDs: Errors-in-variables, Bayesian inference, identification, improper priors, 
proper posteriors, finitely additive probabilities, coherence. 

1. INTRODUCTION 

THE PROBLEM CONSIDERED here is that of estimating 9 in the relationship 

(1) 1i = Y+ oxi (i =1, 2,... ,n) 

where qi and Xi are not observed directly but are instead measured with error by 
observable variables y1 and xi according to 

Xi = Ili + Ui, 

where ui and ei denote measurement errors. This task is made difficult by 
uncertainty over the two-dimensional contribution of the errors to the observed 
scatter of (xi, yi) pairs; under many reasonable assumptions about the unob- 
served quantities one cannot rule out the possibility that most, or all, of the 
observed scatter is due to measurement error. A convenient framework for 
analysis that preserves the essential features of this problem is obtained by 
assuming that (xi, ui, Ei) is distributed identically and independently normally 
for all i, with 

E(xi, ui, ei) = 0, 0) 

("xx ? ? 

(2) V(Xi, Ui, ,) ( 0uu cue 
? (rue (Fee 

This model differs from the traditional one by permitting correlation between the 
errors, a phenomenon often characterizing economic data. 

1 I am grateful to Edward E. Leamer, three referees, and the co-editor for many valuable comments 
on earlier versions of this paper. David K. Levine, Arnold Zellner, Dale Poirier, and members of the 
33rd NBER-NSF Seminar on Bayesian Inference in Econometrics also provided helpful remarks. 
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It is well known that this model is not identified.2 Consistent estimation of 0 
thus requires exact prior information about one or more functions of the 
structural parameters, or the specification of additional relationships between Xi 
and other variables such that instrumental variable type estimators exist. There 
are, of course, many situations where such detailed information is unavailable. In 
principle the nonidentifying probabilistic information required for a Bayesian 
analysis is always available, yet this approach is hampered by the cost of 
assessing a prior representative of the researcher's beliefs, and the difficulty of 
reporting results to readers who may find the assessed prior of little interest. 

Bayesians often address these problems by adopting nonintegrable prior densi- 
ties, which have the advantage that the assessor need not assert a preferred value 
for the parameter vector. Nonintegrable densities can represent either infinite 
measures that are countably additive or, in a subtle manner, finitely additive 
probability measures assigning zero probability to all compact subsets of the 
parameter space. In either case such densities are said to represent improper 
probability distributions. Distributions given by integrable densities are said to 
be proper. 

A proper posterior cannot always be derived via Bayes' theorem from an 
improper prior, but when this occurs the result is taken to be a meaningful 
inference. This procedure can be justified in two ways when improper priors are 
viewed as countably additive. The first way is to regard the posterior as an 
approximation to the posterior that would result from a more carefully assessed 
proper representation of prior beliefs. The second, motivated by Jeffreys' view 
that infinite measures formally represent extreme uncertainty, is to rigorously 
derive this procedure in a formulation of countably additive probability theory 
that admits both finite and infinite measures; Hartigan (1983) is an example. If 
instead the improper prior is finitely additive then, as shown by Regazzini (1987), 
the procedure can be justified by the principle of coherence, which means that 
there are no inconsistencies between the prior, data, and posterior distributions 
that might expose the inferrer to sure losses. Interestingly, the coherence principle 
also permits improper posteriors, which may be useful since they can possess 
sharp probabilities on issues such as parameter sign. Algorithms for obtaining 
such posteriors must await further development of finitely additive theory, 
however; in particular, it has not been shown generally that a coherent posterior 
is given by the abbreviated form of Bayes' theorem that states that a posterior 
density is proportional to the product of a likelihood and a prior density. 

In Section 2 it is shown that if n > 7 then a proper posterior is guaranteed for 
any improper prior having a bounded density. This is established by showing that 
the likelihood function, despite achieving its maximum on a set that is un- 

2 The model is identified if Xi is assumed nonnormal (Reiersol, 1950). Despite this feature the 
normal model has received attention because of its tractability and the presumably large number of 
instances in which Xi may be sensibly assumed near-normal. Bayesian analyses of the normal model 
where a,ue = 0 include Wright (1968) and Lindley and El-Sayyad (1968). Nonnormal distributions for 
X, are analyzed by Zellner (1971, pp. 130-132) and Florens, Mouchart, and Richard (1974). 
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bounded with respect to 0, is integrable. Section 3 examines the inferences 
implied by an improper uniform prior. The marginal posterior density for 0 is 
then simply the integrated likelihood function, which is shown to have a marginal 
mode equal to the slope estimate from the least squares regression of y on x. 
This inference is, surprisingly, invariant to normalization: a uniform prior on the 
parameters implied by replacing (1) with Xi = Y* + 0*,qi gives a posterior for 
0* = 0-1 that is taken by the appropriate transformation into the posterior for 0 
obtained from the original normalization. Section 4 shows how nonintegrable 
densities represent improper finitely additive priors, and confirms that using such 
priors to draw inferences about the model in this paper satisfies de Finetti's 
coherence criterion. 

The proofs of all propositions and lemmas are given in the Appendix. 

2. THE INTEGRABILITY OF THE LIKELIHOOD FUNCTION 

The assumptions of Section 1 imply that the observables yi and xi are i.i.d. 
normal with moments 

m = +uu 

(3) vyy = 02axx + a 

VXX x =(Xx + 

vyx OXX U? Xy. 

The likelihood function for the five reduced form parameters on the left hand 
side is 

(4) L(zjm, V) a Vjn/2exp( - Y(m -zi)TWV-(m - zi)} 

where m = (my, mx)T, V is the covariance matrix with elements ( vy , v 
zi = (yi, xi)T, and Z = (zl,..., Zn). The likelihood for the seven structural param- 
eters is found by substituting into (4) from (3), and shall be denoted 
L(z 0, ax, 'I), where 'I denotes the structural parameters in (3) other than 0 and 
axx. Bayes' theorem gives 

(S) f (0 axx *I z) ac L (z I , axx *) f (', axx,t (0, axx, *) E- Q 

where f(0, oxx, I) and f(0, axx, I'z) denote prior and posterior densities respec- 
tively, and the structural parameter space Q is the set of vectors such that the 
covariance matrix (2) is nonnegative definite. 

If the integral of L(z I0, axx, I) over 2 is finite, then all bounded noninte- 
grable prior densities map into proper posteriors. Proposition 1 below gives some 
weak conditions sufficient for the integrability of L(z 10, axx, P). The proof of 
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Proposition 1 makes use of the following lemma: 

LEMMA 1: For fixed (m, V) with V positive definite, the set A(V) of pairs 
(0, axx) such that (2) is positive definite is given by the inequalities - oo < 9 < oo 
and 

(6) ? < C'XX < r^2 +vy (d_ ) 

where 
Vy2X 

vyy . x vyy v- 

,8 2 = Uyy x VX xxx 

VY 

vxx 

The set A(V) is graphed as the shaded region in Figure 1. This figure 
represents the set of pairs (9, axx) for which there exist positive definite measure- 
ment error covariance matrices such that (3) yields a given V. The importance of 
A( V) is that conditional on the. reduced form (mi, V) it is the support for any 
distribution on (9, ixx). Note that A(V) is unbounded with respect to 9. For 
comparison the well known "errors-in-variables bound" derived by Gini (1921) 
for the uncorrelated errors model is depicted in Figure 1 as the projection onto 
the 0-axis of the intersection of A(V) and the hyperbola given by setting aue = 0 
in (3). 

Denote by (z, S) the maximum likelihood estimate of (m, V) from (4); it is 
well known that this estimate is 

1 n 1 n 
(7) Z- =-, ZS =S_=- (Zi _ -)(Zi- -)T.- 

For V= S each point in A(V) can be associated with values for 'I so that 

'3xx / CF - 0yx - sXX - 0 

VT 
. 

~~~~~~~~1 
Vyi 

FIGUREi 1. -The set A (V) of pairs (0, a,,) determined by inequality (6). 
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L(z 16, xx, L') is maximized, establishing that the likelihood mode is unbounded 
with respect to 6. Despite this feature the likelihood function will be integrable 
for most data sets: 

PROPOSITION 1: If n > 7 and S is positive definite then 0 < J0L(z 6, xx, 4i) 
< oo. 

The information about 6 contained in the structural likelihood function is of 
an "indirect" nature, and requires some explanation. Apply the transformation 
(6, oxx, ") - (, axx, m, V), shown in the Appendix to have a Jacobian identi- 
cally equal to one, to both sides of (5) to obtain 

(8) f (6 axx, m, VIz) = cL(zIm, V)f (6, xx, m, V) 

where c denotes the normalizing constant. By construction this transformation 
restores the likelihood factor to its original form (4) and confines the remaining 
structural parameters 6 and axx to the transformed prior density. Because of the 
unit Jacobian of the transformation, a bounded prior density in (5) implies a 
bounded prior density in (8). This in turn implies an integrable conditional prior 
density f(6, axxI m, V): this follows from the fact that fixing V constrains 6 and 
"xx to the set A(V), and that A(V) has finite area, which can be seen by noting 
that the upper endpoint of inequality (6) is proportional to a Cauchy density with 
location /8 and scale 8. Equation (8) can therefore be written 

f (6, oxx, m, VIz) = cL(zIm, V)f (m, V)f(6, axxIm, V), 

where 

f (m, V) = f (6, axx m, V)d(6, axx). 
A(V) 

When f(6, oxx ) is integrable then f(m, V) is the integrable density of a 
proper marginal prior for (m, V); otherwise f(m, V) is nonintegrable. In either 
case the posterior factors as 

f (, axx, m, Viz) =f (m, VIz)f(6, axxlm, V), 

which permits the marginal posterior for 6 to be represented as 

(9) f(6iz) =xxD( fI(V) ( S , mm VJ) daxx) f (m Vl z) d (m, V) 

where D = ((m, V): V is positive definite}, and Ae(V) is the cross section of 
A(V) at 6, i.e., the inequality (6). 

The integral in brackets is the conditional prior density f(6 Im, V). When 
identification is absent, therefore, data-inspired revision of opinion about 6 is 
indirect, relying on an a priori dependence between 6 and the reduced form 
parameters (m, V) that is expressed through the density f(6lm, V); posterior 
beliefs about 6 are then a "weighted average" of conditional-on-reduced form 
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prior beliefs, the weights supplied by the reduced form posterior. Although a 
prior for the structural parameters need not express any prior dependence 
between 9 and the other structural parameters, a dependence between 9 and 
(m, V) is induced by the transformation (9, ax, 'I) -+ (, axx, m, V); this is so 
even if f(9, oxx, 4') is constant on 2, because the dependence is partially 
transmitted via A(V). Note that (9) implies that the limiting posterior for 9 
obtained by letting n - oo will not concentrate its mass at a single point; in fact, 
it can be shown that with probability one the distribution function for 9-given-z 
converges uniformly to the distribution function for 0-given-(m, V), with m and 
V at their true values. It would be very troubling if the posterior did concentrate, 
since there can be no consistent estimators of the unidentified 9. 

Kadane (1974), generalizing a result Dreze obtained for simultaneous equa- 
tions models, shows that a proper posterior in any unidentified model with a 
reduced form will imply marginal posterior representations analogous to (9). 
Posterior propriety thus requires of prior densities on a structural parameter 
space that they generate an integrable conditional density analogous to 
f( 9, axx Im, V). Structural space prior densities that meet this requirement typi- 
cally have a product representation wherein one factor is an integrable density. 
For example, in a simultaneous equations model that fails to meet the order 
condition for identification it is necessary for posterior propriety that the struc- 
tural prior density have as a factor an integrable density for a subset of the 
parameters (Dreze and Richard (1983, p. 538)). It is apparently unusual for the 
likelihood functions of interesting unidentified models to be integrable and 
therefore analyzable by prior densities not having integrable factors, such as the 
uniform density. The present paper provides an example, and so does Hill (1967), 
who demonstrates likelihood integrability for a generalization of the one-way 
analysis of variance model. 

3. THE POSTERIOR FOR 0 IMPLIED BY A UNIFORM PRIOR DENSITY 

This section examines the inferences implied by a uniform prior density on Q. 
The posterior density is then simply the normalized likelihood function, which 
has been shown to have a modal set that is unbounded with respect to 9. 
Nevertheless, it will be shown that the marginal posterior density for 9 is 
symmetric about a unique mode at the slope estimate from the least squares 
regression of y on x, a result that is invariant to renormalizing (1) so that Xi is 
the left hand variable. 

Letting S denote an element of S, the sample counterparts to 8 and /B are 
given by s2 = xx and / = syx/sxx where = s,- yxxx. The poste- 
rior for 9 implied by the uniform prior is characterized by the following result as 
a mixture of conditional prior distributions that depend on the reduced form 
only via the quantities 8 and /3: 

PROPOSITION 2: If n > 7, S is positive definite, and f(9, xx'I) ca 1, then 

(10) f(91z) f f(9113#,)f(/3,81z) dad/3, 
-00 0 
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where 

'7T -13 

(11) f (Oll3, ) = ,2 + (o - l)2 S 

k3 (n-7) 

(12) f (/, 31z) 
A (A 2+ / )2)(l (8 2 + 8 2 + 

( 
B-8)) 

k 
28 I)r(n- 5) 

rr(n56)r(n- ) r 2 ) t2) 

An implication of (12) is that f(/3 S, z) is symmetric about a unique mode at 
/3. Note also that f(Oj3l, 8) is symmetric about a unique mode at /3. In the 
Appendix these facts are used to prove the following: 

PROPOSITION 3: If n >7, S is positive definite, and f(8, axx,') C 1, then 
f(O Iz) is symmetric about a unique mode at /3. 

For this particular prior, therefore, posterior location is the same as when X is 
measured without error. There is no conflict between this result and the "down- 
ward bias" so often noted for the errors-in-variables model because the latter 
result stems from assuming au, = 0. 

Although a uniform prior density does not imply a posterior location different 
from the perfect measurement case, it does imply a substantially expanded 
posterior dispersion, which can be appreciated by examining the posterior c.d.f. 
Integrating (10) over intervals of the form (- oo, a] yields the mixture representa- 
tion 

(13) P(9 < alz)=Jj P(P < alp, a)f(, lz) d3d/, 

where P(9 < aj/, 8) is the Cauchy c.d.f. 
11 a-,B\ 

(14) P(9<aI/,38)=-?-arctan lI. 2 IT 

As n increases, the mixing density f(,B, 3 Iz) concentrates around the consistent 
estimate (/3, 3), suggesting that for sufficiently large n the c.d.f. (13) can be 
closely approximated by (14) evaluated at (/3, 8) = (/3, 3). (The relevant notion of 
asymptotic convergence is that noted at the end of the previous section.) 
Remarkably, the n required for an excellent approximation appears quite small: 
for a variety of hypothetical data sets implied by different (n, /3, 8), with n as 
small as 8, the probabilities obtained by numerically integrating (13) are essen- 
tially identical to the probabilities obtained by setting (/3, 8) = (/3, 8) in (14); any 
differences are attributable to the error inherent in numerical integration. In 
practice, therefore, the posterior for 0 may be assumed Cauchy with location /3 

and scale 3. 
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Typical magnitudes for 8 can be envisioned by noting the following identities: 

(15) ^2=sY (-2 
sxx 

(16) 3= n-2s.e.(e3), 

where r denotes the sample correlation between x and y, and s.e. (1B) denotes the 
standard error for the estimate /3. Expression (16) implies an inferential precision 
that for typical values of n will be substantially less than that for the perfect 
measurement model. For example, since the upper .025 cutoff of the standard 
Cauchy is 12.706, the posterior .95 probability interval for 9 centered at /3 has a 
length in excess of 25 n -2 standard errors. Data sets that map a uniform prior 
density into posteriors concentrated in a usefully short interval therefore yield 
very sharp inferences on the assumption of perfect measurement. The converse, 
however, is not true: expressions (15) and (16) make it clear that data sets 
implying very sharp inferences for the perfect measurement model need not 
imply much concentration in the posterior for the measurement error model. In 
particular, inferences based on assumed perfect measurement may not be robust 
to admitted measurement error if the data is characterized by large n, low r2, 
and/or large syylsxx. Note that a reader skeptical of an assumption of perfect 
measurement in a reported study can use (16) to discount the claimed inferential 
precision; this discount is more or less meaningful depending on whether the 
correlated error-uniform prior density combination is a more or less acceptable 
representation of the reader's beliefs. 

Inferences about one-sided intervals can still be usefully precise even with 
relatively large posterior dispersion. As an example consider the sign probability 

P(O > OIz) = 1- P(9 < 0z) - - - arctan (-A). 2 I 

Multiplying both the numerator and denominator of the ratio in parentheses by 
V;Syls-xx yields an expression depending only on the correlation r: 

11 r 1 1 
P(O > ?Iz)~ 2--arctan r2) = - +-arcsin(r). 

Table I gives this probability for a variety of r values. We see that an r2 as low 
as .25 implies a 2/3 probability that 9 is positive, an r2 of .5 raises this 
probability to 3/4, and an r2 of .75 gives a probability of about .83. 

A uniform prior density appears to introduce little information about any of 
the structural parameters, suggesting it may be useful for expressing extreme 
uncertainty. There are two interesting transformations under which this apparent 
uncertainty persists. The first is the renormalization of (1) so that Xi is the left 
hand side variable. The model becomes 

Xi = Y7 + 0*ali, 
(17) Yi = 'i + ui, 

Xi = Xi + Ei- 
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TABLE I 

P(O > 0 1 Z) IMPLIED BY THE UNIFORM PRIOR. GIVEN BY THE ASYMTOTIC APPROXIMATION 
P(> 0' ?z) = 1/2 + fV-1 arcsin(r), 

WHERE r IS THE SAMPLE CORRELATION BETWEEN X AND y. 

r r2 P(0>01z) 

.05 .0025 .516 

.15 .0225 .548 

.25 .0625 .580 

.35 .1225 .614 

.45 .2025 .649 

.55 .3025 .685 

.65 .4225 .725 

.75 .5625 .770 

.85 .7225 .823 

.95 .9025 .899 

The symmetry between the original formulation and (17) makes it desirable that 
a uniform prior density on Q be consistent with a uniform density over the 
analogous parameter space Q* implied by (17). If this is not so then unintended 
information is being injected into the analysis of the relationship between 'q and 
X, in the sense that assigning a uniform prior density to Q* rather than Q would 
imply a posterior for 9* that could not be taken by the transformation 9 = 1/9* 
into the distribution for 9 given by (10)-(12). The equivalence of uniform 
densities over Q and Q* can be established by showing that the Jacobian 
determinant of the transformation equals 1. To do so, note that an, , and a,, 
are common to both spaces, so that the relevant part of the mapping is 

9* = 1/9, y* = -y/9, Yj = Y + Ox, An = 2axx 

The associated Jacobian matrix is lower triangular, so 

a ( 0*9*y *,9 %" ) _" (69* (a~y* \(a,t"(a jn 
d( 0 7, X uxx) ( 69 )a x a xx 

= (I i)(i (0)(02) = 1 

establishing the desired equivalence. A consequence of this result is that there is a 
mixture representation for f(* I z) analogous to (10), with a conditional prior 
density for 9* that is Cauchy with location /8* = vyxlvyy and scale 8* 
= /vxx.ylvyy . Note that the location of f(9* I z) is not the reciprocal of that for 

f(9lz): this is because of the non-constant derivative of the transformation, 
Id */d9d = 1/ 2. 

The second transformation of interest is that made for drawing inferences 
about the angle the line 7 = -y + OX makes with respect to the X coordinate axis. 
(See Figure 2.) This angle will be denoted a, and is given by a = arctan(9). In 
the special case V ax I the data should not, asymptotically, favor any particular 
value for a because the contour map of f(yi, xiIm, V) is a family of concentric 
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Ti 

/ 

n 

~~~= t+ oX 

/ ~~~~~~~mx 

FIGURE 2.-The angle the relationship between X and 1 makes with respect to the horizontal. 
Depicted also is a contour from the distribution for yi and xi when the measurement errors are 
uncorrelated and have equal variance. 

circles; any preference a posterior has for certain values of a must be inherited 
from the prior. A uniform prior density, however, strengthens its "noninforma- 
tive" status by generating a posterior for a that asymptotically is uniform over 
the set of possible values. This can be seen by substituting the inverse function 
0= tan(a) into (11) and multiplying the result by IdO/dal = sec2 (a) I + 
tan2 (a), yielding 

(18) f (a113,3) = ir-18(l + tan2 (a)) 
82 + (tan (a) 13 )2' 

If V ca I, then 8 = 0 and 8 = 1, and (18) simplifies to the uniform density on 
(- 7/2, 1r/2). Note that in this special case both f(@I,/, 8) and f(9*j,8*, 8*) will 
be Cauchy densities with location zero and scale one. In the Appendix it is shown 
that for general V the density (18) has a supremum and infimum at the angles of, 
respectively, the major and minor axes of the contour ellipses of f(yi, xiIm, V). 

4. COHERENCE AND FINITELY ADDITIVE IMPROPER PRIORS 

Various difficulties appear to accompany the use of improper priors. For 
example, under weak conditions Bayes decision rules will always be admissible 
with proper priors, but they may not be admissible with improper priors. 
Similarly, the so-called marginalization paradoxes can afflict only improper 
priors. Such anomalies cast doubt on the desirability of using improper priors. 

For most Bayesians a "desirable" inferential procedure is one that is coherent, 
which means that the beliefs of the inferrer about hypotheses and observables 
satisfy a normative description of rational behavior under uncertainty; such 
beliefs "cohere" with each other, i.e., they are not mutually contradictory. 
Numerous descriptions of rational behavior under uncertainty have been devised, 
a particularly influential one being that of de Finetti (1937). According to 
de Finetti an individual's beliefs are coherent if, should the individual be forced 
to make a finite number of bets in accordance with these beliefs, there is no set of 
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bets such that the individual will lose money regardless of the outcome. In this 
scheme the probability of an event is operationally defined to be the price at 
which the (coherent) individual will buy or sell gambles paying one monetary 
unit should this event occur; conditional probabilities are defined to be the prices 
of gambles that are called off if the conditioning event does not occur. Probabili- 
ties so defined are finitely, but not necessarily countably, additive; i.e., the infinite 
series sum of the probabilities assigned to the elements of a countably infinite 
partition of a set B need not equal the probability assigned to B. For such 
partitions conditional expectations may be nonconglomerable, which means they 
satisfy 

E(+) < infE(4l7i) or E(+)> supE(4I7i), 
i i 

where 7ri denotes an element of the infinite partition s7, and p is any function 
defined on B. Since 0 may be a loss function it is clear that inadmissible 
decisions may be consistent with coherent beliefs; put differently, the admissibil- 
ity criterion cannot be justified in terms of the more fundamental requirement of 
coherency. Marginalization paradoxes are also manifestations of nonconglomer- 
ability, and are in fact generated by assuming incorrectly that mathematical 
operations valid for proper distributions are also valid for improper distributions. 
For further discussion see Kadane, et al. (1986), Hill (1986), and the references 
therein. 

For unbounded continuous spaces a proper finitely additive probability mea- 
sure can be represented in the usual manner by an integrable density, although if 
the measure is not also countably additive the notion of integral must be 
consistent with finite additivity; e.g., the Reimann integral. An improper finitely 
additive probability measure can be represented as the limit of a sequence of 
countably additive probability measures obtained by restricting a nonintegrable 
density to an increasing sequence of subsets whose union is the outcome space. In 
particular, for the model of this paper an improper finitely additive prior T on ?2 
can be represented by a nonintegrable density f(9, (xx, I) according to 

(19) Tr(B) =im ,x) Be a(S2), 
n - 

fo (0 fixx, *) 

where a(Q) is a a-algebra of subsets of Q2, { ?2,n} C a(?2) is a sequence such that 
2n T 2 and the denominator in (19) is finite, and ao(S) c a(S2) is the set of events 

for which the limit exists. If f(6, axx, I) is bounded then it suffices for the terms 
of {Q n} to be compact sets; an example is the intersection between 2 and the 
sequence of R 7-spheres of diameter n. Note that by choice of sequence a single 
density can represent many different priors, including those that assign sharp 
probabilities to desired unbounded B. Note also that every compact B will be 
assigned probability zero, the distinguishing characteristic of an improper prior. 
It must be emphasized that "improper" distributions are true probability distri- 
butions in the finitely additive framework. 
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Regazzini (op. cit., p. 856) gives conditions ensuring that Bayes' theorem will 
yield a proper posterior that, together with a given family of data distributions 
and improper prior, constitutes de Finetti-coherent prices for gambles on events 
from Q and the sample space Z. Specialized to the model of this paper these 
conditions are simply that the nonintegrable density f(O, axx, 4) used in (5) be 
related to the researcher's prior T according to (19), and that the resulting 
posterior density be integrable over Q for all z E Z. If Z is restricted to samples 
where S is positive definite, then these conditions are satisfied if the conditions of 
Proposition 1 hold and the researcher's beliefs are described by bounded 
f(' axx, I) with suitably chosen { Q}. Theorem 1.4 of Regazzini (op. cit., 
p. 849) ensures that the resulting probability assignments agree with coherent 
assignments defined on the unrestricted Z that includes semi-definite S. Note 
that because the posterior is proper it is represented by the posterior density in 
the usual way; in particular, it is completely insensitive to variations within the 
class of priors obtained by combining differing { Q } with a fixed prior density. 

5. CONCLUSION 

Progress in numerical methods, especially Monte Carlo techniques, and grow- 
ing computer availability and speed are steadily increasing the range of prior 
distributions that can be economically employed. Nevertheless, this increasing 
flexibility in prior input is, and is likely to remain, insufficient to induce 
researchers to exploit personally and/or publicly credible prior information if, in 
order to ensure the existence of a proper posterior, they are forced to assert 
additional prior information that is not credible. It has been demonstrated that 
no such requirement exists for the simple model presented, in the sense that the 
model need not be identified nor must the prior density for the structural 
parameters have an integrable factor. This result is a reminder that no such 
requirement exists in general, and raises the interesting question of what other 
econometric models have similarly unrestricted classes of potential priors. 

Department of Economics, Boston College, Chestnut Hill, MA 02167, U.S.A. 

Manuscript received January, 1987; final revision received February, 1989. 

APPENDIX 

a. PROOF OF LEMMA 1: Augmenting (3) with the identities 9 = 9 and axx= xx yields the 
transformation (9, a',) (0, xx, m, V). Solving for the inverse mapping gives 

9=9' 
a = a , 

-y = 
mv ,-mx, 

(20) YX MX, 

luuu 
Vill,-92xx' 

IUE VX.-"x 

19, =vI' -ox 
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The last three equations in (20) imply that (2) is positive definite if and only if: 

(21) ?xx > 0, 

(22) vxx -xx > 0, 

(23) (v X2 )(v o)- )2 > - 

Performing the multiplications indicated and collecting terms inaxx lets us write (23) as 

V6,v v -vv2 
-(V 

i -2vyxO + Vyy?XX > ?0 P1' VXX VX 
v XX yyy2 

Dividing by vxx and using the identity v x = 82+ 2 yields the equivalent inequality 

(24) v 82 + (o _ ,8)2] a (24) vVPX8?(pI XX > 0. 

Positive definite V implies 82 > 0, SO that the expression in square brackets is positive for all 9. 
Inequality (24) can then be rearranged and combined with (21) to give (6). To see that (22) is 
nonbinding note that at 9 =,8 the right hand side of (6) achieves its maximum value of v.x/82 -xx 
so except for the tangency at this point the upper bound on axx is everywhere less than the boundary 
of (22). Q.E.D. 

b. PROOF OF PROPOSITION 1: Recall that Q = ((6, ?xx I): V(X,, ui, ei) is n.n.d.}. Let g0 = 

f((6, ,*): V(X,, u,e,) is p.d.}, and note that because Q - (20 has Lebesgue measure zero the 
integrai of L(z IXX, a x) over Q0 is equal to that over Q2. It thus suffices to prove 

(25) 0 < 7L ( z I ?,axx, ) IgO( 6 ?x, I) < ?, 

where 

(26) o(6axx I)={ 1 0 uu ?eeu isp.d., 

O otherwise. 

To establish (25) first re-order the left hand side of (20) so that the Jacobian for that transformation is 
lower triangular for easy evaluation: 

a( __x______Y_ 
_ 'or__a _ alx ae dy daaxx aduu da, dau 

(mx,0, my , xx ,'~vyy vxxS yx) dmx ao dmy doxx dryy avxx avyx 

Applying this transformation to the integral in (25) yields 

(27) J97L (zI m V) 12(0, aXX V), 
where the likelihood is given by (4), and 

(c?xx 0 0 

(28) I2(o1axxsv)={1 t 0 vz6:fl2xx 
V 2 

--OaxxI is p.d., 

0 otherwise. 

It is straightforward to show that V must be positive definite for the positive definite condition in (28) 
to be satisfied, ensuring that the integral (27) is not cumulating likelihood values for indefinite and 
nonpositive definite V. Proof that (27) is finite and positive relies on the fact that for measurable 
nonnegative functions a finite iterated integral implies the multiple integral is finite and equal to the 
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iterated integral. (See, for example, Shilov and Gurevich (1977, p. 43).) Write (27) as 

(29) 5L(zlm, V)(f (fi2(0 oxx V) duxx) do) d(m, V). 

For fixed 0, m, and positive definite V, the values for a such that the positive definite condition in 
(28) is satisfied are given by Lemma 1. It follows that for positive definite V the integral with respect 
to axx in (29) is simply the length of the interval (6), so that (29) simplifies to 

(30) fL(zim, V)( f3 (0 V) do) d (m, V) 

where 

(31) 13 (VYV)Y 82?X(91 )2 V is p.d., 

O otherwise. 

The integral with respect to 0 in (30) is evaluated by first noting that if V is p.d., then 

(32) dO3 (0 V) d@ VY = f x dO z dOf f13(O,v)d2O=f20 -2 0 
i?( O~32 

Substituting T = (0 - f)/8 into the right hand side of (32) and multiplying the resulting integrand by 
I dO/dT I = 8 yields 

f13 (, V) dO = 8vax dT. 

The integral on the right equals 7T (Beyer (1984, p. 286)). Also, 

8VX, = Vxx = JVYY-XVXX = jVW;X 
- 

v-vy2X = I 1/2 

Thus, 

(33) 1 3 (0, V) dO 
I 

s VI 1/2 V is p.d., 
(33) fO3(O,V)dO~(~ I otherwise, 

implying that (30) equals 

(34) 7J D 
L(ZIM, V)l V1112 d(m, V), 

where D = {(m, V): V is p.d.). Note that the integrand in (34) differs from the likelihood (4) only by 
the exponent on I VI; the exp function in the integrand can thus be factored as in Anderson (1958, 
pp. 45-46) so that (34) can be written 

(35) sfI V- (t1)/2exp{- 2jtr V-LS} exp{- -2(m -)T Vl(m-z d(m, V) 

where S is as defined at (7). The mean vector m is easily integrated from (35) by noting that the 
integrand factor in which it appears is proportional to a bivariate normal density with mean vector z 
and covariance matrix V/n. This integration reduces (35) to 

2 1T2n 
(36) n f VI l 2)/2expD--tr V- S dV, 

where D' = { V: V is p.d.}. For positive definite S the integrand in this expression is proportional to 
an inverted Wishart density with n - 5 degrees of freedom and matrix parameter nS. (See, e.g., 
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Zellner (1971, p. 395).) This density is defined whenever the degrees of freedom equal or exceed the 
dimensionality of V, so (36) is finite and positive whenever n > 7. Q.E.D. 

C. PROOF OF PROPOSITION 2: Setting f(O, axx, I) ca 1 in (5) implies f(9, axx, m, V) Ca 1 in (8) 
because of the unit Jacobian for (20). The conditional density f(, xx Im, V) is then constant on 
A(V), and since A(V) does not depend on m it follows that f (, oxIm, V)-f(O, axxI V). The 
density f(8 I V) is proportional to the length of the inequality (6), which is proportional to a Cauchy 
density with location f8 and scale 8; hence f(O I V) is precisely this Cauchy density, which is given by 
(11). Expression (9) reduces in this case to 

f (OIz) =f (01 V)f (m, VIz) d(m, V), 

which upon integrating m further simplifies to 

(37) f (Olz) = If (O IV)f (VIz) dV. 

The discussion accompanying (36) implies that f(Vlz) is the density of an inverted Wishart 
distribution with n - 5 degrees of freedom and matrix parameter nS; the kernel of this density may 
be written 

(38) f(VIz) CX I Vl -(n-2)/2 exp{_n trW1S} 

Applying the transformation 

V>} = 0X 2 + #22), 
V = VA (39) 
Vvtx =VxxI3, 

to (37) yields the equivalent integral: 

(40) f (lz) f A A ( 8)f (l,8, vxx z) d(,8, vxx) 

where D* ={(f,8, vx ): f E 9, 8 > 0, vxx > 01, f (6 lf,, 8) is given by (11), and 

f(fl,8, v:xIz)=f(VIz)abs a(/ 3,) l 

with "abs" denoting absolute value. The kernel of this last density is found by substituting (39) into 
(38), and noting that I (vy, vvx)/d(f3, 8)1 =28(vxx)2 CR8(vxx)2; the result is 

(41) f (13, 8, vxx |z) a 8 XX exp V( - ) 
Integrating vxx from (40) gives (10). To derive (12) the definite integral given in Box and Tiao (1973, 
p. 144) is used to integrate vxx from (41), yielding 

f(/?, 81z) 0Cr-n ( (SXX82 + sxxI2 - 2syx/ 

n 

)( 
-5) 

Multiplying by sx,>5 and rearranging then yields the kemel of (12), 

(42) f (ft 8|Z) cc 80t-7)(,82 + 82 + ('8_ j)2) 
-(n-5) 

To find k the definite integral given in Beyer (1984, p. 286) is used to integrate 8 from (42) to obtain 

(43) 2F(n-5) ) 
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The factor containing /3 can be written as 8-"4[i + 8-2(/3 _ 4)2f (n4)/2, which is proportional 
to a Student density for /3 with n - 5 degrees of freedom. The normalizing constant of this latter 
density is used to integrate ft from (43), yielding the reciprocal of the expression given for k. Q.E.D. 

d. PROOF OF PROPOSITION 3: It suffices to show that for every 8 the conditional posterior density 
f(6 l 8, z) is symmetric about a unique mode at 4. Write this density as 

(44) f(018,z)=J__ f(61l,8)f(flj8,z)dfl, 

where f(6 I/ , 8) is given by (11) and f(f 1 8, z) is the conditional from (12). To establish symmetry it 
must be shown that there exists a function g such that f(6Iz) = g(-) =g(4 - 6). Because 
f (1 3l, 8) satisfies g1(O - 8) = g1(/3 - 6) and f(,818, z) satisfies g2(fi - ) = g2(4- 8), it is possible 
to write (44) as 

f__g1(6-03)g2(ft--)d/. 

Making the transformationT / 3 - ,B yields 

(45) f _g1([-4] -T)g2(T) dT, 
-oo0 

which, by the symmetry of both g1 and g2, equals 

00_g1([4-6] +T)g2(-T)dT. 

The further transformation T* - T then gives 

(46) f g1([4 ] - T*)g2(T*) dT*. 

Because (46) is of the same form as (45), except that 4 - 6 has replaced 6 -4, it follows that 
f(6j8, z) is symmetric about /3. 

To show that 4l is the unique mode, differentiate (44) to obtain 

d ~~~~~00d 
(47) f f( I8, Z) f J f(6I/,8)f(PI8, z) d/. 

The derivative in the integrand is of the form hl[(,/ _ 6)2](,8 
- 6), h1 > 0, and f(,/18, z) is of the 

form h2[(/3 - 4)2], h2 > 0. Hence, the integral in (47) can be written 

f_ hd [(3 ) ] (2I(-/ )h2 [( 24)2] d/. 

Making the transformation u = ,/- and writing the integral as a sum gives 

J hj) u2Iuh2[(u+ _4)2] du+J hlO[U2Iuh2[(u+e_4) 2 du. 

Making the transformation u* = - u in the left hand term then yields 

-l h4[u*2]u*h4[(-u*+o- )2I du* + jhu[U2 Iuh(u 4)2J du. 

By inspection, if 6 = 4 then this expression is zero. Also, from (12) it is apparent that h2[(3 - f4)2] 
is strictly decreasing in (/3 _ f)2, implying for all u > 0 that if 6 < ,4 then h2[(- u + 6 - 4)2] < h2 

*[(u + 6 _ f4)2] and if 6 > 4 then h2[(- u + 6 _ f4)2] > h2[(u + 6 _ 4)2]. It follows that if 6 < 4l then 
df(6 18, z)/ad > 0 and if 6 > 4l then df(6 18, z)/d6 < 0, establishing the assertion. Q.E.D. 
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e. DERIVATION OF THE SUPREMUM AND INFIMUM OF (18): Rewrite the kernel of (18) by expanding 
the squared term in the denominator and substituting the identity vyylv,, _ 82 + 2: 

1 + tan2 (a) 
(48) V,,Iv - 2,8 tan (a) + tan2 (a)' 

If vv = 0 the denominator reduces to v /viy + tan2 (a) and (18) will be constant if v Iv = 1, or 
have a maximum (minimum) at a and infimum (supremum) at a = + w/2 ly v xx < 1 

(yvv/vxx > 1). To find the mode and the minimum when Vyx* 0 we differentiate to obtain a first order 
condition that, after some manipulation, can be written as 

tan2 (a) - ( _V x) tan (a) - 1 = 0. 

Viewed as a quadratic equation in tan(a) this has two real solutions: 

(49) tan ( a) = 2 ? v2 
x y 

and evaluating the inverse tangent function at these solutions yields two stationary values of a, which 
we denote a' and a- depending on whether the second term in (49) is added or subtracted. 
Substituting (49) into (48) yields 

1+tan2(a+) 1+tan2(a-) 
-and 

1-c+tan2(a+) 1+c+tan2(a-) 

where c = /(v,, - vxx)2 + 4v xx. Thus (18) is greater than 1 at a+ and less than 1 at a- That 

a+ maximizes and a- minimizes the density then follows from the fact that the limit of (18) at each 
of the endpoints of its domain equals 1 since tan2 (a) -- oo as a -+ ? X/2. 

The correspondence between the extrema of (18) and the contours of f(y,, x, I m, V) is established 
for vy, = 0 by noting that diagonal V implies elliptical contours with major and minor 
axes paralleling the coordinate axes. If v < vX the major axis parallels the x axis, corresponding to 
a = 0, and the minor axis parallels the y axis, which corresponds to a = +X/2; if vy > vxx the major 

and minor axes are reversed. To establish the correspondence when vyx 0 recall that the major axis 
slope equals the slope of the eigenvectors associated with the smaller eigenvalue of V-1, or 
equivalently, the larger eigenvalue of V: 

(V VV + vxX) + 2(yy- xx)2 + 4V;x 

2 

The associated eigenvectors satisfy (vyx)y + (vxx - X)x = 0 which can be rearranged as y = 

-[(vxx-X)/v,,x]x. Substituting for X to evaluate the slope then gives the same expression as 
tan (a +). Q.E.D. 
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