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RESTRICTING REGRESSION SLOPES 
IN THE ERRORS-IN-VARIABLES MODEL BY BOUNDING 

THE ERROR CORRELATION 

BY TIMOTHY ERICKSON 1 

1. INTRODUCTION 

REMEDIES FOR THE ERRORS-IN-VARIABLES problem often take the form of consistently 
estimable bounds on a parameter, the advantage of such remedies being that they 
require weaker assumptions than those needed for consistent estimation of the parame- 
ter itself. The seminal result is the "errors-in-variables bound" of Gini (1921), which 
states that the slope on the mismeasured variable lies between the probability limit of the 
least squares estimate of the coefficient on the proxy and the probability limit of the 
"reverse" regression estimate of the same coefficient. This result has been generalized to 
multiple mismeasured regressors by Kalman (1982) and Klepper and Leamer (1984), and 
to equation systems by Leamer (1987). 

All these results require that the measurement error(s) be uncorrelated with the 
equation error(s).2 It is not hard to think of examples where these errors are correlated, 
however. The consumption function study of Friedman (1957) assumed zero correlation 
between an equation error interpreted as transistory consumption and a measurement 
error interpreted as transitory income. But imperfect capital markets induce correlation 
by interfering with intertemporal consumption smoothing, and some determinants of 
transitory income, such as severe illness, affect transitory consumption as well. Another 
example is an earnings equation where education is quantified in terms of quality- 
adjusted years of schooling, but is measured by actual years of schooling. If "ability" is an 
omitted variable then the measurement and equation errors will be negatively correlated. 
This is because within any group of individuals having identical values for "true" 
education, persons of above average ability will tend to have above average earnings but, 
since they also tend to learn faster, below average years of schooling. 

No bounds exist if the zero-correlation assumption is dropped, a point established in 
Krasker and Pratt (1986), Bekker, Kapteyn, and Wansbeek (1987), and Erickson (1989). 
Generalizing the Gini bound to such situations therefore requires alternative prior 
information. Krasker and Pratt use a prior lower bound on the correlation between the 
proxy and the true regressor, and derive values for this bound ensuring that regression 
coefficients in the true model have the same signs as the corresponding coefficients in the 
equation with the proxy. Bekker, Kapteyn, and Wansbeek derive finite bounds, using as 
their prior input an upper bound on the covariance matrix of the errors. 

It is likely that individuals who believe the equation error-measurement error correla- 
tion is nonzero also believe at least as strongly that it is neither -1 nor 1. The present 
paper works out the implications of placing upper and lower bounds on this correlation 
in a multiple regression model with exactly one mismeasured regressor.3 Letting p 
denote the error correlation, r denote the population partial correlation between the 

1I thank the co-editor, the referee, David K. Levine, Ed Leamer, Toni Whited, Peter Gottschalk, 
Kim Zieschang, Brent Moulton, Rob McClelland, and Marshall Reinsdorf for valuable comments, 
and Zek Eser and Paul Suh for research assistance. 

2 In this paper "equation error" means the sum of a true equation error and any measurement 
error in the dependent variable. "Measurement error" refers only to measurement error in a 
regressor. 

3Allowing only one mismeasured regressor still permits wide application. Recent papers that 
explicitly assume only one mismeasured regressor include Barro and Sala-i-Martin (1992), and Solon 
(1992). 
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dependent variable and proxy, and U and L denote the prior bounds, the main results 
are as follows, for the case where r is positive: if L S r S U, then the coefficient is 
unrestricted; if U < r, then the coefficient on the unobserved true regressor lies in a 
finite interval of positive numbers; and if L > r, then, surprisingly, the coefficient can be 
any number not in the Gini interval. In each case the set of possible values for the 
coefficient on a correctly measured regressor is the image, under a linear mapping, of the 
possible values for the coefficient on the unobserved regressor. To reduce the cost of 
assessing prior bounds, and to assist public reporting, corollary results are given that 
summarize those (U, L) combinations ensuring any desired coefficient satisfies any 
hypothesized inequality. 

The paper is arranged as follows: Section 2 presents the model, and determines when 
prior bounds on p imply restrictions on the coefficient of the proxied regressor. Section 3 
reports restrictions on the remaining coefficients. An appendix contains the proof to 
Theorem 1. Corollaries 1.1 and 1.2 have obvious proofs which are left to the reader. 

2. IMPLICATIONS OF PRIOR BOUNDS ON THE ERROR CORRELATION 

The multiple linear regression model with one mismeasured regressor can be written 

(1) Yi=y+Xi +Zia+ui, 

(2) Xi =Xi + Ei 
where only the scalars yi and xi and the 1 x k vector Zi are observable. It is assumed 
that {Xi, Zi, ui, Ej is an independent random sequence with covariance matrix 

o*xx o*xz 0 0 

var 
(X0, Zj, ui, Ei) 0 

| O u 0-U| 

k 0 0 orE U /-. 

The upper diagonal block need only be nonnegative definite, but it is assumed that the 
lower block is positive definite. The observable variables (yi, xi, Zj) are assumed to have 
the positive definite covariance matrix 

f yy vyx vYZl 

V= vxy vxx vxz. 

vzy vzx vZz 

Let L and U be numbers such that - 1 < L S corr(ui, Ej) S U < 1. The problem is to 
determine if a given vector (V, L, U) implies restrictions on 0 and/or S. It will be shown 
that some (V, L, U) do imply such restrictions, and formulas are given for the endpoints 
of the intervals characterizing these restrictions. The formulas depend on (V, L, U), and 
can be consistently estimated by replacing V with some consistent estimator V. 

The analysis relies on the fact that (1)-(2) imply equations expressing V as a function 
of 0, S, and var(xi, Zi, ui, ei). Using the identity azz-vzz, and noting that the block 
diagonality of var(Xi, Zi, ui, Ei) implies orzy = vzx, these equations can be written 

(3) vyy = crXX02 + a'v ZZ + 20vxzs + O-uu, 

(4) vxx =crx (E 
+ 

E 
o 

(5) Xy 0'XX vxZs + aUE 

(6) vzy = vZXO + vzz . 
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Restrictions on p corr(ui, ei) can be imposed on this equation system via the identities 

2 a2 
(7) p2 

(8) sign (p) = sign (ue). 

Given (V, p), let A be the set of vectors (0,3, cr X, auu, 0E, a-ue) that solve (3)-(8) subject 
to var (Xi, Zi) being n.n.d. and var (ui, ei) being p.d. Let P be the projection of A on the 
0-axis, and let e be the union of the sets P generated by letting p range over the 
interval [L,U]. The union 9 consists of all those, and only those, 0-values that are 
consistent with the given V, the prior restriction L 6 p S U, and the restrictions on 
var(xi, Zi, ui, 8i); in this sense 69 shall be regarded as the set of possible values for 0, and 
the complement to 69, if nonempty, as representing restrictions on 0. Theorem 1 below 
characterizes e for all possible (V, L, U). Section 3 then maps 69 into restrictions on S. 

To state Theorem 1, let 

vyx.z vyx.z vyy.z 
r=, b , - , br= 

V Yy . vX Z Vxx I vxz Vyx Z 

where v v - v vjv . = v -vv1 'vzy, and v . -vyZv7z1vZ. 
The quantity r is the population partial correlation between y and x, while b and br are 
the population counterparts to, respectively, the coefficient on x from the least squares 
regression of y on (x, Z), and the reciprocal of the coefficient on y from the regression 
of x on (y, Z); recall that (b, br) is the Gini bound. 

THEOREM 1: Assume r > 0, and let 

MU = Fb(rRu - /R - 1) MU = VbbrRu + \/RU-1) 

where Ru = [r - (r2 - U2)(1 - U2) ]/U2. Then: 
(a) U60=*6?={0: b<i9<br}; 
(b) O<U<r= ={0: mu<0 Mu}and O<mu<b<br<Mu; 
(c) L6r?U = (0:-oo<0<oo}; 
(d) L>r=*i9={0:0<bor0>br}. 

REMARK 1: The assumption r> 0 is unrestrictive (assuming r # 0) since one can 
always multiply xi by -1. Also, it can be shown that mu and Mu are, respectively, 
decreasing and increasing in U, satisfying (mu, Mu) (b, br) as U -* 0, and (mu, Mu) 
(mr, Mr) as U - r, where 

(9) mr=br- br> bbr and Mr = br + Vb> - bbr. 

To use Theorem 1 for public reporting it is best to give readers a way of using their 
own values for (L, U). One such way, made possible by the fact that L does not appear 
in (a) and (b), is to report the bounds on 0 as functions of U. Another way, appropriate 
when a hypothesis of the form 0 > c (or 0 < c) is at issue, is to use the following result to 
report the set of all prior bounds that imply the hypothesis: 
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COROLLARY 1.1: Let 

(rh r- 1) h c + X 

(a) If c?mr, then U<r=0>c. 
(b) Ifmr<c<b, then U<Uc=*6>c. 
(c) If c > b, then there are no pairs (L, U) implying 0 > c. 
(d) If c > Mr, then U < r 0 < c. 
(e) If br < c < Mr, then U < Uc= 0 < c. 
(f) If c < br, then there are no pairs (L, U) implying 0 < c. 

REMARK 2: Uc is the value of U such that mu = c for c satisfying mr <c <b; if 
instead br < c < Mr, then Uc is that U such that Mu = c. In either case, 0 < Uc < r. 

REMARK 3: Because mr > 0, one can use part (a) for the important hypothesis 6 > 0. 

Returning to Theorem 1, it is worth emphasizing part (d), which is potentially very 
useful. The Gini result is rarely invoked in practice because for many typical data sets it 
is too long to be useful. (This generalization does not apply to the intervals for S; see 
Section 3.) For example, the interval is (0.1, 10) if vyxz = 0.1 and VYYZ = vxxz= 1. 
Under part (d), however, such an interval is forbidden to 0, so its length can be an 
advantage in discriminating against many hypotheses. 

3. RESTRICTIONS ON OTHER COEFFICIENTS 

Often the reason a proxy is used is to avoid omitted variable bias in estimating 
coefficients on perfectly measured variables. Theorem 1 permits inferences about these 
coefficients via the following expression, which is obtained by solving (6) for c: 

(10) a=VjZVZ -vj v 0. 

Let 5j, z qj, and s; denote the jth elements of, respectively, S, Zi, v- 1 vzy and v1 v 
Note that qj is the coefficient on zij from the population least squares regression of y1 
on Zi, and s; is the coefficient on zij from the regression of xi on Zi. The jth equation 
in (10) can now be written 

Si = qj - sjO. 

The term sjO is the usual one for omitted variable bias. The value of a proxy is that it can 
limit the size of this bias. For example, if the conditions in (a) or (b) of Theorem 1 are 
satisfied, then s^O, and hence 5j, will be confined to a finite interval. In contrast to typical 
bounds on 0, it should not be unusual for bounds on 3, to be quite short, because sJ can 
be near zero. Note also that bounds for &J need not exclude the origin, thus complicating 
inference about sign. (On the other hand, the "forbidden interval" for 3, implied by (d) 
of Theorem 1 may include the origin, thereby allowing one to reject the oft-tested 
hypothesis 5, = 0.) The possibilities for sign inference, and more generally for inference 
about one-sided hypotheses, are given by the following summary of those pairs (L, U) 
that imply Si > c* for given c*: 

COROLLARY 1.2: Let c = (qj - c*)/sj. 
(a) If c?mr and s1<0, then U<rr= S1c*. 
(b) Ifmr<C<bands<O, then U<Uc= j>c*. 
(c) If c > b and sj < 0, then there are no pairs (L, U) that can ensure Si > c*. 
(d) If c>Mr and sj>0, then U<r=j>c*. 
(e) If br < c < Mr and sJ > 0, then U < Uc =*S > c*. 
(f) If c < br and sj > 0, then there are no pairs (L, U) that can ensure Sj > c*. 
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4. CONCLUSION 

Individuals must contemplate values for U and L to use these results. There is a 
representation for p2 that eases this task in situations where ui and Ei are thought to be 
influenced by the same variables. Let Wi denote a vector of unobserved variables such 
that ui = aWi + vi and Ei = -jWi + ei, where Wi, vi, and ei are mutually uncorrelated, and 
let R 2 and R2E denote the associated population squared multiple correlation coeffi- 
cients. It is straightforward to show that p2 =R 2UR 2, implying that bounds on p2 can 
be derived from bounds on RwU and R2E. For example, consider the consumption 
function discussed in the introduction. One strategy is to simply set U = Bu where 
BWU is the upper bound on R%2U i.e., it answers the question "what is the maximum 
proportion of transitory consumption variation I am willing to attribute to the variables 
in Wi?" If U is small enough to support an inference then no further assessment is 
needed. Otherwise, one can try U = BWub-w, 9 where BWE is the answer to "what is the 
maximum proportion of transitory income variation I am willing to attribute to Wi?" 

U.S. Bureau of Labor Statistics, Washington, DC 20212, U.S.A. 

Manuscript received November, 1991; final revision received December, 1992. 

APPENDIX 

In what follows, inequalities are said to be "equivalent" if they have the same solution set. The 
lemmas used in part A are proven in part B. 

A. PROOF OF THEOREM 1: Substitute (10) into (3)-(5) to eliminate 6, yielding 

(11) V = uu 

(12) vxx z = + = T E 

(13) vyx z = + CRU? 

where 

= 
0,xxX z zzvzx I 

P can now be found as the projection of the set of vectors (6, k, rU, o, oEu-) that solve (7), (8), and 
(11)-(13) subject to var(Xi, Zi) being n.n.d. and var(ui, ei) being p.d. When p2> 0 the only binding 
constraint these latter requirements place on the solution is 

(14) 0 > O, 

which ensures that var (Xi, Zi) is n.n.d.; the positive definiteness of var (ui, ei) is always satisfied by 
the solutions, a necessary consequence of evaluating (7) with 0 <p2 < 1, and the assumption that V 
is p.d. When p = 0 the inequalities o0uu > 0 and o-,_ > 0 are also binding constraints. 

Next use (11)-(13) to eliminate auug o-E, and o-u_ from (8)-(7), yielding 

(15) sign (p) = sign (Vyx.z - k6) 

and p2 = (vyx.z - 06)2/[(v y.z - k62XVxx.z - /)]. Multiplying this last equation by its right hand 
side denominator and rearranging yields 

(16) A02 + B + C = 0, where 

A = (1-p2)02 B=p 2vxx Iz02-2vyx 6+ p2vyyIZ9 C= (r2 _ p2)Vyy 

For p2 > 0 the set P can now be found as the projection of the set of vectors (6, /) that satisfy 
(14)-(16). For p = 0, P is the projection of the solutions to (14), (16), and (vyyIz - 2) > 0 and 
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(VXX- Z )> O. 

The remainder of the proof is in four parts. Part I determines the solution set to (16). This set 
takes four forms, depending on whether p satisfies p = 0, 0 <p2 < r2, p2 = r2, or r2 <p2 < 1. Part II 
finds the subset of this solution set that satisfies (14), and, if p = 0, (vYY.Z - /02) > 0 and 
(vxx.z - k) > 0 as well. Part III finds the subset that satisfies (15) also, and then obtains P as the 
projection of this subset. Part IV obtains 9 as the union of the sets P implied by each p in [L, U]. 

I. For any given 6 # 0 the coefficient A in (16) is positive and the equation is a quadratic in / 
with solutions 

(17 ~ Ik -B + VB2-4AC 
(17) 4)(@)= 2A 

-B- iB2 2 4AC 
(18) )(o)= 2A 

These are defined if and only if B2 
- 

4AC > 0; to determine those values of 
6 

for which this holds 
substitute from (16) to obtain 

(19) B2 - 4AC = (p2vz 02-2v. + p2V y .)2 - 4(1 -p2)02(r2 -p2)vyyIZ.XXIZ 

Inspecting the second term shows that if p satisfies r2 < p2 < 1 then B2 - 4AC > 0 for all 6. For the 
case p2 = r2 the second term of (19) vanishes, so that B2 - 4AC -B2 > 0. (The equality B2 = 0 
holds if and only if 6 equals one of the two roots of B; in general these roots are given by 

Wl=t(P2~~ ~~~ 2) r rm ) 

and if p2 = r2 then w, = mr and w2 = Mr, where (9) gives mr and Mr.) Thus +( and 
0,,, are defined for all nonzero 6 when p2 > r2 or p2 = r2. To analyze the case 0 <p2 < r2 we need 
The following results: 

LEMMA 1.1: If 0 <p2 < r2 and r > 0 then B2 _ 4AC =0 has four real roots, given by 

(20) m = /b7(R- R2-1) 

(21) M = /W;(rR + JR 21) 

zi1= i/bb( W - w2i) 

z2= /bb7(W+ W2-i), 

where 

r- V(r 2-p2)(1-p2) 
(22) R 2 

r+ V(r2 -p2) (1 p2) 
W= - p2 

LEMMA 1.2: If the assumptions of Lemma 1.1 hold, then: (a) 0 <z1 <m <M <z2; (b) B2- 
4AC>0 if and only if 6Sz1 orm <@ 0Mor 6>Z2. 

Thus, when 0 <p2 <r2 the functions ( and are defined for nonzero 6 if and 
only if 0 <z1 or m < 0 < M or >zZ2. Finally, note that p = O implies B2 - 4AC = 0 for all 6, so 
that +(() and +(() reduce to -B/2A = vyx,1/, which is defined for all nonzero 6. 
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If 6 = 0, then A = 0, so (16) is linear in k, and can be solved, except when p = 0: 

(23) +?= X. (1 - p2) 

II. The case r2 <p2 < 1: Inspecting the second term of (19) reveals that r2 <p2 < 1 implies 
B2 - 4AC > IBI, which together with the fact that A > 0 for all nonzero 6, implies via (17) and 

(18) that +(() and +(() are, respectively, positive and negative for all nonzero 6. 
Also, note from (23) that 6 = 0 implies +(o) > 0 in this case. 

The case p2 = r2: Expression (19) implies VB2- 4AC = IBI, which together with the 
fact that B is negative on (mr, Mr) implies that for nonzero 6-values OM equals zero except on the 
interval (mr, Mr), over which it is positive, and that +() is negative except on the interval [mr, Mr, 
over which it equals zero. For 6 = 0, expression (23)gives 0(0) = 0. 

The case 0 <p2 <r2: Lemma 1.2 says B2 - 4AC is defined only for a subset of nonzero 
6-values. For such values (19) implies VB2 - 4AC < IBI, establishing the following: if B < 0 then 
0(() > O and +(() > 0, whereas if B > 0 then +(() < 0 and < 0. Recall that B < 0 if and only if 

w1 < 6 < w2, and note the following: 

LEMMA 1.3: The conditions of Lemma 1.1 imply z1 < w1 < m < b < br < M < W2 < Z2- 

It follows from this and Lemma 1.2 that +(() and +(() are real and nonnegative if and 
only if m < 6 < M. For 6 = 0, expression (23) gives O(O) < 0. 

The case p = 0: Recall that 6 = 0 cannot be part of a solution to (16). For 6 # 0 recall that 
p = 0 *(O) = = uyx,1/9 which is nonnegative if and only if 6 > 0. For this case we must also 
impose the constraints (uyy.z - 462) > 0 and (uxx.z0) > 0. Substituting k = vyx JO into the latter 
inequality and rearranging yields 6 > vyx z/v - b. Substituting / = v,1.j6 into the former 
inequality gives 6 < vyy IZyx.z - br* These inequalities on 6 directly give the projection P, which is 
the Gini interval. The parent solution set is depicted in Figures 1-3 as that part of the hyperbola 
lying beneath +(()- 

III. The final step in obtaining P is to impose (15). The results are stated first; when reading the 
proofs that follow, it may be useful to refer to Figures 1-3. 

(i) If p < O, then P = (b, br) 
(ii) If O < p < r, then P =[m, M]. 
(iii) If p = r, then P = (- oo, oo). 
(iv) If r<p<1, then P={0: 6<b or 6> br}. 
Proof of (i): That p = 0 'P = (b, br) is the Gini result. To establish p <0 O P = (b, br) note 

from Lemma 1.3 that m < b < br <M holds when 0 <p2 < r2. Together with the other results of 
Parts I-II, this implies that for any p2 the function 0(@) is defined and satisfies 
0 > 0 on the interval (b, br)d It thus suffices to show 0(@) satisfies uyx.z - 0b < 0 if and only if 
6 = (b, br), and that 0(,) does not satisfy -yx.z - <0 for any 6. To show the former first 
substitute the right hanid side of (17) into uyx.z - 00 to obtain 

l-B+ vB2-4AC 
(24) vyx.z 2A ) 

which after using (16) to eliminate A from the denominator, and then rearranging, equals 

2uyxz( - p2)6 + B - B2 - 4AC 

2(1 - p2)6 

The denominator has the same sign as 6, so we must show that when 6 > 0 the numerator is 
negative if and only if b < 6 < br, and that the numerator is negative for all 6 < 0. Clearly, the 
numerator is negative if and only if 
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vxx.z 

2vyxxz (1 _P2)0 +B < ~B 2 4yx - < 

\~ ~ ~ ~~~~~~~~~~~~~ \ \ 

Using (16) to eliminate B from the left hand side gives the equivalent inequality 

(25) p2(Vxx.z62-_2vy.zo + vyl IB2 - 4AC. 

The parenthesis on the left is positive for all 6, so this inequality holds if and only if 

Substituting (19) for B 2 -4AC on the right hand side and then rearranging yields 

(26) ?(0X 2(1 p2) -b)(00-b) < . 

By assumption p * 0 and vyx - > 0, so this holds for all negative values of 6, and holds 
for positive values if and only if b <6 < br 

It remains to show that k) cannot satisfy v.- - ue <d0 for any 6. Substitute the right hand 
side of (18) into v.x- - 0b67 and then follow the same steps as between (24)-(25) to obtain the 
following inequality, which is equivalent to si-d givesta) <i0: 

(25) p2(Vxx 
2 z - 2vyx-zo + vyy z) < -B2- _4AC. 

But this is impossible, since the left hand side is positive for all 6; hence vthis - ina)i <h0 is also 
impossible. 

Proof of (ii: Recall that if 0 < p2 < r2 then and 0()are defined, and satisfy / > 0, if and 
only if m < 6 < M. It thus suffices to show -that 0/o satisfies vyx. - 00 > 0 
if m < 6 <M. Substituting the right side of (18) into vy . - 46 and then rearranging as was done 
from (24) to (25), except using the reverse inequality sign, yields an inequality which is true if and 
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vxx.zV 

vx - 04) < 0 

mr b br Mr0 

FIGURE 2.-The case p2 = r2. Here 0(,) coincides with the horizontal axis for mr < 6 < Mr; 
elsewhere it is negative. The function -(O) coincides with the horizontal axis for 6 < mr and 6 > Mr. 

only if vyx.z - '(Po)6 > 0 is true: 

p2(Vxx.z2- 2vY.ZO + vyy.z) >- B2 - 4AC. 

Recalling that the left side is positive for all 6 establishes that this inequality is true everywhere the 
right hand side is defined, which is the interval [m, M]. 

Proof of (iii): Recall that p2 = r2 implies 1 6) = O for all nonzero 6 outside the interval 
(m,r Mr), ?(o) = 0 everywhere in [mr, Mj, and +(o) = 0. Thus, vyx.z - (PO > 0 and 4 > 0 
are satisfied by every 6. 

Proof of (iv): The solution (0, 0(o)) satisfies both 4 > 0 and vyx.z - 1) > 0. For nonzero 6, recall 
that r < p < 1 implies 4(PO) < 0 and 0(,) > 0 for all 6 # 0. It thus suffices 
to show that t,t) satisfies vyx.z - 46 > O if and only if 6 < b or 6 > br. Recall from the proof to (i) 
that vyx.z - 04(o,) equals (24), which for 6 > 0 has the same sign as the left hand side of (26), which 
is positive if and only if 0 < 6< b or 6 > br. If 6 < 0 then vyx - 64(o,) has the sign opposite to that 
of the left hand side of (26), which is negative for all 6 < 0. 

IV. The set 9 is the union of the sets P implied by every p in the interval [L, U]. Part (a) of 
Theorem 1 thus follows because P is invariant to nonpositive p, as reported in (i) above. Part (d) 
follows in the same way from (iv), and (c) is implied by (iii). To prove (b) recall that 0 < m 
< b < br < M; hence, (i) and (ii) imply 09 equals the union of the P corresponding to p in (0, U]. 
Because the pair (mu, Mu) equals (m, M) evaluated at p2 = U2, it suffices to show that m and M 
are, respectively, strictly decreasing and strictly increasing functions of p2 on (0, r 2). This is done by 
showing that dm/dp2 < 0 and dM/dp2 > 0 for all p2 E (0, r2). Note from (21) that dM/dR > 0, and 
refer to the proof of Lemma 1.2 to see that dm/dR < 0. It thus suffices to show dR/dp2 > 0; this is 
done by signing the derivative of (22), a demonstration available on request. Q.E.D. 
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vxx.z_ V 

/ )- 0 <0 

b br 0 

FIGURE 3.-The case r2 <p2 < 1. The function k(,) is not depicted, as it is negative for all 6. 

B. PROOF OF LEMMA 1.1: Rearranging the right side of (19) gives the polynomial 

v2 .Zp404-4vxp.zvyxp. 263 

+VyyzVxx.z(4r 2p 2+ 4p2 - 2p4)02 - 4v p2 + V2 .ZP4 

The reader can confirm that if 0 <p2 <r2 then this polynomial equals p4Q1Q2, where 

Q1=VXXz2 -O -2 Vyy -Zuxx zWo + vyy zX 

Q2= VXXz2 @- 2jVyy.zvXx.xZ RO+v vYY.Z. 

The quadratic Q1 has roots (z1, Z2), and Q2 has roots (m, M). For these to be real it suffices that 
W2> 1 and R2> 1. By inspection W> R, so it suffices to show R > 1. Using (22) this can be written 
as [r - V(r2 - p2)(1 -p2) ]/p2 > 1, which can be shown to be equivalent to (r - 1)2 > 0, which 
holds because positive definite V implies r < 1. Q.E.D. 

PROOF OF LEMMA 1.2: By inspection z1, Z2, m, and M are all positive, and M < Z2 (Recall that 

W>R>1.) It is obvious that mi<M. Next note that dmi/dR== (R2-1 -R)/ <R2- <O.. 
Because W> R, it follows that z1 < m. Now recall that B2 - 4AC = P4Q1Q2, where Q1 has roots 
(zl, Z2) and Q2 has (m, M). The coefficients on 02 in Q1 and Q2 are both positive, so Q1 < 0 iff 
zl < 6 < Z2, and Q2 < 0 iff m < 6 < M. Together with the ordering of z1, Z2, m, and M established 
above, this implies that B2 - 4AC > 0 iff 6 z1 or m < 6 A M or 6 > z2. Q.E.D. 

PROOF OF LEMMA 1.3: The quantity w1 differs from m only in that r/p2 replaces R. Since 
R < r/p2 < W, the argument used above to prove z1 < m also establishes z1 < w1 < m. The 
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inequalities M < w2 <z2 and b <br are obvious. The inequality m <b can be established by 
showing its equivalence to an obviously true inequality. Multiply m <b by vX.Z/vyy z and 

rearrange into the equivalent inequality R - r < - 1. Since R - r is positive, squaring both 
sides gives the equivalent inequality, R2 - 2rR + r2 <R2 - 1. Subtracting R2 + r2 yields - 2rR < 
-r2- 1. Using (22) to eliminate R, and adding 2r2/p2 to both sides yields 
2r (r2 -p2)(1 -p2) /p2 <2r2/p2-r2- 1. Multiplying by p2 gives 

(27) 2r (r2-p2)(1 - p2) <2r2 r2p2 - p2. 

The right side is positive since p2 <r2; hence squaring both sides gives another equivalent 
inequality; doing so, and then rearranging, yields 0 < r4 - 2r2 + 1, which is equivalent to 0 < (r2 2 

1)2. To establish br <M in a similar fashion, multiply both sides by lVXX.Z/vyy.Z to obtain 

l/r < R + VR2 - 1. If R > l/r this inequality is obviously true. To show it is true when R < l/r, 
subtract R from both sides to obtain l/r - R < - 1; by assumption the left side is positive, so 
squaring both sides yields the equivalent inequality l/r2 - 2R/r + R2<R2 - 1. Adding 2/p2 - 

R2 - l/r2 and using (22) to eliminate R yields 2V/(r2 -p2)(1 -p2) /rp2 < 2/p2- l/r2 - 1. 
Finally, multiplying by r2p2 yields the equivalent inequality (27), which was shown to be true. 

Q.E.D. 
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