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We consider a multiple mismeasured regressor errors-in-variables model where
the measurement and equation errors are independent and have moments of every
order but otherwise are arbitrarily distributed+ We present parsimonious two-step
generalized method of moments ~GMM! estimators that exploit overidentifying
information contained in the high-order moments of residuals obtained by “par-
tialling out” perfectly measured regressors+ Using high-order moments requires
that the GMM covariance matrices be adjusted to account for the use of esti-
mated residuals instead of true residuals defined by population projections+ This
adjustment is also needed to determine the optimal GMM estimator+ The estima-
tors perform well in Monte Carlo simulations and in some cases minimize mean
absolute error by using moments up to seventh order+ We also determine the dis-
tributions for functions that depend on both a GMM estimate and a statistic not
jointly estimated with the GMM estimate+

1. INTRODUCTION

It is well known that if the independent variables of a linear regression are
replaced with error-laden measurements or proxy variables then ordinary least
squares ~OLS! is inconsistent+ The most common remedy is to use economic
theory or intuition to find additional observable variables that can serve as in-
struments, but in many situations no such variables are available+ Consistent
estimators based on the original, unaugmented set of observable variables are
therefore potentially quite valuable+ This observation motivates us to revisit the
idea of consistent estimation using information contained in the third- and higher
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order moments of the data+We consider a linear regression containing any num-
ber of perfectly and imperfectly measured regressors+ To facilitate empirical
application, we present the asymptotic distribution theory for two-step estima-
tors, where the first step is “partialling out” the perfectly measured regressors
and the second step is high-order moment generalized method of moments
~GMM! estimation of the regression involving the residuals generated by par-
tialling+ The orthogonality condition for GMM expresses the moments of these
residuals as functions of the parameters to be estimated+ The advantage of the
two-step approach is that the numbers of equations and parameters in the non-
linear GMM step do not grow with the number of perfectly measured regres-
sors, conferring a computational simplicity not shared by the asymptotically
more efficient one-step GMM estimators that we also describe+ Basing GMM
estimation on residual moments of more than second order requires that the
GMM covariance matrix be explicitly adjusted to account for the fact that es-
timated residuals are used instead of true residuals defined by population re-
gressions+ Similarly, the weighting matrix giving the optimal GMM estimator
based on true residuals is not the same as that giving the optimal estimator
based on estimated residuals+ We determine both the adjustment required for
covariance matrices and the weighting matrix giving the optimal GMM estima-
tor+ The optimal estimators perform well in Monte Carlo simulations and in
some cases minimize mean absolute error by using moments up to seventh order+

Interest will often focus on a function that depends on GMM estimates and
other estimates obtained from the same data+ Such functions include those giv-
ing the coefficients on the partialled-out regressors and that giving the popula-
tion R2 of the regression+ To derive the asymptotic distribution of such a function,
we must determine the covariances between its “plug-in” arguments, which are
not jointly estimated+ We do so by using estimator influence functions+

Our assumptions have three notable features+ First, the measurement errors,
the equation error, and all regressors have finite moments of sufficiently high
order+ Second, the regression error and the measurement errors are independent
of each other and of all regressors+ Third, the residuals from the population
regression of the unobservable regressors on the perfectly measured regressors
have a nonnormal distribution+ These assumptions imply testable restrictions
on the residuals from the population regression of the dependent and proxy
variables on the perfectly measured regressors+We provide partialling-adjusted
statistics and asymptotic null distributions for such tests+

Reiersöl ~1950! provides a framework for discussing previous papers based
on the same assumptions or on related models+ Reiersöl defines Model A and
Model B versions of the single regressor errors-in-variables model+ Model A
assumes normal measurement and equation errors and permits them to be cor-
related+ Model B assumes independent measurement and equation errors but
allows them to have arbitrary distributions+ We additionally define Model A*,
which has arbitrary symmetric distributions for the measurement and equation
errors, permitting them to be correlated+ Versions of these models with more
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than one mismeasured regressor we shall call multivariate+ In reading the fol-
lowing list of pertinent articles, keep in mind that the present paper deals with
a multivariate Model B+

The literature on high-order moment based estimation starts with Neyman’s
~1937! conjecture that such an approach might be possible for Model B+ Reiersöl
~1941! gives the earliest actual estimator, showing how Model A* can be esti-
mated using third-order moments+ In the first comprehensive paper, Geary ~1942!
shows how multivariate versions of Models A and B can be estimated using
cumulants of any order greater than two+ Madansky ~1959! proposes minimum
variance combinations of Geary-type estimators, an idea Van Montfort, Mooi-
jaart, and de Leeuw ~1987! implement for Model A*+ The state of the art in
estimating Model A is given by Bickel and Ritov ~1987! and Dagenais and
Dagenais ~1997!+ The former derive the semiparametric efficiency bound for
Model A and give estimators that attain it+ The latter provide linear instrumental
variable ~IV! estimators based on third- and fourth-order moments for multi-
variate versions of Models A and A*+1

The state of the art for estimating Model B has been the empirical character-
istic function estimator of Spiegelman ~1979!+ He establishes Mn -consistency
for an estimator of the slope coefficient+ This estimator can exploit all avail-
able information, but its asymptotic variance is not given because of the com-
plexity of its expression+ A related estimator, also lacking an asymptotic
variance, is given by Van Monfort, Mooijaart, and de Leeuw ~1989!+ Cragg
~1997! combines second- through fourth-order moments in a single regressor
version of the nonlinear GMM estimator we describe in this paper+2 Lewbel
~1997! proves consistency for a linear IV estimator that uses instruments based
on nonlinear functions of the perfectly measured regressors+ It should be noted
that Cragg and Lewbel generalize the third-order moment Geary estimator in
different directions: Cragg augments the third-order moments of the depen-
dent and proxy variables with their fourth-order moments, whereas Lewbel
augments those third-order moments with information from the perfectly mea-
sured regressors+

We enter this story by providing a multivariate Model B with two-step esti-
mators based on residual moments of any order+ We also give a parsimonious
two-step version of an estimator suggested in Lewbel ~1997! that exploits high-
order moments and functions of perfectly measured regressors+ Our version re-
covers information from the partialled-out perfectly measured regressors, yet
retains the practical benefit of a reduced number of equations and parameters+

The paper is arranged as follows+ Section 2 specifies a multivariate Model B
and presents our estimators, their asymptotic distributions, and results useful
for testing+ Section 3 describes a more efficient but less tractable one-step es-
timator and a tractable two-step estimator that uses information from perfectly
measured regressors+ Section 4 presents Monte Carlo simulations, and Sec-
tion 5 concludes+ The Appendix contains our proofs+
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2. THE MODEL

Let ~ yi , xi , zi !, i � 1, + + + , n, be a sequence of observable vectors, where xi [
~xi1, + + + , xiJ ! and zi [ ~1, zi1, + + + , ziL!+ Let ~ui ,«i ,xi ! be a sequence of unobserv-
able vectors, where xi [ ~xi1, + + + ,xiJ ! and «i [ ~«i1, + + + ,«iJ !+

Assumption 1+

~i! ~ yi , xi , zi ! is related to ~xi ,ui ,«i ! and unknown parameters a [ ~a0,a1, + + + ,aL!
'

and b [ ~b1, + + + ,bJ !
' according to

yi � zia� xi b� ui , (1)

xi � xi � «i ; (2)

~ii! ~zi ,xi ,ui ,«i !, i � 1, + + + , n, is an independent and identically distributed ~i+i+d+!
sequence;

~iii! ui and the elements of zi , xi , and «i have finite moments of every order;
~iv! ~ui ,«i ! is independent of ~zi ,xi !, and the individual elements in ~ui ,«i ! are in-

dependent of each other;
~v! E~ui ! � 0 and E~«i ! � 0;
~vi! E @~zi ,xi !

'~zi ,xi !# is positive definite+

Equations ~1! and ~2! represent a regression with observed regressors zi and
unobserved regressors xi that are imperfectly measured by xi + The assumption
that the measurement errors in «i are independent of each other and also of the
equation error ui goes back to Geary ~1942! and may be regarded as the tradi-
tional multivariate extension of Reiersöl’s Model B+ The assumption of finite
moments of every order is for simplicity and can be relaxed at the expense of
greater complexity+

Before stating our remaining assumptions, we “partial out” the perfectly mea-
sured variables+ The 1 � J residual from the population linear regression of xi

on zi is xi � zimx , where mx [ @E~zi
' zi !#

�1E~zi
' xi !+ The corresponding 1 � J

residual from the population linear regression of xi on zi equals hi [ xi �
zimx + Subtracting zimx from both sides of ~2! gives

xi � zi mx � hi � «i + (3)

The regression of yi on zi similarly yields yi � zimy, where my [
@E~zi

' zi !#
�1E~zi

' yi ! satisfies

my � a�mx b (4)

by ~1! and the independence of ui and zi + Subtracting zimy from both sides of
~1! thus gives

yi � zi my � hi b� ui + (5)
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We consider a two-step estimation approach, where the first step is to substi-
tute least squares estimates ~ [mx , [my! [ @(i�1

n zi
' zi #

�1(i�1
n zi

'~xi , yi ! into ~3!
and ~5! to obtain a lower dimensional errors-in-variables model, and the sec-
ond step is to estimate b using high-order sample moments of yi � zi [my and
xi � zi [mx + Estimates of a are then recovered via ~4!+

Our estimators are based on equations giving the moments of yi � zimy and
xi � zimx as functions of b and the moments of ~ui ,«i ,hi !+ To derive these
equations, write ~5! as yi � zimy � (j�1

J hij bj � ui and the jth equation in ~3!
as xij � zimxj � hij � «ij , where mxj is the jth column of mx and ~hij ,«ij ! is the
jth row of ~hi

' ,«i
'!+ Next write

E�~ yi � zi my !
r0 )

j�1

J

~xij � zi mxj !
rj� � E��(

j�1

J

hij bj � ui�r0

)
j�1

J

~hij � «ij !
rj�,

(6)

where ~r0, r1, + + + , rJ ! are nonnegative integers+ Expand ~(j�1
J hij bj � ui !

r0 and
~hij � «ij !

rj using the multinomial theorem, multiply the expansions together,
and take the expected value of the resulting polynomial, factoring the expecta-
tions in each term as allowed by Assumption 1~iv!+ This gives

E�~ yi � zi my !
r0 )

j�1

J

~xij � zi mxj !
rj� (7)

� (
v�V
(
k�K

av, k�)
j�1

J

bj
vj�E�)

j�1

J

hij
~vj�kj !��)

j�1

J

E~«ij
~rj�kj ! !�E~ui

v0!,

where v [ ~v0, v1, + + + , vJ ! and k [ ~k1, + + + , kJ ! are vectors of nonnegative inte-
gers, V[ $v :(j�0

J vj � r0%, K[ $k :(j�1
J kj �(j�0

J rj , kj � rj , j � 1, + + + , J % , and

av, k [
r0!

v0!v1!{{{vJ ! )j�1

J rj !

kj !~rj � kj !!
+

Let m � (j�0
J rj + We will say that equation ~7! has moment order equal to m,

which is the order of its left-hand-side moment+ Each term of the sum on the
right-hand side of ~7! contains a product of moments of ~ui ,«i ,hi !, where the
orders of the moments sum to m+All terms containing first moments ~and there-
fore also ~m � 1!th order moments! necessarily vanish+ The remaining terms
can contain moments of orders 2, + + + ,m � 2 and m+

Systems of equations of the form ~7! can be written as

E @gi ~m!# � c~u!, (8)

where m [ vec~my,mx !, gi~m! is a vector of distinct elements of the form
~ yi � zi my !

r0) j�1
J ~xij � zi mxj !

rj , the elements of c~u! are the corresponding
right-hand sides of ~7!, and u is a vector containing those elements of b and
those moments of ~ui ,«i ,hi ! appearing in c~u!+ The number and type of ele-
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ments in u depend on what instances of ~7! are included in ~8!+ First-order
moments, and moments appearing in the included equations only in terms con-
taining a first-moment factor, are excluded from u+ Example systems are given
in Section 2+1+

Equation ~8! implies E @gi~m!#� c~t !� 0 if t � u+ There are numerous spec-
ifications for ~8! and alternative identifying assumptions that further ensure
E @gi~m!# � c~t ! � 0 only if t � u+ For simplicity we confine ourselves to the
following statements, which should be the most useful in application+

DEFINITION 1+ Let M � 3 . We will say that (8) is an SM system if it con-
sists of all second through Mth order moment equations except possibly those
for one or more of E @~ yi � zimy!

M# , E @~ yi � zimy!
M�1# , E @~xij � zimxj !

M# ,
and E @~xij � zimxj !

M�1# , j � 1, + + + , J.

Each SM system contains all third-order product moment equations, which
the next assumption uses to identify u+ It should be noted that the ratio of the
number of equations to the number of parameters in an SM system ~and there-
fore the number of potential overidentifying restrictions! increases indefinitely
as M grows+ For fixed M, each of the optional equations contains a moment of
ui or «i that is present in no other equation of the system; deleting such an
equation from an identified system therefore yields a smaller identified system+

Assumption 2+ Every element of b is nonzero, and the distribution of h sat-
isfies E @~hi c!3# � 0 for every vector of constants c � ~c1, + + + , cJ ! having at
least one nonzero element+

The assumption that b contain no zeros is required to identify all the param-
eters in u+We note that Reiersöl ~1950! shows for the single-regressor Model B
that b must be nonzero to be identifiable+ Our assumption on h is similar to
that given by Kapteyn and Wansbeek ~1983! and Bekker ~1986! for the multi-
variate Model A+ These authors show that b is identified if there is no linear
combination of the unobserved true regressors that is normally distributed+ As-
suming that hi c is skewed for every c � 0 implies, among other things, that not
all third-order moments of hi will equal zero and that no nonproduct moment
E~hij

3! will equal zero+

PROPOSITION 1+ Suppose Assumptions 1 and 2 hold and (8) is an SM sys-
tem. Let D be the set of values u can assume under Assumption 2. Then the
restriction of c~t ! to D has an inverse.

This implies E @gi~m!# � c~t ! � 0 for t � D if and only if t � u+ Identifica-
tion then follows from the next assumption:

Assumption 3+ u � Q � D, where Q is compact+
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It should be noted that Assumptions 2 and 3 also identify some systems not
included in Definition 1; an example is the system of all third-order moment
equations+ The theory given subsequently applies to such systems also+

Let s have the same dimension as m and define Sg~s! [ n�1(i�1
n gi ~s! for all

s+ We consider estimators of the following type, where ZW is any positive defi-
nite matrix:

Zu � argmin
t�Q

~ Sg~ [m!� c~t !!' ZW~ Sg~ [m!� c~t !!+ (9)

To state the distribution for Zu, which inherits sampling variability from [m, we
use some objects characterizing the distributions of [m and Sg~ [m!+ These distri-
butions can be derived from the following assumption, which is implied by, but
weaker than, Assumption 1+

Assumption 4+ ~ yi , xi , zi !, i � 1, + + + , n, is an i+i+d+ sequence with finite mo-
ments of every order and positive definite E~zi

' zi !+

The influence function for [m, which is denoted cmi , is defined as follows+3

LEMMA 1+ Let Ri~s! [ vec@zi
'~ yi � zi sy !, zi

'~xi � zi sx !# , Q [ IJ�1 �
E~zi

' zi ! , and cmi [ Q�1Ri~m! . If Assumption 4 holds, then E~cmi ! � 0 ,
avar~ [m! � E~cmicmi

' ! � ` , and Mn ~ [m � m! � n�102(i�1
n cmi � op~1! .

Here op~1! denotes a random vector that converges in probability to zero+
The next result applies to all gi~m! as defined at ~8!+

LEMMA 2+ Let G ~s! [ E @]gi ~s!0]s ' # . If Assumption 4 holds, then
Mn ~ Sg~ [m! � E @gi~m!# !

d
&& N~0,V! , where

V [ var @gi ~m!� E @gi ~m!#� G~m!cmi # +

Elements of G~m! corresponding to moments of order three or greater are gen-
erally nonzero, which is why “partialling” is not innocuous in the context of high-
order moment-based estimation+ For example, if gi~m! contains ~xij � zimxj !

3 ,
then G~m! contains E @3~xij � zimxj !

2~� zi !# +
We now give the distribution for Zu+

PROPOSITION 2+ Let C [ ]c~t !0]t ' 6t�u. If Assumptions 1–3 hold, ZW p
&&

W, and W is positive definite, then

~i! Zu exists with probability approaching one and Zu p
&& u;

~ii! Mn ~ Zu � u! d
&& N~0,avar~ Zu!! , avar~ Zu! � @C 'WC#�1C 'WVWC @C 'WC#�1;

~iii! Mn ~ Zu � u! � n�102(i�1
n cui � op~1! , cui [ @C 'WC#�1C 'W~gi~m! �

E @gi~m!# � G~m!cmi ! .

The next result is useful both for estimating avar ~ Zu! and obtaining an
optimal ZW+ Let OG~s! [ n�1(i�1

n ]gi ~s!0]s ', OQ [ IJ�1 � n�1(i�1
n zi

' zi , Zcmi [
OQ�1Ri~ [m!, and
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ZV [ n�1(
i�1

n

~gi ~ [m!� Sg~ [m!� OG~ [m! Zcmi !~gi ~ [m!� Sg~ [m!� OG~ [m! Zcmi !
'+

PROPOSITION 3+ If Assumption 4 holds, then ZV p
&& V .

If ZV and V are nonsingular, then ZW � ZV�1 minimizes avar ~ Zu!, yielding
avar~ Zu!� @C 'V�1C#�1 ~see Newey, 1994, p+ 1368!+ Assuming this ZW is used,
what is the asymptotic effect of changing ~8! by adding or deleting equations?
Robinson ~1991, pp+ 758–759! shows that one cannot do worse asymptotically
by enlarging a system, provided the resulting system is also identified+ Doing
strictly better requires that the number of additional equations must exceed the
number of additional parameters they bring into the system+ For this reason all
SM systems with the same M are asymptotically equivalent; they differ from
each other by optional equations that each contain a parameter present in no
other equation of the system+ This suggests that in practice one should use, for
each M, the smallest SM system containing all parameters of interest+

2.1. Examples of Identifiable Equation Systems

Suppressing the subscript i for clarity, let _y [ y � zmy and _xj [ xj � zmxj +
Equations for the case J � 1 ~where we also suppress the j subscript! include

E~ _y 2 ! � b2E~h2 !� E~u2 !, (10)

E~ _y _x! � bE~h2 !, (11)

E~ _x 2 ! � E~h2 !� E~«2 !, (12)

E~ _y 2 _x! � b2E~h3 !, (13)

E~ _y _x 2 ! � bE~h3 !, (14)

E~ _y 3 _x! � b3E~h4 !� 3bE~h2 !E~u2 !, (15)

E~ _y 2 _x 2 ! � b2 @E~h4 !� E~h2 !E~«2 !#� E~u2 !@E~h2 !� E~«2 !# , (16)

E~ _y _x 3 ! � b@E~h4 !� 3E~h2 !E~«2 !# + (17)

The first five equations, ~10!–~14!, constitute an S3 system by Definition 1+
This system has five right-hand-side unknowns, u � ~b,E ~h2 !,E ~u2 !,
E~«2!,E~h3!!' + Note that the parameter E~u2! appears only in ~10! and E~«2!
appears only in ~12!+ If one or both of these parameters is of no interest, then
their associated equations can be omitted from the system without affecting
the identification of the resulting smaller S3 system+ Omitting both gives
the three-equation S3 system consisting of ~11!, ~13!, and ~14!, with u �
~b,E~h2!,E~h3!!' + Further omitting ~11! gives a two-equation, two-parameter
system that is also identified by Assumptions 2 and 3+

The eight equations ~10!–~17! are an S4 system+ The corresponding u has six
elements, obtained by adding E~h4! to the five-element u of the system ~10!–
~14!+ Note that Definition 1 allows an S3 system to exclude, but requires an S4
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system to include, equations ~10! and ~12!+ It is seen that these equations are
needed to identify the second-order moments E~u2! and E~«2! that now also
appear in the fourth-order moment equations+

For all of the J � 1 systems given previously, Assumption 2 specializes to
b � 0 and E~h3! � 0+ The negation of this condition can be tested via ~13!
and ~14!; simply test the hypothesis that the left-hand sides of these equations
equal zero, basing the test statistic on the sample averages n�1(i�1

n [yi
2 [xi and

n�1(i�1
n [yi [xi

2 where [yi [ yi � zi [my and [xij [ xij � zi [mxj + ~An appropriate
Wald test can be obtained by applying Proposition 5, which follows+! Note
that when b � 0 and E ~h3! � 0, then ~13! and ~14! imply b � E ~ _y 2 _x!0
E~ _y _x 2!, a result first noted by Geary ~1942!+ Given b, all of the preceding
systems can then be solved for the other parameters in their associated u+

An example for the J � 2 case is the 13-equation S3 system

E~ _y 2 ! � b1
2 E~h1

2!� 2b1b2 E~h1h2 !� b2
2 E~h2

2!� E~u2 !, (18)

E~ _y _xj ! � b1 E~h1hj !� b2 E~h2hj !, j � 1,2, (19)

E~ _x1 _x2 ! � E~h1h2 !, (20)

E~ _xj
2! � E~hj

2!� E~«j
2!, j � 1,2, (21)

E~ _y 2 _xj ! � b1
2 E~h1

2hj !� 2b1b2 E~h1h2hj !� b2
2 E~h2

2hj !, j � 1,2, (22)

E~ _y _xj
2! � b1 E~h1hj

2!� b2 E~hj
2h2 !, j � 1,2, (23)

E~ _yi _x1 _x2 ! � b1 E~h1
2h2 !� b2 E~h1h2

2!, (24)

E~ _x1 _x2 _xj ! � E~h1h2hj !, j � 1,2+ (25)

The associated u consists of 12 parameters: b1, b2, E~h1
2!, E~h1h2!, E~h2

2!,
E~u2!, E~«1

2!, E~«2
2!, E~h1

3!, E~h1
2h2 !, E~h1h2

2!, and E~h2
3!+ To see how As-

sumption 2 identifies this system through its third-order moments, substitute
~23! and ~24! into ~22!, and substitute ~25! into ~24!, to obtain the three-
equation system

�
E~ _y 2 _x1!

E~ _y 2 _x2 !

E~ _y _x1 _x2 !
� � �

E~ _y _x1
2! E~ _y _x1 _x2 !

E~ _y _x1 _x2 ! E~ _y _x2
2!

E~ _x1
2 _x2 ! E~ _x1 _x2

2!
��b1

b2
�+ (26)

This system can be solved uniquely for b if and only if the first matrix on the
right has full column rank+ Substituting from ~23!–~25! lets us express this ma-
trix as

�
b1 E~h1

3!� b2 E~h1
2h2 ! b1 E~h1

2h2 !� b2 E~h1h2
2!

b1 E~h1
2h2 !� b2 E~h1h2

2! b1 E~h1h2
2!� b2 E~h2

3!

E~h1
2h2 ! E~h1h2

2!
� + (27)
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If the matrix does not have full rank, then it can be postmultiplied by a c [
~c1, c2!

' � 0 to produce a vector of zeros+ Simple algebra shows that such a c
must also satisfy

@c1 E~h1
2h2 !� c2 E~h1h2

2!# � 0, (28)

b1 @c1 E~h1
3!� c2 E~h1

2h2 !# � 0, (29)

b2 @c1 E~h1h2
2!� c2 E~h2

3!# � 0+ (30)

Both elements of b are nonzero by Assumption 2, so these equations hold only
if the quantities in the square brackets in ~28!–~30! all equal zero+ But these
same quantities appear in

E @~c1h1 � c2h2 !
3 # [ c1

2 @c1 E~h1
3!� c2 E~h1

2h2 !# (31)

� c2
2 @c1 E~h1h2

2!� c2 E~h2
3!#

� 2c1 c2 @c1 E~h1
2h2 !� c2 E~h1h2

2!# ,

which Assumption 2 requires to be nonzero for any c � 0+ Thus, ~26! can
be solved for b, and, because both elements of b are nonzero, ~18!–~25! can be
solved for the other 10 parameters+

We can test the hypothesis that Assumption 2 does not hold+ Let detj3 be
the determinant of the submatrix consisting of rows j and 3 of ~27! and note
that bj � 0 implies det j3 � 0+ Because det j3 equals the determinant formed
from the corresponding rows of the matrix in ~26!, one can use the sample
moments of ~ [yi , [xi1, [xi2! and Proposition 5 to test the hypothesis det13{det23 � 0+
When this hypothesis is false, then both elements of b must be nonzero and
~27! must have full rank+ For the arbitrary J case, it is straightforward to show
that Assumption 2 holds if the product of J analogous determinants, from the
matrix representation of the system ~A+4!–~A+5! in the Appendix, is non-
zero+ It should be noted that the tests mentioned in this paragraph do not have
power for all points in the parameter space+ For example, if J � 2 and h1 is
independent of h2 then det13{det23 � 0 even if Assumption 2 holds, because
E~hi1

2 hi2 ! � E~hi1hi2
2 ! � 0+ Because this last condition can also be tested,

more powerful, multistage, tests should be possible; however, developing these
is beyond the scope of this paper+

2.2. Estimating a and the Population Coefficient of Determination

The subvector Zb of Zu can be substituted along with [m into ~4! to obtain an
estimate [a+ The asymptotic distribution of ~ [a ', Zb '! can be obtained by applying
the “delta method” to the asymptotic distribution of ~ [m', Zu '!+ However, the lat-
ter distribution is not a by-product of our two-step estimation procedure, be-
cause Zu is not estimated jointly with [m+ Thus, for example, it is not immediately
apparent how to find the asymptotic covariance between Zb and [m+ Fortunately,
the necessary information can be recovered from the influence functions for [m
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and Zu+ The properties of these functions, given in Lemma 1 and Proposi-
tion 2~iii!, together with the Lindeberg–Levy central limit theorem and Slutsky’s
theorem, imply

Mn� [m�m

Zu� u � �
1

Mn (i�1

n �cmi

cui
�� op~1!

d
&& N��0

0�,E�cmic
'
mi cmicui

'

cuic
'
mi cuicui

' ��+
More generally, suppose [g is a statistic derived from ~ yi , xi , zi !, i � 1, + + + , n,

that satisfies Mn ~ [g� g0!� n�102(i�1
n cgi � op~1! for some constant vector g0

and some function cgi +4 Then the asymptotic distribution of ~ [g ', Zu '! is a zero-
mean multivariate normal with covariance matrix var~cgi

' ,cui' !, and the delta
method can be used to obtain the asymptotic distribution of p~ [g, Zu!, where p
is any function that is totally differentiable at ~g0,u0!+ Inference can be con-
ducted if var~cgi

' ,cui' ! has sufficient rank and can be consistently estimated+
For an additional example, consider the population coefficient of determina-

tion for ~1!, which can be written

r2 �
my
' var~zi !my � b ' var~hi !b

my
' var~zi !my � b ' var~hi !b� E~ui

2!
+ (32)

Substituting appropriate elements of Zu, [m, and Zvar~zi ! � n�1(i�1
n ~zi � Sz!' �

~zi � Sz! into ~32! gives an estimate [r2 + To obtain its asymptotic distri-
bution, define Izi by zi[ ~1, Izi !, let Zvar~ Izi !� n�1(i�1

n ~ Izi � S Iz!'~ Izi � S Iz! and [s[
vech@ Zvar ~ Izi !# , where vech creates a vector from the distinct elements of a
symmetric matrix, and then apply the delta method to the distribution of
~ [s ', [m', Zu '!+ The latter has avar~ [s ', [m', Zu '! � var~csi

' ,cmi
' ,cui' !, where csi [

vech@~ Izi � E~ Izi !!
'~ Izi � E~ Izi !! � var~ Izi !# is an influence function under As-

sumption 4+
The following result makes possible inference with [a, [r2 , and other func-

tions of ~ [s ', [m', Zu '!+

PROPOSITION 4+ Let Zcsi [ vech@~ Izi � S Iz!'~ Izi � S Iz! � Zvar~ Izi !# , ZC [ ]c~t!0
]t ' 6 t� Zu, and Zcui [ @ ZC ' ZW ZC#�1 ZC ' ZW~gi~ [m!� Sg~ [m!� OG~ [m! Zcmi ! . If Assumptions
1–3 hold, then avar~ [s ', [m', Zu '! has full rank and is consistently estimated by
n�1(i�1

n ~ Zcsi
' , Zcmi

' , Zcui' !'~ Zcsi
' , Zcmi

' , Zcui' ! .

2.3. Testing Hypotheses about Residual Moments

Section 2+1 showed that Assumption 2 implies restrictions on the residual mo-
ments of the observable variables+ Such restrictions can be tested using the cor-
responding sample moments and the distribution of Sg~ [m! in Lemma 2+ Wald-
statistic null distributions are given in the next result; like Lemma 2, it depends
only on Assumption 4+

PROPOSITION 5+ Suppose gi~m! is d � 1 . Let v~w! be an m � 1 vector of
continuously differentiable functions defined on R

d such that m � d and V~w! [
]v~w!0]w ' has full row rank at w � E @gi~m!# . Also, let v0[ v~E @gi~m!# ! , [v[
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v~ Sg~ [m!! , and ZV[ V~ Sg~ [m!! . If Assumption 4 holds and V is nonsingular, then
n~ [v � v0!'~ ZV ZV ZV '!�1~ [v � v0! converges in distribution to a chi-square random
variable with m degrees of freedom.

For an example, recall that equations ~10!–~17! satisfy Assumption 2 if
b � 0 and E~hi

3! � 0, which by ~13! and ~14! is true if and only if the null
E~ _y 2 _x!� E~ _y _x 2!� 0 is false+ To test this hypothesis, let v0[ v~E @gi~m!# ! be
a 2 � 1 vector consisting of the left-hand sides of ~13! and ~14! and [v[ v~ Sg~ [m!!
be a 2 � 1 vector consisting of n�1(i�1

n [yi
2 [xi and n�1(i�1

n [yi [xi
2+

3. ALTERNATIVE GMM ESTIMATORS

In the introduction we alluded to asymptotically more efficient one-step esti-
mation+ One approach is to estimate m and u jointly+ Recall the definition of
Ri~s! given in Lemma 1 and note that [m solves n�1(i�1

n Ri ~s! � 0+ Therefore
[m is the GMM estimator implied by the moment condition E @Ri~s!# � 0 iff

s �m+ This immediately suggests GMM estimation based on the “stacked” mo-
ment condition

E�Ri ~s!

gi ~s!� c~t !� � 0 if and only if ~s, t !� ~m,u!+ (33)

Minimum variance estimators ~ Im, Du! are obtained by minimizing a quadratic form
in ~n�1(i�1

n Ri ~s!
', n�1(i�1

n gi ~s!
' � c~t !'!' , where the matrix of the quadratic

is a consistent estimate of the inverse of var~Ri~m!
', gi~m!

'!+ The asymptotic su-
periority of this estimator may not be accompanied by finite sample superiority,
however+ We compare the performance of stacked and two-step estimators in
the Monte Carlo experiments of the next section and find that neither is supe-
rior for all parameters+ The same experiments show that the difference between
the nominal and actual size of a test, particularly the J-test of overidentifying
restrictions, can be much larger for the stacked estimator+Another practical short-
coming of this estimator is that the computer code must be substantially re-
written for each change in the number of perfectly measured regressors, which
makes searches over alternative specifications costly+ Note also that calculating
n�1(i�1

n Ri ~m iter ! and n�1(i�1
n gi ~m iter ! for a new value m iter at each iteration

of the minimization algorithm ~in contrast to using the OLS value [m for every
iteration! greatly increases computation time, making bootstraps or Monte Carlo
simulations very time consuming+ For example, our stacked estimator simula-
tion took 31 times longer to run than the otherwise identical simulation using
two-step estimators+ Jointly estimating var~zi ! with m and u, to obtain asymp-
totically more efficient estimates of r2 or other parameters, would amplify these
problems+

Another alternative estimator is given by Lewbel ~1997!, who demonstrates
that GMM estimators can exploit information contained in perfectly measured
regressors+ To describe his idea for the case J � 1, define ff ~zi ! [ Ff ~zi ! �
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E @Ff ~zi !# , f � 1, + + + ,F, where each Ff ~zi ! is a known nonlinear function of zi +
Assuming certain moments are finite, he proves that linear IV estimation of
~a ',b! from the regression of yi on ~zi , xi ! is consistent, if the instrument set
consists of the sample counterparts to at least one of ff ~zi !, ff ~zi !~xi � E~xi !!,
or ff ~zi !~ yi � E~ yi !! for at least one f+ Using two or more of these instruments
provides overidentification+5 Note that the expected value of the product of any
of these instruments with the dependent or endogenous variable of the regres-
sion ~in deviations-from-means form! can be written

E @ff ~zi !~xi � E~xi !!
p~ yi � E~ yi !!

q # , (34)

where ~p, q! equals ~1, 0!, ~0, 1!, or ~1, 1!+ To exploit the information in mo-
ments where p, q, and p � q are larger integers, Lewbel suggests using GMM
to estimate a system of nonlinear equations that express each such moment as a
function of a, b, and the moments of ~ui ,«i ,xi , zi ,f1~zi !, + + + ,fF~zi !!+ Each equa-
tion is obtained by substituting ~1! and ~2! into ~34!, applying the multinomial
theorem, multiplying the resulting expansions together, and then taking expec-
tations+ The numbers of resulting equations and parameters increase with the
dimension of zi + Our partialling approach can therefore usefully extend his sug-
gested estimator to instances where this dimension is troublesomely large+

To do so, for arbitrary J, note that the equation for E @ff ~zi !~ yi � zi my !
r0 �

) j�1
J ~xij � zi mxj !

rj # will have a right-hand side identical to ~7! except that
E~) j�1

J hij
~vj�kj ! ! is replaced by E @ff ~zi !~) j�1

J hij
~vj�kj ! !# + Redefine gi~m! and

c~u! to include equations of this type, with m correspondingly redefined to in-
clude m f [ E @Ff ~zi !# + Note that G~s! [ E @]gi~s!0]s '# has additional columns
consisting of elements of the form E @�~ yi � zi sy !

r0) j�1
J ~xij � zi sxj !

rj # + If
each E @Ff ~zi !# is estimated by the sample mean n�1(i�1

n Ff ~zi !, then the vec-
tor cmi includes additional influence functions of the form Ff ~zi !� E @Ff ~zi !# +
Rewrite Lemma 1 accordingly and modify Assumption 1 by adding the require-
ment that Ff ~zi !, f � 1, + + + ,F have finite moments of every order+ Then, given
suitable substitutes for Definition 1, Assumption 2, and Proposition 1, all our
lemmas and other propositions remain valid, requiring only minor modifica-
tions to proofs+

4. MONTE CARLO SIMULATIONS

Our “baseline” simulation model has one mismeasured regressor and three per-
fectly measured regressors, ~xi , zi1, zi2, zi3!+ The corresponding coefficients are
b � 1, a1 � �1, a2 � 1, and a3 � �1+ The intercept is a0 � 1+ To generate
~ui ,«i !, we exponentiate two standard normals and then standardize the result-
ing variables to have unit variances and zero means+ To generate ~xi , zi1, zi2, zi3!,
we exponentiate four independent standard normal variables, standardize,
and then multiply the resulting vector by @var ~xi , zi1, zi 2, zi3!#

102 , where
var~xi , zi1, zi2, zi3! has diagonal elements equal to 1 and off-diagonal elements
equal to 0+5+ The resulting coefficient of determination is r2 � 2

3
_ and measure-
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ment quality can be summarized by var~xi !0var~xi !� 0+5+We generate 10,000
samples of size n � 1,000+

The estimators are based on equation systems indexed by M, the highest
moment-order in the system+ For M � 3 the system is ~10!–~14!, and for M �
4 it is ~10!–~17!+ For M � 4, the Mth system consists of every instance of
equation ~7! for J � 1 and r0 � r1 � 2 up to r0 � r1 � M, except for those
corresponding to E~ _yi

M!, E~ _yM�1!, E~ _xi
M!, and E~ _xi

M�1!+ All equations and
parameters in system M are also in the larger system M � 1+ For each system,
u contains b and the moments E~ui

2! and E~hi
2! needed to evaluate r2 accord-

ing to ~32!+ For M � 5, each system consists of ~M 2 � 3M � 12!02 equations
in 3M � 6 parameters+ We use ZW � ZV�1 for all estimators+ Starting values for
the Gauss–Newton algorithm are given by Du [ b�1 @n�1(i�1

n hi ~ [m!# , where
E @hi~m!#� b~u! is an exactly identified subset of the equations ~8! comprising
system M+6

Table 1 reports the results+ GMMM denotes the estimator based on moments
up to order M+ OLS denotes the regression of yi on ~zi , xi ! without regard for
measurement error+We report expected value, mean absolute error ~MAE!, and
the probability an estimate is within 0+15 of the true value+7 Table 1 shows that
every GMM estimator is clearly superior to OLS+ ~The traditional unadjusted

Table 1. OLS and GMM on the baseline DGP, n � 1,000

OLS GMM3 GMM4 GMM5 GMM6 GMM7

E~ Zb! 0+387 1+029 1+000 0+998 0+993 0+995
MAE~ Zb! 0+613 0+196 0+117 0+118 0+116 0+106
P~6 Zb � b 6 � 0+15! 0+000 0+596 0+732 0+739 0+778 0+797
Size of t-test — 0+066 0+126 0+162 0+247 0+341
E~ [a1! �0+845 �1+008 �1+000 �0+999 �1+000 �0+999
MAE~ [a1! 0+155 0+069 0+055 0+055 0+057 0+054
P~6 [a1 � a16 � 0+15! 0+068 0+917 0+959 0+963 0+966 0+965
Size of t-test — 0+060 0+072 0+076 0+081 0+088
E~ [a2! 1+155 0+994 1+001 1+001 1+003 1+003
MAE~ [a2! 0+155 0+068 0+055 0+055 0+055 0+053
P~6 [a2 � a26 � 0+15! 0+068 0+920 0+961 0+963 0+966 0+969
Size of t-test — 0+059 0+066 0+074 0+078 0+080
E~ [a3! �0+846 �1+009 �1+001 �1+001 �1+000 �1+000
MAE~ [a3! 0+154 0+069 0+055 0+055 0+055 0+053
P~6 [a3 � a36 � 0+15! 0+068 0+918 0+962 0+962 0+967 0+966
Size of t-test — 0+058 0+069 0+070 0+076 0+082
E~ [r2! 0+546 0+675 0+695 0+710 0+723 0+734
MAE~ [r2! 0+122 0+064 0+053 0+060 0+067 0+074
P~6 [r2 � r2 6 � 0+15! 0+706 0+937 0+982 0+979 0+969 0+953
Size of t-test — 0+110 0+155 0+253 0+371 0+509

Size of J-test — — 0+036 0+073 0+161 0+280
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R2 is our OLS estimate of r2 +! In terms of MAE, the GMM7 estimator is best
for the slope coefficients, whereas GMM4 is best for estimating r2 + Relative
performance as measured by the probability concentration criterion is essen-
tially the same+ Table 1 also reports the true sizes of the nominal +05 level two-
sided t-test of the hypothesis that a parameter equals its true value and the
nominal +05 level J-test of the overidentifying restrictions exploited by a GMM
estimator ~Hansen, 1982!+

Each remaining simulation is obtained by varying one feature of the pre-
ceding experiment+ Table 2 reports the results from our “near normal”
simulation, which differs from the baseline simulation by having distributions
for ~ui , «i ,xi , zi1, zi2, zi3! such that hi , _yi , and _xi have much smaller high-
order moments+ We specify ~ui ,«i ! as standard normal variables and obtain
~xi , zi1, zi2, zi3! by multiplying the baseline @var~xi , zi1, zi2, zi3!#

102 times a row
vector of independent random variables: the first is a standardized chi-square
with 8 degrees of freedom, and the remaining three are standard normals+
The resulting simulation has E~hi

3! � 0+4, in contrast to the baseline value
E~hi

3! � 2+4+ All GMM estimators still beat OLS, but the best estimator for
all parameters is now GMM3, which uses no overidentifying information+

Table 3 reports the results from our “small sample” simulation, which differs
from the baseline simulation only by using samples of size 500+ Not surpris-

Table 2. OLS and GMM on a nearly normal DGP, n � 1,000

OLS GMM3 GMM4 GMM5 GMM6 GMM7

E~ Zb! 0+385 1+046 1+053 1+061 1+042 1+051
MAE~ Zb! 0+615 0+213 0+243 0+289 0+266 0+278
P~6 Zb � b 6 � 0+15! 0+000 0+502 0+452 0+411 0+405 0+401
Size of t-test — 0+045 0+086 0+134 0+225 0+295
E~ [a1! �0+845 �1+009 �1+011 �1+014 �1+008 �1+010
MAE~ [a1! 0+155 0+070 0+076 0+087 0+081 0+083
P~6 [a1 � a16 � 0+15! 0+038 0+926 0+901 0+873 0+889 0+880
Size of t-test — 0+042 0+062 0+084 0+121 0+146
E~ [a2! 1+154 0+989 0+987 0+985 0+990 0+988
MAE~ [a2! 0+154 0+072 0+078 0+088 0+082 0+085
P~6 [a2 � a26 � 0+15! 0+038 0+919 0+897 0+873 0+885 0+875
Size of t-test — 0+045 0+064 0+084 0+124 0+152
E~ [a3! �0+847 �1+012 �1+014 �1+016 �1+012 �1+013
MAE~ [a3! 0+153 0+072 0+077 0+088 0+082 0+085
P~6 [a3 � a36 � 0+15! 0+038 0+921 0+897 0+871 0+884 0+874
Size of t-test — 0+042 0+061 0+084 0+123 0+150
E~ [r2! 0+540 0+676 0+678 0+684 0+679 0+683
MAE~ [r2! 0+126 0+046 0+051 0+061 0+054 0+057
P~6 [r2 � r2 6 � 0+15! 0+865 0+980 0+967 0+950 0+963 0+958
Size of t-test — 0+035 0+065 0+105 0+188 0+249

Size of J-test — — 0+035 0+036 0+039 0+031

790 TIMOTHY ERICKSON AND TONI M. WHITED



ingly, all estimators do worse+ The best estimator of all parameters by the MAE
criterion is GMM4+ The best estimator by the probability concentration crite-
rion depends on the particular parameter considered, but it is never GMM3+
Therefore, in contrast to the previous simulation, there is a clear gain in exploit-
ing overidentification+

Table 4 reports the performance of the “stacked” estimators of Section 3 on
the baseline simulation samples used for Table 1+ Here STACKM denotes the
counterpart to the GMMM estimator+ ~STACK3 is excluded because it is iden-
tical to GMM3, both estimators solving the same exactly identified set of equa-
tions+! The starting values for GMMM are augmented with the OLS estimate [m
to obtain starting values for STACKM+ The matrix of the quadratic minimand is
the inverse of the sample covariance matrix of ~Ri

'~ [m!, gi
'~ [m! � Sg '~ [m!!+ Com-

paring Tables 1 and 4 shows that by the MAE criterion the best two-step esti-
mator of the slopes is GMM7, whereas the best one-step estimators are STACK4
and STACK5+ Note that GMM7 is better for the coefficient on the mismeasured
regressor, whereas the stacked estimators are better for the other slopes+ GMM4
and STACK4 essentially tie by all criteria as the best estimators of r2 + The
stacked estimators have much larger discrepancies between true and nominal
size than do the two-step estimators for the +05 level J-test of overidentifying
restrictions+

Table 3. OLS and GMM on the baseline DGP, n � 500

OLS GMM3 GMM4 GMM5 GMM6 GMM7

E~ Zb! 0+389 1+033 0+936 0+947 0+928 0+984
MAE~ Zb! 0+611 0+403 0+270 0+305 0+301 0+369
P~6 Zb � b 6 � 0+15! 0+000 0+466 0+592 0+576 0+615 0+630
Size of t-test — 0+085 0+139 0+204 0+310 0+417
E~ [a1! �0+846 �1+009 �0+986 �0+995 �0+980 �1+000
MAE~ [a1! 0+154 0+131 0+101 0+116 0+116 0+138
P~6 [a1 � a16 � 0+15! 0+081 0+807 0+873 0+866 0+875 0+874
Size of t-test — 0+063 0+068 0+077 0+090 0+097
E~ [a2! 1+156 0+991 1+011 1+014 1+015 1+007
MAE~ [a2! 0+156 0+123 0+103 0+111 0+108 0+125
P~6 [a2 � a26 � 0+15! 0+081 0+810 0+867 0+865 0+870 0+869
Size of t-test — 0+062 0+069 0+080 0+088 0+100
E~ [a3! �0+843 �1+009 �0+986 �0+984 �0+984 �0+992
MAE~ [a3! 0+157 0+128 0+103 0+110 0+108 0+127
P~6 [a3 � a36 � 0+15! 0+081 0+798 0+859 0+862 0+862 0+861
Size of t-test — 0+067 0+076 0+085 0+095 0+106
E~ [r2! 0+551 0+680 0+702 0+723 0+734 0+749
MAE~ [r2! 0+120 0+101 0+078 0+087 0+096 0+113
P~6 [r2 � r2 6 � 0+15! 0+691 0+851 0+924 0+889 0+860 0+814
Size of t-test — 0+133 0+190 0+302 0+419 0+556

Size of J-test — — 0+047 0+081 0+167 0+304
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Table 5 reports the performance of the statistic given after Proposition 5 for
testing the null hypothesis b� 0 and0or E~hi

3!� 0+ ~Recall that this statistic is
not based on estimates of these parameters+! The table gives the frequencies at
which the statistic rejects at the +05 significance level over 10,000 samples of
size n � 1,000 from, respectively, the baseline data generating process ~DGP!,
the near normal DGP, and a “normal” DGP obtained from the near normal by

Table 4. Stacked GMM on the baseline DGP, n � 1,000

STACK4 STACK5 STACK6 STACK7

E~ Zb! 0+993 1+000 1+019 1+034
MAE~ Zb! 0+118 0+124 0+133 0+153
P~6 Zb � b 6 � 0+15! 0+734 0+746 0+758 0+722
Size of t-test 0+127 0+158 0+250 0+439
E~ [a1! �0+998 �0+999 �1+003 �1+006
MAE~ [a1! 0+052 0+053 0+056 0+061
P~6 [a1 � a16 � 0+15! 0+967 0+967 0+957 0+944
Size of t-test 0+064 0+083 0+134 0+211
E~ [a2! 1+002 1+001 0+998 0+995
MAE~ [a2! 0+052 0+052 0+054 0+061
P~6 [a2 � a26 � 0+15! 0+968 0+970 0+961 0+942
Size of t-test 0+063 0+076 0+124 0+211
E~ [a3! �0+999 �1+000 �1+004 �1+007
MAE~ [a3! 0+053 0+052 0+054 0+059
P~6 [a3 � a36 � 0+15! 0+966 0+969 0+962 0+949
Size of t-test 0+063 0+076 0+122 0+203
E~ [r2! 0+695 0+714 0+727 0+737
MAE~ [r2! 0+053 0+061 0+070 0+081
P~6 [r2 � r2 6 � 0+15! 0+981 0+972 0+961 0+928
Size of t-test 0+169 0+274 0+401 0+547

Size of J-test 0+103 0+422 0+814 0+985

Table 5. Partialling-adjusted +05 signifi-
cance level Wald test: Probability of reject-
ing H0 : E~ _yi

2 _xi ! � E~ _yi _xi
2! � 0

DGP Null is Probability

Normal true +051
Baseline false +716
Near normal false +950

Note: The hypothesis is equivalent to H0 : b � 0 and0or
E~hi

3! � 0+
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replacing the standardized chi-square variable with another standard normal+
Note that this last DGP is the only process satisfying the null hypothesis+ Table 5
shows that the true and nominal probabilities of rejection are close and that the
test has good power against the two alternatives+ Surprisingly, the test is most
powerful against the near normal alternative+

Table 6 reports a simulation with two mismeasured regressors+ It differs from
the baseline simulation by introducing error into the measurement of zi3, which
we rename xi2+ Correspondingly, a3 is renamed b2+ Adding a subscript to the
original mismeasured regressor, the coefficients are b1 � 1, b2 � �1, a0 � 1,
a1 � �1, and a2 � 1+ The vector ~ui ,«i1,xi1, zi1, zi2,xi2! is distributed ex-
actly as is the baseline ~ui ,«i ,xi , zi1, zi2, zi3!, and in place of zi3 we observe
xi2 � xi2 � «i2, where «i2 is obtained by exponentiating a standard normal
and then linearly transforming the result to have mean zero and var ~«i2! �
0+25+ This implies measurement quality var~xi2!0var ~xi2! � 0+8; measure-
ment quality for xi1 remains at 0+5+ The GMM3e estimator is based on the
exactly identified 12-equation subsystem of ~18!–~25! obtained by omitting
the equation for E~hi1hi2

2 !+ The GMM3o estimator is based on the full system
and therefore utilizes one overidentifying restriction+ The GMM4 system aug-

Table 6. OLS and GMM with two mismeasured regressors: Baseline DGP with
an additional measurement error, n � 1,000

OLS GMM3e GMM3o GMM4

E~ Zb1! 0+363 1+035 0+994 0+968
MAE~ Zb1! 0+637 0+254 0+204 0+179
P~6 Zb1 � b16 � 0+15! 0+000 0+566 0+607 0+667
Size of t-test — 0+074 0+102 0+236
E~ Zb2! �0+606 �0+996 �0+989 �0+973
MAE~ Zb2! 0+394 0+155 0+155 0+084
P~6 Zb2 � b26 � 0+15! 0+000 0+740 0+755 0+908
Size of t-test — 0+072 0+082 0+200
E~ [a1! �0+916 �1+012 �1+001 �0+997
MAE~ [a1! 0+086 0+110 0+099 0+084
P~6 [a1 � a16 � 0+15! 0+785 0+840 0+853 0+912
Size of t-test — 0+076 0+095 0+111
E~ [a2! 1+083 0+988 0+999 1+001
MAE~ [a2! 0+085 0+109 0+098 0+084
P~6 [a2 � a26 � 0+15! 0+785 0+842 0+859 0+914
Size of t-test — 0+079 0+097 0+112
E~ [r2! 0+503 0+673 0+668 0+703
MAE~ [r2! 0+164 0+066 0+063 0+057
P~6 [r2 � r2 6 � 0+15! 0+416 0+927 0+937 0+979
Size of t-test — 0+100 0+123 0+230

Size of J-test — — 0+047 0+097
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ments the GMM3o system with those instances of ~7! corresponding to the 12
fourth-order product moments of ~ _yi , _xi1, _xi2!+ These additional equations in-
troduce five new parameters, giving a system of 25 equations in 17 un-
knowns+ All estimators are computed with ZW � ZV�1 + The GMM3e estimate
~which has a closed form! is the starting value for computing the GMM3o
estimate+ The GMM3o estimate gives the starting values for b and the second-
and third-moment parameters of the GMM4 vector+ Starting values for the five
fourth-moment parameters are obtained by plugging GMM3o into five of the
12 fourth-moment estimating equations and then solving+ Table 6 shows that
with these starting values GMM4 is the best estimator by the MAE and prob-
ability concentration criteria+ In Monte Carlos not shown here, however, GMM4
performs worse than GMM3o when GMM3e rather than GMM3o is used to
construct the GMM4 starting values+

5. CONCLUDING REMARKS

Much remains to be done+ The sensitivity of our estimators to violations of
Assumption 1 should be explored, and tests to detect such violations should be
developed+ An evaluation of some of these sensitivities is reported in Erickson
and Whited ~2000!, which contains simulations portraying a variety of misspec-
ifications relevant to investment theory+ There we find that J-tests having ap-
proximately equal true and nominal sizes under correct specification can have
good power against misspecifications severe enough to distort inferences+ It
would be useful to see if the bootstraps of Brown and Newey ~1995! and Hall
and Horowitz ~1996! can effectively extend J-tests to situations where the true-
nominal size discrepancy is large+ As these authors show, one should not boot-
strap the J-test with empirical distributions not satisfying the overidentifying
restrictions assumed by the GMM estimator+ Evaluating the performance of boot-
straps for inference with our estimators is an equally important research goal+
Finally, it would help to have data-driven methods for choosing equation sys-
tems ~8! that yield good finite sample performance+ In Erickson and Whited
~2000! we made these choices using Monte Carlo generation of artificial data
sets having the same sample size and approximately the same sample moments
as the real investment data we analyzed+ Future research could see if alterna-
tives such as cross-validation are more convenient+ This topic is important be-
cause, even with moment-order limited to no more than four or five, a data
analyst may be choosing from many identifiable systems, especially when there
are multiple mismeasured regressors or, as suggested by Lewbel, one also uses
moments involving functions of perfectly measured regressors+

NOTE

1+ An additional paper in the econometrics literature on high-order moments is that of Pal ~1980!,
who analyzes estimators for Model A* that do not exploit overidentifying restrictions+

2+ Our approach is a straightforward generalization of that of Cragg, although we were un-
aware of his work until our first submitted draft was completed+ Our theory gives the covariance

794 TIMOTHY ERICKSON AND TONI M. WHITED



matrix and optimal weight matrix for his estimator, which uses estimated residuals in the form of
deviations from sample means+

3+ See pages 2142–2143 of Newey and McFadden ~1994! for a discussion of influence func-
tions and pages 2178–2179 for using influence functions to derive the distributions of two-step
estimators+

4+ Newey and McFadden ~1994, pp+ 2142–2143, 2149! show that maximum likelihood estima-
tion, GMM, and other estimators satisfy this requirement under standard regularity conditions+

5+ He points out that such such instruments can be used together with additional observable
variables satisfying the usual IV assumptions, and with the previously known instruments
~ yi � Sy!~xi � Sx!, ~ yi � Sy!2, and ~xi � Sx!2, the latter two requiring the assumption of symmetric
regression and measurement errors+ The use of sample means to define these instruments requires
an adjustment to the IV covariance and weighting matrices analogous to that of our two-step GMM
estimators+ Alternatively, one can estimate the population means jointly with the regression coeffi-
cients using the method of stacking+ See Erickson ~2001!+

6+ For convenience, we chose an exactly identified subsystem for which the inverse b�1 was
easy to derive+ Using other subsystems may result in different finite sample performance+

7+ It is possible that the finite sample distributions of our GMM estimators do not possess mo-
ments+ These distributions do have fat tails: our Monte Carlos generate extreme estimates at low,
but higher than Gaussian, frequencies+ However, GMM has a much higher probability of being
near b than does OLS, which does have finite moments, and we regard the probability concentra-
tion criterion to be at least as compelling as MAE and root mean squared error ~RMSE!+We think
RMSE is a particularly misleading criterion for this problem, because it is too sensitive to outliers+
For example, GMM in all cases soundly beats OLS by the probability concentration and MAE
criteria, yet sometimes loses by the RMSE criterion, because a very small number of estimates out
of the 10,000 trials are very large+ ~This RMSE disadvantage does not manifest itself at only 1,000
trials, indicating how rare these extreme estimates are+! Further, for any interval centered at b that
is not so wide as to be uninteresting, the GMM estimators always have a higher probability con-
centration than OLS+
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APPENDIX: PROOFS

Proofs of Lemma 2 and Propositions 1 and 2 are given here+ Proofs of Lemma 1 and
Propositions 3–5 are omitted because they are standard or are similar to the included
proofs+ We use the convention 7A7 [ 7vec~A!7, where A is a matrix and 7{7 is the Eu-
clidean norm, and the following easily verified fact: if A is a matrix and b is a column
vector, then 7Ab7 � 7A7{7b7+ We also use the following lemma+

LEMMA 3+ If Assumption 4 holds and Im is an Mn-consistent estimator of m , then
Sg~ Im! p

&& E @gi~m!# , n�1(i�1
n gi ~ Im!gi ~ Im!' r E @gi~m!gi~m!

'# , and OG~ Im! p
&& G~m! .

Proof. It is straightforward to show that Assumption 4 implies a neighborhood N
of m such that E @sups�N7gi~s!72# � ` and E @sups�N7]gi~s!0]s ' 7# � `+ The result
then follows from Lemma 4+3 of Newey and McFadden ~1994!+ �

Proof of Proposition 1. We suppress the subscript i for clarity+ Let R be the image
of D under c~t !+ The elements of R are possible values for E @g~m!# , the vector of
moments of ~ _y, _x! from the given SM system+ We will derive equations giving the in-
verse c�1 :R r D of the restriction of c~t ! to D+ In part I, we solve for b using a
subset of the equations for third-order product moments of ~ _y, _x! that are contained in
every SM system+ In part II, we show that, given b, a subset of the equations contained
in every SM system can always be solved for the moments of ~h,«,u! appearing in that
system+
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I+ Equation ~7! specializes to three basic forms for third-order product-moment equa-
tions+ Classified by powers of _y, these can be written as

E~ _xj _xk _xl ! � E~hjhkhl ! j, k, l � 1, + + + , J except j � k � l, (A.1)

E~ _xj _xk _y! � (
l�1

J

bl E~hjhkhl ! j � 1, + + + , J k � j, + + + , J, (A.2)

E~ _xj _y2 ! � (
k�1

J

bk�(
l�1

J

bl E~hjhkhl !� j � 1, + + + , J+ (A.3)

Substituting ~A+2! into ~A+3! gives

E~ _xj _y2 ! � (
k�1

J

bk E~ _xj _xk _y! j � 1, + + + , J+ (A.4)

Substituting ~A+1! into those instances of ~A+2! where j � k yields equations of the form
E~ _xj _xk _y! � (l�1

J bl E~ _xj _xk _xl !+ It will be convenient to index the latter equations by
~ j, l ! rather than ~ j, k!, writing them as

E~ _xj _xl _y! � (
k�1

J

bk E~ _xj _xk _xl ! j � 1, + + + , J l � j � 1, + + + , J+ (A.5)

Consider the matrix representation of the system consisting of all equations ~A+4! and
~A+5!+ Given the moments of ~ _yi , _xi !, a unique solution for b exists if the coefficient
matrix of this system has full column rank, or equivalently, if there is no c � ~c1, + + + , cJ !

'�
0 such that

(
k�1

J

ck E~ _xj _xk _y! � 0, j � 1, + + + , J, (A.6)

(
k�1

J

ck E~ _xj _xk _xl ! � 0, j � 1, + + + , J l � j � 1, + + + , J+ (A.7)

To verify that this cannot hold for any c � 0, first substitute ~A+1! into ~A+7! to obtain

(
k�1

J

ck E~hjhkhl ! � 0, j � 1, + + + , J l � j � 1, + + + , J+ (A.8)

Next substitute ~A+2! into ~A+6!, interchange the order of summation in the resulting
expression, and then use ~A+8! to eliminate all terms where j � l, to obtain

bl�(
k�1

J

ck E~hlhkhl !� � 0 l � 1, + + + , J+ (A.9)

Dividing by bl ~nonzero by Assumption 2! yields equations of the same form as ~A+8!+
Thus, ~A+6! and ~A+7! together imply

(
k�1

J

ck E~hjhkhl ! � 0, j � 1, + + + , J l � j, + + + , J+ (A.10)
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To see that Assumption 2 rules out ~A+10!, consider the identity

E��(
j�1

J

cjhj�3� � (
j�1

J

(
l�1

J

cj cl�(
k�1

J

ck E~hjhkhl !� + (A.11)

For every ~ j, l !, the expression in square brackets on the right-hand side of ~A+11!
equals the left-hand side of one of the equations ~A+10!+ If all the latter equations hold,
then it is necessary that the left-hand side of ~A+11! equals zero, which contradicts
Assumption 2+

II+ To each r � ~r0, + + + , rJ ! there corresponds a unique instance of ~7!+ Fix m and
consider the equations generated by all possible r such that (j�0

J rj � m+ For each such
equation where m � 4, let (~r,m! denote the sum of the terms containing moments of
~h,«,u! from orders 2 through m � 2+ For m � 2,3, set (~r,m! [ 0 for every r+ Then
the special cases of ~7! for the mth order moments E~) j�1

J _xj
rj !, E~ _y _xj

m�1!, E~ _xj
m!, and

E~ _y m! can be written

E�)
j�1

J

_xj
rj� �(~r,m!� E�)

j�1

J

hj
rj�, rj � m, j � 1, + + + , J, (A.12)

E~ _y _xj
m�1! �(~r,m!�(

l�j

bl E~hlhj
m�1!� bj E~hj

m!, (A.13)

E~ _xj
m! �(~r,m!� E~hj

m!� E~«j
m!, (A.14)

E~ _ym ! �(~r,m!� (
v�V '

av,0�)
l�1

J

bl
vl�E�)

l�1

J

hl
vl�� E~um !, (A.15)

where V ' � $v : v � V, v0 � 0% + For any given m, let sm be the system consisting of all
equations of these four types and let Em be the vector of all mth order moments of
~h,«,u! that are not identically zero+ Note that sm contains, and has equations equal in
number to, the elements of Em+ If b and every (~r,m! appearing in sm are known, then
sm can be solved recursively for Em+ Because (~r,2! � (~r,3! � 0 for every r, only b
is needed to solve s2 for E2 and s3 for E3+ The solution E2 determines the values of
(~r,4! required to solve s4+ The solutions E2 and E3 together determine the values of
(~r,5! required to solve s5+ Proceeding in this fashion, one can solve for all moments
of ~h,«,u! up to a given order M, obtaining the set of moments for the largest SM

system+ Because each Mth- and ~M � 1!th-order instance of ~A+14! and ~A+15! con-
tains a moment that appears in no other equations of an SM system, omitting these
equations does not prevent solving for the remaining moments+ �

Proof of Lemma 2. The mean value theorem implies

Mn ~ Sg~ [m!� E @gi ~m!# ! � Mn ~ Sg~m!� E @gi ~m!# !� OG~m* !Mn ~ [m�m!

�
1

Mn (i�1

n

~gi ~m!� E @gi ~m!#� G~m!cmi !� op~1!, (A.16)

where m* is the mean value and the second equality is implied by Lemmas 1 and 3+ The
result then follows from the Lindeberg–Levy central limit theorem and Slutsky’s theorem+

�
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Proof of Proposition 2(i). Consider the m-known estimator Zum [ argmint�Q ZQm~t !,
where ZQm~t ! [ ~ Sg~m!� c~t !!' ZW~ Sg~m!� c~t !!+We first prove Zum is consistent; we then
prove Zu is consistent by showing supt�Q6 ZQ~t !� ZQm~t !6

p
&& 0, where ZQ~t ! is the objec-

tive function in ~9!+We appeal to Theorem 2+6 of Newey and McFadden ~1994! to prove
Zum is consistent+We have already assumed or verified all of the hypotheses of this theo-

rem except for E @supt�Q7gi~m! � c~t !7# � `+ The latter is verified by writing

7gi ~m!� c~t !7 � 7gi ~m!� c~u!7� 7c~u!� c~t !7

and then noting that the first term on the right has a finite expectation by Assumption
1~iii! and that the second term is bounded over the compact set Q by continuity of c~t !+
To establish supt�Q6 ZQ~t ! � ZQm~t !6

p
&& 0, note that the identity

ZQ~t ! � ZQm~t !� 2~ Sg~m!� c~t !!' ZW~ Sg~m!� Sg~ [m!!� ~ Sg~m!� Sg~ [m!!' ZW~ Sg~m!� Sg~ [m!!

implies

supt�Q 6 ZQ~t !� ZQm~t !6 � supt�Q 62~ Sg~m!� c~t !!' ZW~ Sg~m!� Sg~ [m!!6

� 6~ Sg~m!� Sg~ [m!!' ZW~ Sg~m!� Sg~ [m!!6

� 2� sup
t � Q

7 Sg~m!� c~t !7�{7 ZW7{7 Sg~m!� Sg~ [m!7

� ~ Sg~m!� Sg~ [m!!' ZW~ Sg~m!� Sg~ [m!!+

The desired result then follows from Lemma 3+ �

Proof of Proposition 2(ii) and (iii). The estimate Zu satisfies the first-order conditions

�C~ Zu!' ZW~ Sg~ [m!� c~ Zu!!� 0, (A.17)

where C~t ! [ ]c~t !0]t ' + Applying the mean-value theorem to c~t ! gives

c~ Zu! � c~u!� C~u* !~ Zu� u!, (A.18)

where u* is the mean value+ Substituting ~A+18! into ~A+17! and multiplying by Mn
gives

�C~ Zu!' ZW~Mn ~ Sg~ [m!� c~u!!� C~u* !Mn ~ Zu� u!!� 0+

For nonsingular C~ Zu!' ZWC~u*! this can be solved as

Mn ~ Zu� u! � @C~ Zu!' ZWC~u* !#�1C~ Zu!' ZWMn ~ Sg~ [m!� E @gi ~m!# !, (A.19)

where we use ~8! to eliminate c~u!+ Continuity of C~t !, consistency of Zu, and the defi-
nition of u* imply C~ Zu! p

&& C and C~u*!
p
&& C, and Proposition 1 implies C has full

rank, so @C~ Zu!' ZWC~u*!#�1C~ Zu!' ZW p
&& @C 'WC#�1C 'W+ Part ~ii! then follows from Lemma

2 and Slutsky’s theorem+ Part ~iii! follows from ~A+19!, ~A+16!, and Slutsky’s theorem+
�
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