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We consider several grouping tests for regression misspecification, with reference to housing- 
demand function estimation. We compare three existing test procedures, demonstrate modifi- 
cations necessary in most applications, and propose a fourth test to distinguish between two 
categories of potential specification error. The test procedures are evaluated in artificial simula- 
tions of alterative errors. Finally, we apply the tests to FHA home purchase data. We reject the 
hypothesis that household and grouped regressions differ only by sampling error or random 
mismeasurement of household income or price. Our results have implications for choices among 
test procedures and interpretations of previous housing-demand analysis. 
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1. INTRODUCTION 

As noted by a number of recent authors, empirical 
analyses of the demand for housing have failed to agree 
on the extent of consumer responsiveness to price and 
income changes. In particular, "micro" studies using 
household data have produced lower income-elasticity 
estimates than "grouped" studies based on metropoli- 
tan-level averages. Although several explanations have 
been offered, the paradox remains unresolved. 

Also in recent years, econometricians have developed 
statistics to test for specification error through the com- 
parison of coefficients obtained from ungrouped and 
grouped regressions. Statistically significant deviations 
between the two estimated coefficient vectors are taken 
as evidence of either a misspecified regression relation- 
ship (caused by, e.g., an explanatory variable excluded 
or measured with error) or an inappropriate aggregation 
method (such as grouping according to the value of the 
dependent variable). Two alternative test statistics were 
presented by Feige and Watts (1972) and Farebrother 
(1979). Polinsky and Ellwood (1979) derived a third 
statistic by adapting the specification test procedure of 
Hausman (1978) to the grouping case. 

This article is an empirical investigation into the 
housing-demand paradox, making use of several group- 
ing tests for misspecification. We begin in Section 2 
with a brief review of our demand-function specifica- 
tion, which was chosen to approximate those employed 
by previous researchers, and of the micro/grouped con- 
troversy that surrounds it. We follow in Section 3 with 
a review of the Farebrother, Feige-Watts, and Hausman 
tests and a discussion of the relationships among them. 
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In the process we derive an important practical restric- 
tion, namely that, in applying any of the three tests, the 
researcher must confine his attention to parameter 
subvectors corresponding to variables that exhibit both 
within-group and between-group variation. This restric- 
tion and the consequent test modifications necessary in 
most applications have not been noted previously. 

The aforementioned grouping tests are concerned 
with the null hypothesis that the micro and grouped 
models are both specified correctly. Under this hypoth- 
esis, the two coefficient vectors differ only as a result of 
random sampling error, and rejections of the null hy- 
pothesis yield no direct information about which set of 
estimates is more nearly correct. However, one com- 
monly offered explanation for the micro/grouped par- 
adox in housing demand has been a household-level 
errors-in-variables problem caused by imprecise meas- 
urement of income, price, or both. This type of mis- 
specification has straightforward and well-known re- 
sults. As long as the measurement errors are uncorre- 
lated across observations and are independent of both 
the regression disturbances and the true values of the 
explanatory variables, only the micro-parameter esti- 
mator is inconsistent. Therefore, in Section 4 we pro- 
pose an asymptotic test of this explanation; that is, of 
the hypothesis that the grouped regression asymptoti- 
cally satisfies the conditions of the standard linear 
model, and that the relative magnitude of the micro 
and grouped squared residual vectors can be explained 
by a combination of sampling error and micro-level 
misspecification. When this null hypothesis (which we 
will set forth more rigorously in Section 4) is also 
rejected, there can be no grounds for concluding that 
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the grouped coefficients are consistent or are more 
accurate than the micro estimates. Consequently, while 
the paradox still remains, other explanations-notably 
"aggregation bias" or other grouped-level misspecifica- 
tion-should be given relatively greater credence. 

Following these clarifications and extensions of 
grouping test procedures, in Section 5 we employ the 
tests in an analysis of a nationwide sample of home 
purchases insured by the Federal Housing Administra- 
tion (FHA). Using Farebrother's grouping test, we dem- 
onstrate that household-level and city-level estimates of 
housing-demand parameters differ to a statistically sig- 
nificant degree. Furthermore, based on our own asymp- 
totic test of residuals, and contrary to the arguments of 
some previous authors, we conclude that micro-level 
misspecification is insufficient to explain the differences 
between the micro and grouped regressions. Our results 
have implications both for the choice among alternative 
test procedures and for the interpretation of previous 
analyses of housing demand. 

2. THE MICRO/GROUPED PARADOX IN HOUSING- 
DEMAND ESTIMATION 

Our specification of the housing-demand function 
closely follows that used in Polinsky (1977, 1979) and 
in Polinsky and Ellwood (1979). Total expenditure on 
housing services Cis assumed to be a log-linear function 
of income I, the price of housing services PH, and an 
index po of the prices of all other goods. In the form to 
be estimated, we have, for the ith household, 

log(Ci/poi) = bo + (1 + bp)log(pHi/poi) 

+ blog(Iilpoi) + fi, 

where bp and b, are, respectively, the price and income 
elasticities of housing demand. The random distur- 
bances ?i are independently distributed with zero mean 
and constant variance. 

Again following Polinsky and Ellwood, we will apply 
this specification to a sample of new house purchases 
insured by FHA during calendar year 1969. Appendix 
A contains a summary of the derivation of (l), a de- 
scription of the FHA data base, and a review of the 
production-function-based methodology used to esti- 
mate PH. We emphasize that the specification is ob- 
viously a highly simplified one. Aside from possible 
errors in measurement and functional form, Equation 
(1) may suffer from a failure to acknowledge the effects 
of demographic factors, the simultaneity of housing 
consumption and tenure choice, or the implicit design 
of the FHA mortgage sample. (A review of the literature 
on many of these issues can be found in Mayo 1981.) 
We choose this formulation because it has provided the 
empirical context for much of the debate on the relative 
merits of micro and grouped estimates of housing- 
demand parameters. Economists have offered two pri- 
mary explanations for the lower income elasticities 

yielded by household-level regressions. On the one 
hand, if aggregation by city produces an implicit group- 
ing by the dependent variable, the metropolitan-level 
coefficients will tend to be biased away from zero. 
Although the aggregation bias argument has most often 
been used as a criticism of grouping by census tract, 
city-level grouping may also cause problems, particu- 
larly if the regression function suffers from any addi- 
tional specification errors. Discussions of aggregation 
bias in housing demand can be found in Maisel, Burn- 
ham, and Austin (1971), Smith and Campbell (1978), 
and Gillingham and Hagemann (1983). 

Micro and grouped regressions can also differ because 
of measurement error at the household level. Most 
obviously, if reported or "current" income is a poor 
proxy for "permanent" income, the income elasticity 
of demand is likely to be underestimated. This problem 
has been discussed by numerous authors, including Lee 
(1968), Rosen (1979), and Goodman and Kawai (1982). 
By contrast with aggregation bias, the errors-in-vari- 
ables bias is alleviated by grouping observations. 

The study by Polinsky and Ellwood (1979) focuses 
on household-level measurement error as it affects the 
estimation of Equation (1). It is argued there that 
mismeasurement of housing price, through the use of a 
city-level price term, biases both the bp and b, coeffi- 
cients in household-level regressions. The authors dem- 
onstrate that the divergence between micro estimates 
and grouped estimates is reduced by inclusion of their 
household-specific, production-function-based esti- 
mate of PH. The remaining difference is attributed to 
mismeasurement of permanent income in the FHA 
sample. Therefore, they conclude that their metropoli- 
tan-level regressions are the preferred source of infor- 
mation on the size of income and price elasticities. 

The primary purpose of this article is to reevaluate 
Polinsky and Ellwood's conclusions, using test proce- 
dures developed in Sections 3 and 4 here. We first 
consider the hypothesis that the micro and grouped 
coefficients obtained from our FHA sample differ only 
as a result of random sampling error. We then ask 
whether any statistically significant divergence can be 
explained by household-level measurement error or by 
any other error that distorts the micro regression while 
leaving the grouped regressions in (asymptotic) compli- 
ance with the standard linear regression model. 

3. THREE GROUPING TESTS FOR 
MISSPECIFICATION 

In this section we discuss three specification tests that 
have appeared in the econometric literature. The null 
hypothesis underlying each test is summarized by the 
general micro regression specification, 

y = X3 + E, e - N(0, o2In), (2) 

where y and X are n x 1 and n x k matrices of 

i = ,...,M, (1) 



Greenlees and Zieschang: Grouping Tests for Misspecification 

observations, f is a k x 1 vector of parameters, and e is 
an n x 1 vector of independent normal disturbances. 
The matrix X is assumed to have full column rank k. 

The grouped version of the model is obtained through 
an m x n matrix G*, which transforms the micro 
observations into means of m groups, each multiplied 
by the square root of the group sample size. That is, 

gl 
0 
o 

G* = 

0 

g ... 0 

0 ** 0 

0 g*m 
Each element of the row vector g*(j = 1,..., m) equals 
l/4j, where nj is the number of observations in the 

jth group. 
The grouped model is then given by 

Y2 = X2 + E2, C2 - N(O, a2im), 

where the subscript 2 indicates premultiplication by G* 
and under the crucial assumption that the grouping 
process is independent of the disturbance term e. 

Under the null hypothesis, the micro and grouped 
least squares estimators of (, given by 

t = (X'X)-X'y (5) 

and 

02 = (X2X2)'X y2, (6) 

respectively, are both unbiased and consistent, and the 
grouping tests are based on the divergence beween these 
two estimated vectors. We will briefly review the three 
test procedures in turn. 

3.1 The Farebrother Test 

Farebrother (1979) shows that a Chow test for mis- 
specification of the micro model is available in the form 
of a test of the restriction y = 0 in 

yi 1 XI 0 0+ 
l 

(7) 
Y2 X2 X2 ' 

2, ( ) 

with y, = Fy, Xl = FX, and e- = Fe. The rows of the (n 
- m) x n matrix Fare defined to be a set of orthonormal 
solutions to the equation system G*c = 0; that is, we 
have 

FF'= In-m, G*F' = 0, X'X 
= Xf, + X2X2. (8) 

Q = (y - xf)'(y - x#), (11) 

and 

D = [(X2X2)-'- (X'X)-']. (12) 

In (9), the test statistic does not require construction 
of the F matrix; the test may be applied by estimating 
the micro and grouped models (2) and (4). Notice that 
the denominator of BF is equal to the mean squared 
error (MSE) or estimate of a2, which would be obtained 
from the unconstrained model (7). We will henceforth 
refer to this estimate as a2U. 

3.2 The Feige-Watts Test 

Feige and Watts (1972) demonstrate that under the 
null hypothesis, 6, the difference between the estimated 
parameter vectors, has zero mean and covariance ma- 
trix a2D. They then construct the statistic 

BF = [b'D-'b/k]/[Q2/(m - k)] 
-F(k,m-k), (13) 

where 

Q2 = (y2 - X2Y2)'(y2 -X2A2) (14) 

the sum of squared residuals from the grouped regres- 
sion model (4). Feige and Watts show (1972, p. 347) 
that the quadratic forms b'D-b' and Q2 are indepen- 
dently distributed; hence, the statistic BFw, like BF, 
follows an exact F distribution. 

3.3 The Hausman Test 

Hausman (1978) has proposed an asymptotically chi- 
squared statistic that can be used to test for specification 
error in a broad range of situations. Polinsky and 
Ellwood adapt and apply the test, with inconclusive 
results, in the housing-demand context. The statistic 
uses the mean squared errors 

2= Q/(n- k) (15) 
and 

(16) 2 = Q2(m - k), 

and the statistic is 

BH = 'DH -b x(k), 

where the symbol 
' 

denotes "is asymptotically distrib- 
uted as," and 

DH = 2(X2X2) - 2(X X)- DH U2 2 2) 
_ 

O (18) 

(17) 

Farebrother uses a result derived earlier (Farebrother 
1976) to show that the test statistic can be written in 
the form 

BF = [6'D-6/k]/[(Q - 6'D-')/(n - 2k)] 

- F(k, n - 2k), 
under the null hypothesis of no misspecification, M 

5 = (2 - 4, 

(9) 
Jhtret 

is a consistent estimator of the difference between the 
covariance matrices of f2 and f. (We wish to thank A. 
Mitchell Polinsky for graciously providing unpublished 
computational details.) 

3.4 A Restriction in Application 

..... In Section 5 and Appendix B, we will apply the three 
(10) grouping tests in the context of Equation (1). Before we 
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do so, however, it must be noted that in most econo- 
metric applications the test statistics cannot be com- 
puted in the forms given by Equations (9), (13), and 
(17). The presence of certain common classes of ex- 
planatory variables in the matrix X requires a restruc- 
turing of the matrices in BF, BFW, and BH, and a 
reduction in the implied degrees of freedom. Since no 
previous author has pointed out the restriction, and 
since it was overlooked in the one previous application 
to housing demand equations, we will briefly outline 
the derivation of the modified test statistics. Of central 
importance to all three of the foregoing tests is the 
matrix D. Using Equations (8) and (12) we can write 

D = (X2X2)-_(X X1)(X'X)-, (19) 

so that X1 must have rank k in order that D be nonsin- 
gular. This restriction is most obviously violated if any 
column of XI = FX consists entirely of zeros-that is, 
if any column of X is orthogonal to all rows of F. But 
by the conditions (8), all rows of F are orthogonal to 
each row of G and hence to any linear combination of 
the rows of G*. A necessary condition, therefore, for 
the nonsingularity of D is that no column of the micro- 
regressor matrix X be expressible as a linear combina- 
tion of the rows of the grouping matrix. 

The implication is that grouping tests cannot be 
applied to variables that are constant within each group. 
An obvious example of such a variable is a constant 
term, although in that case the problem can be avoided 
by normalizing all regression variables to equal devia- 
tions from means. (This normalization apparently ex- 
plains the identifiability of the BFW values reported by 
Feige and Watts.) Other examples would be group 
identifiers, along with any economic or demographic 
variables measured at the group level. 

Fortunately, it remains possible to test coefficients 
corresponding to variables which do exhibit within- 
group variation. (We are indebted to Christopher Sims 
for pointing this out to us.) Assume that X is arranged 
in such a way that only the first k - j variables are 
constant within groups. Define the k x j matrix S as 

0 
S= I (20) 

Let 

=S' 6 (21) 

and 

D = S'DS. (22) 
Then it can be shown that a modified Farebrother 

statistic is given by 

BF = [6'D-'blj]/[(Q - a'D-')/(n - k- j)] 
- F(j,n-k-j). (23) 

Similarly, we can derive 

BFW = [6'D-l'/j]/[Q2/(m - k)] F(j, m - k). (24) 

It remains to consider the statistic BH. In finite sam- 
ples, 52 and a2 will be equal only by chance, so DH will 
not generally be a singular matrix. Thus, Polinsky and 
Ellwood were able to compute and report values of BH 
derived from their FHA sample. (We emphasize that it 
is for reasons of completeness and clarification that we 
discuss their Hausman test application, which they 
report in a footnote (1979, p. 203). Polinsky and Ell- 
wood do not base any of the conclusions of their paper 
on their Hausman test results.) However, the Hausman 
test is valid only asymptotically, and as m and n become 
large, b2 and 52 will each converge to a2, and DH will 
approach the matrix a2D. Again, therefore, the group- 
ing test must be confined to those coefficients associated 
with variables that are not constant within groups. The 
appropriately modified Hausman test statistic is given 
by 

BH = 6 '[o2S(X2X2)-IS- _ 2S'(X'X)-'S]- 

x2(j), (25) 

where once more the matrix S is used to select rows 
and columns corresponding to testable coefficients. 

3.5 Comparison of the Three Procedures 

The F statistics, BF and BFw have the same numera- 
tor, but in most applications the Feige-Watts statistic 
will have many fewer denominator degrees of freedom. 
We therefore expect that the Farebrother test will gen- 
erally be the more powerful of the two. The exceptions 
would occur where the null hypothesis is violated in 
such a way as to primarily distort the micro regression, 
possibly leaving a2 smaller than a2 and BFW greater 
than BF. 

The relationship between BH and the previous two 
test statistics may be seen by noting that the consistency 
of DH is unaffected by the replacement of either b2 or 
a2 by another consistent estimator of a2. (This point is 
made in another context by Hausman 1978, p. 1,267). 
For example, if a2 is replaced by A2 in (18), the Haus- 
man statistic reduces to the product of BFW and k. If 
both 52 and a2 are replaced by (2,, BH becomes equal 
to kBF. Still another Hausman statistic can be obtained 
if 52 is used in both terms of (18). In any of these forms, 
BH will be asymptotically x2 (k) under the null hypoth- 
esis. In finite samples, of course, the distribution of BH 
is unknown. Particularly when m - k is small, a2 may 
differ greatly from a2, and DH may not even be a 
positive semidefinite matrix. 

In Appendix B we present the results of an explora- 
tion into the finite sample performance of the three 
grouping tests. Several types of misspecification consid- 
ered in the housing demand literature are simulated 
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using Equation (1) and our FHA data base discussed in 
Appendix A. Our conclusions are, first, that the Haus- 
man statistic BH does not reach its asymptotic x2(2) 
distribution under the null hypothesis of no misspeci- 
fication with 34 groups and 11,978 observations. In 
addition, we found that the Farebrother test was gen- 
erally more powerful than the Feige-Watts test against 
the alternative hypotheses considered. Also, in accord 
with our expectations, the Farebrother test's margin of 
superiority was especially noticeable in situations where 
grouping the data aggravated, rather than mitigated, 
the specification error. Interestingly, Feige and Watts 
developed their test statistic specifically in order to 
identify possible grouping bias. It is reasonable to expect 
that some of their conclusions would have been altered 
had they used the more powerful Farebrother proce- 
dure. 

4. A SPECIFICATION TEST FOR 
THE GROUPED MODEL 

When one of the foregoing grouping tests indicates a 
significant difference between micro and grouped 
regression coefficients, the source of the misspecifica- 
tion is not identified. In particular, it remains undeter- 
mined which of the two estimates of 3 is more nearly 
accurate. To approach this question, we present a test 
of the null hypothesis that the grouped regression model 
satisfies the specification (4). When this null hypothesis 
is accepted, we conclude that the parameter divergence 
is explainable by random sampling error in combina- 
tion with a broad class of micro-level specification 
errors that bias 1 but leave p2 consistent. Examples are 
random errors-in-variables and excluded regressor vari- 
ables that average zero at the group level. Conversely, 
rejection suggests the presence of measurement errors 
that are correlated within groups or other problems 
leading to aggregation bias in 32. 

To proceed, we utilize the notation of Section 3 but 
replace the conditions (2) and (4) with the assumption 
that the distributions of the micro disturbances ci obey 
sufficient regularity conditions that 

(i) plim e'e/n = a2 
n-*oo 

and 

(ii) 62 ~ N(0, a2m), 

where a2 is a finite value. We also assume 

(iii) plim X e2/n = 0, 
n- oo 

and 

(iv) plim X2/V- = A, 
n-+o 

where A is a finite matrix of rank k. 
Assumptions (ii), (iii), and (iv) together ensure that 

f2 is consistent: 

plim (2 = ( + plim(X2X2/n)-'(X2e2/n) = (8. (26) 
n-o 

We propose to examine the size of the sum of squared 
grouped regression residuals Q2. We can write 

Q2 = (Y2 - X2(2)'(Y2 - X22) = e2M262, (27) 

where M2 = I - X2(X2X2)-1'X. Using (iv) we see that 
M2 converges to a constant idempotent matrix with 
rank m - k, and using (ii) we obtain 

Q2/2 A x2(m - k). (28) 
It remains to consistently estimate a2. Using (11) and 

(15), 

= '/(n - k) 

- (( - 3)'X'X(O - #)/(n - k). (29) 

By assumption (i), the first term above converges to a2 
as n -, oo, and we know that (2 is a consistent estimator 
of fl. We will also assume that X'X/n converges to a 
constant matrix. Then 

plim[52 + (/ - 32)'(X'X/n)( - F2)] = a2, (30) 
n-oo 

and the statistic 

E = Q2/[V2 + s'(X'X/n)t] x2(m- k), (31) 

under the null hypothesis that (i) through (iv) hold. 
Assumptions (i) and (ii) state that the asymptotic 

variance of each grouped disturbance is equal to the 
limiting value of the mean squared micro disturbance. 
The range of conditions under which these assumptions 
hold, and thus the information content of the test 
statistic, can best be indicated through several examples. 

First, consider a situation where the observed value 
of the jth regressor X' is equal to the true value Z' plus 
an error Vj. Furthermore, micro values of Vj are inde- 
pendently normally distributed with variance a2, so 
that the micro residual e = X - VVi, where jY is the jth 
element of 3 and r is the usual well-behaved regression 
disturbance with mean zero and variance a2. Since e is 
correlated with Xj, 3 is biased and inconsistent. How- 
ever, 32 is consistent, and E'e/n converges to a2 + 
(j)2f , which is also the variance of the grouped dis- 
turbances E2. The null hypothesis underlying (31) is 
thus satisfied. This is a typical framework assumed for 
the analysis of errors-in-variables problems such as the 
permanent income issue in housing demand estima- 
tion. 

By contrast, we expect our null hypothesis to be 
violated when the disturbances within a group are 
correlated. This could occur because of an implicit 
grouping by the value of the dependent variable, be- 
cause of a random group-specific disturbance in an 
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error-components model, or because E includes an 
unobserved regressor whose value is constant or corre- 
lated within groups. For example, if an incorrect inter- 
area price index p' is used in the place of p in equation 
(1) above, the micro disturbance will include the term 
(bp + b/)log(po/po), which is constant within each group. 
In this situation, the expectation of E can be shown to 
increase without bound as n - oo. Both /2 and : will 
be inconsistent and there is no rigorous basis on which 
to choose between them. 

Two qualifying comments are in order with respect 
to our null hypothesis. First, if we relax (ii) to allow the 
grouped disturbances E2 to be heteroscedastic, P2 re- 
mains consistent, although the standard errors esti- 
mated by applying OLS to (4) are biased. In this case 
the E statistic will not be chi-squared even asymptoti- 
cally. Modifications to our test, presumably incorpo- 
rating two-stage procedures to estimate the variances of 
the m grouped residuals, are left to further research. In 
Simulation III of Appendix B, we examine such a 
heteroscedastic model, where the variance of each city- 
level disturbance depends on the dispersion of housing 
prices within the city. The results of the simulation 
indicate that this particular case of heteroscedasticity 
has little effect on the distribution of E. 

It is also true that certain patterns of within-group 
correlation of the disturbances ci could violate our 
hypotheses (i) and (ii) without necessarily destroying 
any desirable asymptotic qualities of the grouped 
model. Notice that the variance of the ith element of ?2 
depends on the variances of the associated ni micro 
disturbances and also on the ni(ni - 1) covariances 
among them. If the sum of these disturbance covari- 
ances is of order less than ni (as in the earlier example 
of random measurement error, where the covariances 
are all zero), our null hypothesis is satisfied. If the sum 
has order greater than ni (as in the case of an excluded 
group-specific price variable, where the disturbances in 
group i have a common covariance and the sum has 
order ni), our null hypothesis is violated, 12 is incon- 
sistent, and the variance of c, has no finite limit. 
However, if the micro disturbances in group i have 
covariances whose sum is of order ni, while disturbances 
in different groups are uncorrelated, the E statistic will 
not be distributed as in (31), although the grouped 
model satisfies the ideal OLS conditions asymptotically. 
Such a situation could arise, for example, from first- 
order serial correlation processes, which are unlikely to 
be important in cross-section data such as ours. Alter- 
natively, it could arise as a result of a type of cluster 
sampling design in which, as the ni -> oo, the number 
of clusters also increases without limit, the average 
cluster size converging to a constant value. (Our data 
base, of course, is derived from a census ofFHA-insured 
sales, and so does not follow a conscious sample design.) 

Subject to these two qualifications, the E test may be 

viewed as a test of the consistency of /2, while allowing 
specification bias in the micro regression. The finite 
sample behavior of the test and its power against various 
alternative hypotheses such as those discussed above 
are explored in Appendix B. Our simulations using the 
FHA sample show that the distribution of E approxi- 
mated the x2 in three specifications which did not 
violate assumptions (i)-(iv). The power of the E test in 
identifying error in the grouped model appeared to be 
close to the power of the Farebrother test. 

5. EMPIRICAL RESULTS 

Table 1 presents two sets of regressions using ob- 
served FHA sample values of housing expenditure, 
income, and price, along with the results of grouping 
tests applied to each specification. Equation (1) was 
estimated using first the translog price index PH and 
then substituting pB, the BLS index of home ownership 
cost for high-income families. (Values of pB are drawn 
from U.S. Bureau of Labor Statistics 1972, Table B- 
1). For clarity it should be noted that the estimation of 
alternative models, as presented in Table 1, corresponds 
to Polinsky and Ellwood's use of the term "simulation," 
whereas we use simulation here to denote the analysis 
of models by means of artificial data, as in our Appen- 
dix B and Table 2.) Our coefficient results are similar 
to those obtained in previous studies using FHA data. 
For example, our micro-level estimates of the income 
and price elasticities are .35 and -.64, respectively; 
these compare closely to Polinsky and Ellwood's esti- 
mates of .39 and -.67, as expected, given the similarity 
of functional form and variable definition. The agree- 
ment is less close at the grouped level. This may arise 
from the fact that our sample includes three more 
metropolitan areas than theirs. 

Using either definition of the price of housing ser- 

Table 1. Demand Function Estimates 

Price Variable 

Estimated Values Translog BLS 
Micro Parameters 

1 + bp .359 .256 
b, .349 .397 
a .156 .164 

Grouped Parameters 
1 + bp .398 .408 
b, .471 .761 
a .945 1.208 

Farebrother Test 
BF 79.23a 491.78a 
Degrees of Freedom 2,11973 1,11974 

Feige-Watts Test 
BFw 2.13 8.73b 

Degrees of Freedom 2,31 1,31 
Micro Misspecification Test 

E 1093.34a 1282.22' 
Degrees of Freedom 31 31 
* Significant at .001 level. 
b Significant at .01 level. 
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Table 2. Simulation Results 

I II III IV V 
Simulated Values Mismeasured Mismeasured Metro No BLS 

Income (50%/) Income (10%) Mean Price Deflation Price 
Mean Parameter Estimates- 

Micro 1 + bp .364 .315 .294 .324 .239 
bi .395 .545 .617 .600 .640 

oa .179 .163 .159 .156 .162 
Grouped 1 +bp .303 .298 .299 .334 .313 

bi .594 .599 .600 .595 .818 
a .183 .162 .160 .177 .582 

Farebrother Test 
Median BF 55.97 6.01 1.20 1.89 118.15 
Degrees of Freedom 2,11973 2,11973 1,11974 2,11973 1,11974 
Type II Errors 

.1 0 12 78 59 0 

.01 0 38 95 84 0 

.001 0 63 99 95 0 
Feige-Watts Test 

Median BFW 50.52 5.64 1.22 1.49 8.88 
Degrees of Freedom 2,31 2,31 1,31 2.31 1,31 
Type II Errors 

.1 0 15 77 72 0 

.01 0 47 95 97 23 

.001 0 75 99 100 96 
Micro Misspecification Test 

Median E 29.01 30.82 31.37 38.93 370.61 
Degrees of Freedom 31 31 31 31 31 
Type I Errors 

.1 9 9 10 

.01 0 0 0 

.001 0 0 0 - 
Type II Errors 

.1 - - 57 0 

.01 - - 86 0 

.001 --- -97 0 

vices, we observe the traditional result that grouped 
regressions produce higher income elasticities. The di- 
vergence is less pronounced, and the explanatory power 
of the regressions is greater, when the household-spe- 
cific translog price is used. Nevertheless, by means of 
the Farebrother test with the modifications discussed in 
Section 3, we can easily reject the null hypothesis of no 
specification or grouping bias. In the notation of Sec- 
tions 3 and 4, we have n = 11,978, m = 34, and k = 3. 
Using the translog price, we have j = 2; income and 
price exhibit within group variation. The BLS prices 
are measured at the metropolitan area level, so j = 1 
when PB is used. Therefore, under the null hypothesis, 
BF is distributed as F(2, 11,973) and F(1, 11,974), 
respectively, under the two specifications. Table 1 
shows that in both cases the statistic is significant at the 
.001 level. 

Based on the value of E, we can also reject the 
hypothesis that the metropolitan-level regressions 
asymptotically satisfy the conditions of the standard 
linear model. The ratios of a: to a2 are much too high 
to be explained by any household-level misspecification 
permitted by assumptions (i)-(iv). The low explanatory 
power of the grouped regressions also causes the Feige- 
Watts test to perform relatively poorly. The value of 
BFW is insignificant in the translog price regression, and 

it is significant only at the .01 level when the BLS home 
ownership price index is used. 

6. CONCLUSIONS 

In this article we have considered several grouping 
tests for misspecification. We have noted that three test 
procedures presented by previous authors must be mod- 
ified in order to be generally applicable in regression 
settings. In Appendix B we have presented the results 
of artificial simulations as evidence that the relative 
power of these three tests depends not only on the 
respective degrees of freedom available but also on the 
nature of the alternative hypothesis. For the data set 
and demand model analyzed here, the Farebrother 
(1979) test was slightly more successful than the Feige- 
Watts (1972) test in identifying random household-level 
measurement error, and it was much more successful 
in identifying metropolitan-level misspecification. The 
sample size of 34 groups and 11,978 households was 
not sufficient for the Hausman (1978) test to satisfac- 
torily approach its asymptotic properties. 

We have also presented new evidence concerning the 
relative merits of micro and grouped analyses of hous- 
ing demand. Through application of the modified 
Farebrother test we were able for the first time to 
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demonstrate that random sampling error is insufficient 
to explain the divergence between the two coefficient 
vectors. In addition, using an asymptotic test of regres- 
sion residuals developed in this article, we showed that 
random errors-in-variables problems cannot explain the 
high MSE's of the grouped regressions. 

Our primary empirical conclusion is that, contrary 
to the reconciliation presented in Polinsky and Ellwood 
(1979), the micro/grouped paradox cannot be attrib- 
uted to some combination of mismeasurement of 
household permanent income and the use of the met- 
ropolitan mean rather than the micro price of housing. 
The explanation lies more likely in an error in meas- 
urement of the interarea housing price index or in some 
other misspecification that causes the regression resid- 
uals to be correlated within metropolitan areas. Our 
results point to continued efforts to improve data bases 
and continued research on model specification, but they 
cast doubt on the efficacy of grouping by city to reduce 
or eliminate the measurement and sample design prob- 
lems inherent in FHA data. In particular, we find no 
evidence that grouped estimates of demand parameters 
are consistent and, on that basis, preferable to micro 
estimates. 

APPENDIX A: MODEL AND DATA 

As indicated in Section 2, our specification of the 
housing demand regression equation (1) is drawn from 
Polinsky and Ellwood (1979). Closely similar specifi- 
cations have been employed by Rosen (1978) and Gil- 
lingham and Greenlees (1981), and the general ap- 
proach of estimating a logarithmic regression of expen- 
diture on income and price (all deflated by a price 
index) has formed the basis for numerous articles in 
the housing-demand literature. Thus, although we 
make no claims here for the theoretical appropriateness 
or econometric robustness of (1), we believe that appli- 
cation of our statistical tests in this context has the 
potential to yield economic as well as methodological 
implications. In this Appendix we briefly review the 
derivation of (1) and the sources of data used in its 
estimation. 

We begin by assuming that for a set of households 
the demand for housing quantity q is a logarithmic 
function of income I, housing services price PH, and 
the index po of the prices of other goods and services, 

log qi = bo + bpog PHi + b/log Ii 

- (bp + b)log poi + Ei, i=1,..., n (32) 

where the coefficient on log p,i reflects the requirement 
that demand be invariant to proportional changes in 
income and all prices. We then add log pH and subtract 
log p, from both sides of (32). Defining housing expen- 
diture C = pHq, we arrive at Equation (1), repeated 
here: 

log(Ci/po,) = bo + (1 + bp)log(pHi/poi) 
+ b,log(Iil/pi) + ei, 

Our data base is identical to that used and discussed 
in detail by Gillingham and Greenlees (1981), and was 
constructed as an approximation to that used by Polin- 
sky and Ellwood (1979) and Rosen (1978). It consists 
of a sample of 11,978 new house purchases insured by 
the FHA during calendar year 1969. A total of 34 
metropolitan areas are represented; the city samples 
range in size from 7 (Milwaukee) to 1,330 (Seattle). 
Housing expenditure is defined to equal the sales price 
of the home. Income is given by the FHA's estimate of 
the household's annual after-tax income likely to pre- 
vail during approximately the first third of the mortgage 
term. The measure of p is the total annual budget cost 
for higher-income homeowners, less the cost of housing, 
as estimated by the Bureau of Labor Statistics at the 
metropolitan area level (U.S. Bureau of Labor Statistics 
1972, Table B-l). 

The price index for housing services is specific to the 
individual home purchase. Extending a procedure used 
by Muth (1971), it is assumed that units of housing 
services are produced from land and capital (structures) 
according to a production function that is uniform 
nationally. For estimation purposes, we use a translog 
approximation to the indirect production function: 

log q = a, + allog vl + aslog Vs + 2cl(1og v1)2 

+ ?cs(log v,)2 + cI1log vllog v,, (33) 

where q again is the quantity of services provided by 
the house, and vl and v, are the input prices for land 
and structures divided by total house cost. Assuming 
profit maximization by housing producers and perfectly 
competitive land and structures markets, we can iden- 
tify the a and c parameters by estimating (33) in budget 
share form, using nonlinear least squares applied to the 
same FHA sample described above. Land prices and 
cost shares are taken from the FHA sales records. A 
metropolitan-level structure price index is taken from 
the Boeckh Building Cost Modifier series. Finally, given 
the parameter estimates, which are those reported in 
Gillingham and Greenlees (1981), we measure pH as 
the index of the total cost required to produce a house 
with the sample mean value of log q. 

Aside from minor differences in data bases used, the 
above procedure differs from that of earlier authors in 
that they assume a homogeneous production function 
and hence the existence of a unit cost function for 
housing (CES for Polinsky and Ellwood and translog 
for Rosen). Gillingham and Greenlees (1981) were able 
to reject the homogeneity assumption econometrically. 
However, as noted in Gillingham and Greenlees (1983), 
the alternative models produce indexes that are all 

i=l,...,n. (1) 
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almost perfectly correlated, at least at the metropolitan 
level. 

APPENDIX B: GROUPING TEST SIMULATIONS 

Having derived appropriate forms of the BF, BFw, 
BH, and E test statistics in Sections 3 and 4, here we 
compare their performance in the context of econo- 
metric models of housing demand. In Section 5 we 
present micro and grouped housing demand regressions 
estimated using the FHA mortgage data described in 
Appendix A. The simulations in this Appendix employ 
the same sample base and the same basic specification 
given in Equation (1). However, in the place of actual 
housing consumption levels we have substituted values 
generated from an assumed regression model with a 
stochastic disturbance term. Repeated estimation of 
misspecified regressions enables us to examine the ef- 
fects of the specification errors on the parameter esti- 
mates as well as on the grouping test statistics. 

Our simulations employ the observed values of price 
and income in our FHA sample, while the values of 
housing expenditure were generated under the assump- 
tion that Equation (1) is correct. We assume that the 
true values of the parameters in (1) are bp = -.7, b1 = 
.6, and bo = 2.02. The disturbance term e is assumed 
to be normally distributed with a standard deviation of 
.156. The above price and income elasticities were 
chosen to approximate the results obtained in earlier 
studies. (For example, Polinsky 1977 suggests that the 
true income and price elasticities are .75 and -.75. The 
elasticities in the "correctly specified" metro-level 
regression of Polinsky 1979 are .57 and -.72. Smith 
and Campbell 1978 argue for an income elasticity of 
between .50 and .70.) The values of a2 and bo were 
based on the mean and variance of house price in our 
sample. 

As in Section 5, we have n = 11,978, m = 34, and k 
= 3. For the specification (1), we have j = 2, since only 
income and price exhibit within-group variation. Dif- 
ferences in the micro and grouped estimates of b, and 
bp convey all necessary information about possible spec- 
ification or grouping bias. 

Under this null hypothesis, the Farebrother and 
Feige-Watts statistics will follow the F distributions 
given in (23) and (24). That is, BF is distributed as F(2, 
11,973) and BFw as F(2, 31). However, Bf is distributed 
as x2(2) only for sufficiently large values of m. In order 
to determine whether its asymptotic properties are at- 
tained in our sample of 34 cities, we simulated its 
distribution under the null hypothesis. For each of the 
11,978 observations in our data set, we generated 100 
values of housing expenditure using Equation (1) and 
our assumed parameter values. A normal random num- 
ber generator was used to select values of e. We then 
estimated micro and grouped regressions using each of 
the 100 simulated expenditure vectors. 

The results of the regressions were not favorable for 
the Hausman test in the form (25). In four of the 100 
simulations the computed value of Bi was negative. 
The null hypothesis was incorrectly rejected at the 10% 
significance level in 17 of the remaining 96 trials. 
Finally, in two cases BH took on values of 37.5 and 
82.0; the .999 point of the x2(2) distribution is only 
13.8. We conclude that, at least in the tails, our finite- 
sample distribution of BH is not a satisfactory approxi- 
mation to the chi-square, and we will not include the 
Hausman test in the error simulations which follow. 

B.1 Simulations of Household-Level 
Misspecification 

Simulations I, II, and III reported in Table 2 were 
designed to compare the performance of grouping test 
statistics in identifying micro-level measurement errors. 
Each simulation was performed by generating 100 val- 
ues of the dependent variable for each observation 
according to the "correct" model (1), then estimating 
100 sets of misspecified micro and grouped regressions. 
The first two simulations use "current income" as one 
regressor, obtained by adding a normal disturbance 
with zero mean to the income variable log(I/po) of 
Equation (1). Polinsky and Ellwood argue that the 
measurement error in income is sufficiently large to 
result in a permanent income elasticity 50% higher 
than the current income elasticity. This bias is accom- 
plished in Simulation I by assigning a variance to the 
additive error equal to one-half of the sample variance 
in the true income term (Johnston 1972, p. 282). This 
may overstate the likely measurement problem in FHA 
data. Maisel, Burnham, and Austin (1971), for example, 
argue that the FHA value is, in fact, an estimate of 
permanent income, and that the error due to transitory 
components is small. Therefore, Simulation II applies 
a smaller disturbance term sufficient to cause a 10% 
divergence between the current and permanent income 
elasticities. A random number generator was used to 
add a separate transitory income component for each 
observation in each regression in Simulations I and II. 
In Simulation III, household income is assumed to be 
measured without error, but the price term log(pH/po) 
is replaced by the metropolitan area mean of that term. 
Since there is no longer any measured intragroup price 
variation in Simulation III, only the income term is 
tested using the Farebrother and Feige-Watts statistics. 
Unfortunately, we do not observe the metropolitan 
means of log(pH/po), only the means of the presumably 
random samples. Therefore, for each of the trials in 
Simulation III, we defined area means by adding to a 
group's sample mean a random normal variate with 
mean zero and standard deviation equal to the standard 
error of the mean-that group's standard deviation in 
price divided by the square root of the group sample 
size. 
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Table 2 displays mean coefficient values and esti- 
mates of 3 obtained from the micro and grouped regres- 
sions. The table also presents the median values of BF 
and BFw, along with the respective numbers of type II 
errors-that is, acceptances of the misspecified model 
when (1) is true-at three arbitrarily chosen significance 
levels. 

In each of the first three simulations, the success rates 
of the Farebrother and Feige-Watts tests are approxi- 
mately equal. In Simulation I, both tests reject the 
hypothesis of no misspecification at the .001 signifi- 
cance level in all 100 trials. In Simulation II, where the 
income measurement error is less extreme, the Fare- 
brother test correctly rejects 88 times at the .1 level, 62 
times at the .01 level, and 37 times at the .001 level. 
The median value of BFw is lower than that of BF, and 
the critical values are higher for the test with fewer 
degrees of freedom. Therefore, the number of type II 
errors is somewhat larger using the Feige-Watts test. 
Neither test is very successful in identifying the incor- 
rect use of the metro-mean housing price. The general 
failure to achieve significance in Simulation III may 
result from the sample design used here. Intra-city 
variation in land prices is likely to be understated in a 
data set comprising only new, FHA-insured houses, as 
noted by Polinsky (1979). 

The mismeasurement of income in Simulations I and 
II satisfies the null hypothesis of random observational 
error that underlies the E test. Therefore, the degree to 
which the statistic approximates the x2(31) distribution 
should indicate whether its asymptotic properties are 
met in our sample of 11,978 households. The median 
of the predicted distribution is 30.34; as shown in Table 
2, the median simulated values are 29.01 and 30.82. 
The mean values of E are 29.61 and 30.88 in Simula- 
tions I and II, respectively-slighly lower than the chi- 
squared mean of 31. In each simulation the E test 
produces nine rejections (type I errors) at the 10% 
significance level and none at the 1% level. We com- 
pared the observed and predicted distributions of E 
using the D and V Kolmogorov-Smirnov goodness-of- 
fit statistics (Stephens 1970). At conventional signifi- 
cance levels, the null hypothesis that E was distributed 
as x2(31) could be accepted for both simulations. 

Simulation III represents another test of the distri- 
bution of E under random micro-level mismeasure- 
ment, although the assumptions of the test are not 
entirely satisfied. Because the variation in price is not 
the same in each metropolitan area, the observational 
errors in the grouped regression are heteroscedastic. 
The within-group standard deviation in reported 
log(pH/po) ranges in our sample from .0351 (Atlanta) 
to .1795 (Chicago). However, based on the results of 
Simulation III, the effect of this heteroscedasticity is 
minor. The E statistic has a median of 31.37 and rejects 
the null hypothesis 10 times at the 10% level. Again, 

Kolmogorov-Smirnov tests do not lead to rejection of 
the chi-squared distribution for the observed values. On 
balance, our first three simulations indicate that the 
asymptotic properties of E are approximately achieved 
in our sample. 

B.2 Models with Metropolitan-Level Specification 
Errors 

In Simulation IV the dollar values are not deflated 
by the interarea price index po. Simulation V replaces 
PH by PB, the BLS index of home ownership cost for 
higher-income families, which (in the context of these 
simulations, at least) is the "wrong" housing services 
price measure. 

The likely effects of these misspecifications can be 
seen by rewriting Equation (1) in the following two 
forms: 

log(Ci) = bo + (1 + bp)log PH + b1log Ii 

+ Ei - (bp + bi)log Poi, (34) 

log(Ci/poi) = bo + (1 + bp)log(pBilpoi) + b,log(il/poi) 

+ ei + (1 + bp)log(pHlpBi). (35) 

The last terms in these equations are excluded regressors 
in Simulations IV and V, respectively. Since po and PB 
are measured at the metropolitan level, and since much 
of the variation in PH is between cities, the expected 
errors have nonzero means and will be highly correlated 
for observations within the same city. In the terminol- 
ogy used by Feige and Watts, this destroys the indepen- 
dence between the disturbance term and the grouping 
matrix G*, leading to bias in the grouped regression 
coefficients. The effects should be similar to those re- 
sulting from grouping by the value of the dependent 
variable. 

The quantitative impacts of Simulations IV and V 
are very different, as indicated in Table 2. The effect of 
failing to deflate the nominal variables is small, al- 
though to some extent this results from our particular 
choice of parameter values. For example, had we chosen 
to assume b, = .5 and bp = -.8, the coefficient on log 
poi in (34) would have tripled from -.1 to -.3. However, 
the incorrect use of the BLS price variable severely 
distorts the parameter estimates, particularly in the 
grouped regressions. In both simulations the Fare- 
brother test identifies misspecification much more suc- 
cessfully than the Feige-Watts test. For example, at the 
1% significance level, BF correctly rejects the null hy- 
pothesis in 16 Simulation IV trials, compared with three 
rejections using BFw. In Simulation V, again at the 1% 
level, the Feige-Watts test yields 23 type II errors, the 
Farebrother test none. 

The weaker relative performance of the Feige-Watts 
test in the simulations of metropolitan-level misspeci- 
fication follows from the presence of a2 in the BFw 
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computational formula. Using Equations (23) and (24), 
we can write 

BF/BFI = -2/5. (36) 

The errors in Simulations IV and V have a greater effect 
on the grouped than on the ungrouped regressions, as 
measured either by the degree of parameter bias or by 
the goodness of fit as reflected in MSE. Most obviously, 
the use of the BLS price results in a median &2 of .582, 
which overstates the true a by 273%. Consequently, the 
median value of B' is more than 13 times as large as 
the median BFv. 

The high values of b2 in Simulations IV and V also 
lead to rejections of the hypothesis that the only speci- 
fication error is at the micro level. The E statistic is 
significant at any conventional level in all 100 Simula- 
tion V trials. In Simulation IV metropolitan-level mis- 
specification is successfully identified in 43 trials at the 
10% level. In both simulations the success rates of the 
E and BF statistics are comparable. 
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