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Many scientific, sociological, and economic applications present data that are collected on multiple scales of resolution. One particular
form of multiscale data arises when data are aggregated across different scales both longitudinally and by economic sector. Frequently,
such datasets experience missing observations in a manner that they can be accurately imputed, while respecting the constraints imposed
by the multiscale nature of the data, using the method we propose known as Bayesian multiscale multiple imputation. Our approach
couples dynamic linear models with a novel imputation step based on singular normal distribution theory. Although our method is of
independent interest, one important implication of such methodology is its potential effect on confidential databases protected by means of
cell suppression. In order to demonstrate the proposed methodology and to assess the effectiveness of disclosure practices in longitudinal
databases, we conduct a large-scale empirical study using the U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages
(QCEW). During the course of our empirical investigation it is determined that several of the predicted cells are within 1% accuracy, thus
causing potential concerns for data confidentiality.
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1. INTRODUCTION

Given the public’s concerns about data confidentiality there
is an ever-increasing need for identifying and controlling dis-
closure risks. Typically, disclosure risks arise when microdata
on individual units, such as people or establishments, are dis-
seminated to researchers or other statistical agencies. In fact,
statistical agencies often face conflicting missions. On the one
hand, they seek to release data suitable for a wide range of sta-
tistical analyses, while on the other hand they wish to protect
the confidentiality of their respondents. Agencies that fail to
protect confidentiality may face serious consequences, includ-
ing legal action. Moreover, the statistical agency may lose pub-
lic trust, and thus create an atmosphere in which respondents
are less willing to participate in studies or to provide accurate
information (Gomatam et al. 2006).

To reduce disclosure risk, statistical agencies often alter the
data prior to release. For example, it is common for agencies to
perturb, coarsen, or swap data values (Willenborg and de Waal
2001). However, decreasing risk necessarily also decreases data
utility, and increasingly, statistical disclosure limitation (SDL)
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techniques are employed that explicitly account for risk-utility
tradeoffs (Karr et al. 2006).

One particular path to disclosure is through linkages across
multiple databases. In particular, when agencies release micro-
data to the public it may be possible for “intruders” to link
records across databases in such a way as to compromise the
confidentiality of the data (Fienberg 2006). Failure to release
data in ways that prevent such identifications may be a breach
of law and may discredit the statistical agency involved (Reiter
2005). As databases become more extensive and record linkage
techniques improve, it is possible that releasing microdata may
no longer be feasible. Under these circumstances, a viable al-
ternative is to release only data summaries. Unfortunately, this
type of release is often less useful for complex analyses and
may still suffer from disclosure risks (Dobra et al. 2002; Dobra,
Karr, and Sanil 2003).

Another approach for protecting against disclosure is to re-
lease synthetic data (i.e., simulated microdata). Although syn-
thetic data may have low risk of disclosure, they have corre-
spondingly reduced utility. In this context, both risk and utility
depend on the model used for synthesis (see Reiter and Raghu-
nathan 2007; Machanavajjhalla et al. 2008; and the references
therein).

An alternative framework for protecting against disclosure
is to release only the results of statistical analyses of the data,
with no release of microdata. Remote analysis servers would
permit users to submit requests for analyses and be provided
some form of output (i.e., estimated parameters and standard er-
rors) (Keller-McNulty and Unger 1998; Duncan and Mukerjee
2000; Schouten and Cigrang 2003). Such servers are not free
from risk of disclosure. In fact, it may be possible for intrud-
ers to discover identities or other attributes of interest through
“targeted” queries (Gomatam et al. 2005; Karr et al. 2006).

Despite the multiplicity of SDL methods available to statisti-
cal agencies, it is still common practice within many surveys to
protect against disclosure through the use of “cell suppression”:
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cell entries in tables that are deemed risky (usually because they
represent only a few data subjects) are simply suppressed. In
general, cell suppression is imposed on both contingency tables
and on microdata. However, in this context, we consider mi-
crodata rather than contingency tables. One example is in the
Bureau of Labor Statistics (BLS) Quarterly Census of Employ-
ment and Wages (QCEW). In order to protect against disclosure
risks that arise from additive relationships within a table, addi-
tional, “secondary” cell suppressions are required. For a com-
prehensive discussion regarding data confidentiality as it per-
tains to QCEW, see Section 2 and Cohen and Li (2006).

Optimal cell suppression is a nondeterministic polynomial-
time (NP)-hard problem and implemented algorithms rely on
heuristics (Cox 1980, 1995; Fischetti and Salazar 2001). As-
suming that all of the risks of disclosure are accounted for
through primary and secondary cell suppressions is problem-
atic, as unforeseen disclosure risks may remain. This is es-
pecially true for complex data releases where there are both
multiscale aggregations—for example, to both county and state
levels, or to both fine-grained and coarse-grained industry
classifications—and longitudinal data, whether from panels or
repeated cross-sectional data collections. Together these data
attributes potentially enable a data intruder to estimate the val-
ues of suppressed cells more accurately than might be antici-
pated.

In this article, we propose a method of Bayesian multiscale
multiple imputation (BMMI) that utilizes the additive relation-
ships (multiscale attributes) along with inherent serial correla-
tion to impute suppressed values. While the method is of in-
dependent interest as a means of imputing missing data, this
article focuses on how it can be used to improve understanding
of disclosure risk associated with cell suppression on longitu-
dinal, multiscale data. Possibly disconcertingly, the framework
can be extremely effective. In many instances, we are able to
impute suppressed cells to within 1% accuracy. Moreover, the
imputed values simultaneously respect the constraints imposed
through the multiscale properties of the data. In addition, the
Bayesian framework provides measures of uncertainty for the
imputed values, which might not be true of other methods such
as “carry-forward” or “equal proportions” (cf. Section 4).

Our approach couples dynamic linear models (DLMs) (West
and Harrison 1997) with multiple imputation techniques through
the use of properties for normally distributed random variables
with singular covariance matrices (Muirhead 1982; Siotani,
Hayakawa and Fujikoshi 1985). Specifically, we make use of
two properties of singular normal distributions. First, the num-
ber of zero eigenvalues of the singular covariance matrix is
equal to the number of hard constraints in the data due to hav-
ing knowledge about the aggregated values. Second, the con-
ditional distribution of subvectors is also normally distributed
with covariance matrix, which depends on a generalized inverse
of the singular covariance matrix of the entire random vector.

As noted previously, the method proposed here is applicable
to a wide array of multiscale (constrained) data structures. Our
framework produces estimates of missing values that are close
to the true unobserved values, but is also capable of producing
estimates of trend, seasonality, and regression effects along with
associated measures of uncertainty. Further, the method is com-
putationally feasible and can be implemented in practical situ-
ations. Finally, the method requires no parameter specification

by the user. Given the choice of the particular DLM, we han-
dle the unknown “problem-specific” parameters by employing
a set of default priors that require no subjective specification.
This set of default priors has performed very well for all the
datasets analyzed in Sections 3 and 4.

A related approach proposed by Ansley and Kohn (1983)
uses a method for computing the exact likelihood of a vector
autoregressive-moving average process with missing or aggre-
gated data. The two approaches differ in several respects. Most
notably, our approach couples the flexibility of DLMs with
properties of normally distributed random variables with sin-
gular covariance matrices. This produces a versatile framework
that allows us to take advantage of, rather than be hampered
by, the constraints present in the data. In the Ansley and Kohn
framework, by contrast, imputation in our context is impossi-
ble, at least without modification of their methodology or sub-
stantial bookkeeping on the part of the practitioner to eliminate
redundant information. The multiscale aspect of our approach
is crucial: the singular covariance matrix allows us to system-
atically accommodate any redundant information present in the
data in a mathematically rigorous and fully automatic manner.

Our multiscale multiple imputation methodology is related to
the multiscale time series modeling approach of Ferreira et al.
(2006). In particular, for a two-level model Ferreira et al. (2006)
used an initial univariate time series process at the fine resolu-
tion level and a stochastic linear equation based on longitudinal
aggregation relating fine and coarse levels to obtain the condi-
tional distribution of the fine level given the coarse level. Subse-
quently, they use Jeffrey’s rule of conditioning (Jeffrey 1992) to
revise the process at the coarse level to produce a coherent joint
model for the two resolution levels. See chapter 11 of Ferreira
and Lee (2007) for a comprehensive discussion regarding these
multiscale time series models. Conversely, here we use deter-
ministic equations linking the fine resolution multivariate time
series with their longitudinal and subseries aggregated coarse
time series. Ultimately our objective is imputation at the fine
level, thus we require the conditional distributions of the sup-
pressed (missing) cells given the observed cells and aggregated
series. Departing from Ferreira et al. (2006), our link equations
are deterministic and necessitate the use of conditional distrib-
utions, which are singular normal distributions.

The remainder of this article is organized as follows. Sec-
tion 2 provides a brief description of the QCEW. In Section 3
our method is formally developed and an illustration employing
the QCEW is provided. Section 4 quantifies the performance of
our method through a large empirical study. Specifically, we
apply our method to 11 real QCEW datasets. This empirical
study demonstrates the effectiveness of our methodology and
in doing so exposes the vulnerability of “cell suppression” as
a method for eliminating disclosure risk in longitudinal data-
bases. Finally, Section 5 concludes.

2. QCEW: DATA STRUCTURE

The BLS conducts a census that collects data under a coop-
erative program between the BLS and the State Employment
Security Agencies known as the Quarterly Census of Employ-
ment and Wages (QCEW). The data contained in QCEW con-
sist of broad employment and wage information for all U.S.
workers covered by State unemployment insurance laws and
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for civilian workers covered by the program of Unemployment
Compensation for Federal Employees. Tabulations of QCEW
outcomes are available by six-digit North American Industrial
Classification Systems (NAICS) industry, county, ownership,
and size groups under several formats, for example, via BLS
internet FTP servers. The detailed coverage and easy accessi-
bility make it especially vulnerable to confidentiality disclosure
risks (Cohen and Li 2006). To protect this tabular data against
disclosure risks, cell suppression (CS) is imposed. Although the
BLS consistently applies both primary and secondary cell sup-
pressions, additional risks arise from additive relationships in
the table along with serial correlation. As noted in Section 1,
the problem is NP-hard (Kelly 1990), and several heuristic so-
lutions have been proposed (see Cox 1980, 1995; Fischetti and
Salazar 2001; Cohen and Li 2006; and the references therein).

As a matter of practice, the CS problem and its solutions
are addressed contemporaneously. This shortcoming increases
the data’s susceptibility to attack. The QCEW data contain
many different levels of aggregation and patterns of suppres-
sion. For example, suppose we have six years of quarterly data
for three series and the aggregate of the three series. Let yjt de-
note the jth subseries j = 1, . . . , k and tth quarter t = 1, . . . ,T .
Here k denotes the number of aggregate subseries and T de-
notes the number of quarters; in our example we have k = 3
and T = 24. In some years two or more quarterly values are
missing (i.e., primary and secondary cell suppressions) for two
of the three series, but the aggregate value is often present
for all quarters, so for each quarter t = 1, . . . ,24 we have ei-
ther the full set of values yt = (y1t, y2t, y3t)

′ or a set where
some of the values were suppressed as, for example, (S, y2t, S)

in a quarter where the first and third series values are sup-
pressed, as indicated by the letter S . In addition, for many se-
ries we have annual totals for all three series. Let qt = y1t +
y2t + y3t, t = 1, . . . ,T, be the total for quarter t. Further, let
at′ = (a1t′ ,a2t′,a3t′)′ denote the annual totals for each of the six
years, t′ = 1, . . . ,6, where ajt′ = yj(4t′−3) +yj(4t′−2) +yj(4t′−1) +
yj(4t′), j = 1, . . . ,3. Then the complete time series is given by
{y1,q1,y2,q2,y3,q3,y4,q4,a1,y5,q5, . . . ,y24,q24,a6}. How-
ever, in our case, we do not have the complete time series be-
cause some of the observations were suppressed; an example of
this is shown in Tables 1 and 2.

It is important to note that the data displayed in Tables 1 and 2
only constitute two example datasets from the QCEW. In many
instances the suppressed cells can be an annual total (e.g., Ta-
ble 2) or even a subseries aggregate total (not displayed). Ad-
ditionally, the multiscale nature can have an aggregate along
with k subseries where k does not necessarily equal 3; in fact,
we only require k ≥ 2. Further, each of the k subseries can be an
aggregate of lk (lk ≥ 2) additional subseries. Nevertheless, the
framework we propose effectively accommodates these multi-
ple data structures.

3. MULTISCALE MULTIPLE IMPUTATION

In recent years, multiple imputation, the practice of “filling
in” missing data with plausible values, has emerged as a power-
ful tool for analyzing data with missing values. More formally,
multiple imputation (MI) refers to the procedure of replacing
each missing value by a vector of imputed values. Upon com-
pletion of the imputation, standard complete-data methods can

Table 1. Disclosed QCEW dataset 1, with suppressed cells
denoted by S

Total Series 1 Series 2 Series 3

wage01-1 399,688 49,201 197,316 153,171
wage01-2 714,639 S S 479,513
wage01-3 688,482 54,039 233,588 400,855
wage01-4 447,404 S S 198,231
wage01-a 2,250,213 204,177 814,266 1,231,770

wage02-1 462,232 49,039 226,622 186,571
wage02-2 706,801 S 226,219 S
wage02-3 679,498 S 265,220 S
wage02-4 553,380 S 216,504 S
wage02-a 2,401,911 150,107 934,565 1,317,239

wage03-1 453,892 S 235,871 S
wage03-2 627,605 S 222,709 S
wage03-3 492,338 28,911 260,932 202,495
wage03-4 488,352 29,535 224,213 234,604
wage03-a 2,062,187 116,585 943,725 1,001,877

wage04-1 628,245 122,516 265,484 240,245
wage04-2 796,096 130,296 240,055 425,745
wage04-3 643,023 134,871 262,762 245,390
wage04-4 759,910 138,567 272,218 349,125
wage04-a 2,827,274 526,250 1,040,519 1,260,505

wage05-1 650,100 164,995 232,009 253,096
wage05-2 715,893 185,907 228,384 301,602
wage05-3 733,692 187,186 274,578 271,928
wage05-4 731,393 191,415 275,615 264,363
wage05-a 2,831,078 729,503 1,010,586 1,090,989

wage06-1 811,330 313,003 209,979 288,348
wage06-2 883,901 315,194 250,611 318,096
wage06-3 841,881 323,209 224,255 294,417
wage06-4 865,273 325,835 249,976 289,462
wage06-a 3,402,385 1,277,241 934,821 1,190,323

be used to analyze each dataset. In addition, when D ≥ 2 sets of
imputations are formed and constitute repeated draws from the
posterior predictive distribution of the missing values under a
specified model, then the D complete datasets can be combined
to form one inference that properly accounts for the uncertainty
due to imputation under that model. For a comprehensive dis-
cussion, see Little and Rubin (2002) and the references therein.

Bayesian approaches to MI have experienced increased
popularity due to their usefulness in complicated realistic prob-
lems. Rubin (1987) described methods for generating MIs using
parametric Bayesian models in the context of simple problems.
In general, suppose that Y = (Yobs,Ymis) follows a parametric
model P(Y|θ) where θ has a prior distribution and the miss-
ing data mechanism for Ymis is ignored (Little and Rubin 2002,
p. 120). Then we can write

P(Ymis|Yobs) =
∫

P(Ymis|Yobs, θ)P(θ |Yobs)dθ .

Imputation for Ymis can be obtained through a two-step proce-
dure. The first step is to sample the unknown parameters from
their observed-data posterior θ∗ ∼ P(θ |Yobs). Then given θ∗,
the next step is to sample Ymis from their conditional predictive
distribution

Y∗
mis ∼ P(Ymis|Yobs, θ

∗).
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Table 2. Disclosed QCEW dataset 2, with suppressed cells
denoted by S

Total Series 1 Series 2 Series 3

wage01-1 35,247,480 6,456,128 27,555,264 1,236,088
wage01-2 29,085,928 5,638,595 22,425,971 1,021,362
wage01-3 29,331,857 6,362,500 21,759,797 1,209,560
wage01-4 32,320,399 6,729,254 24,490,149 1,100,996
wage01-a 125,985,664 25,186,477 96,231,181 4,568,006

wage02-1 25,233,545 6,191,050 17,743,550 1,298,945
wage02-2 22,103,990 S 15,493,524 S
wage02-3 23,647,695 S 16,199,098 S
wage02-4 27,900,353 S 19,592,672 S
wage02-a 98,885,583 25,314,368 69,028,844 4,542,371

wage03-1 26,571,054 S 17,599,297 S
wage03-2 25,017,823 S 17,289,908 S
wage03-3 26,713,862 S 17,302,366 S
wage03-4 32,011,096 8,794,890 S S
wage03-a 110,313,835 S S S
wage04-1 23,082,164 8,096,669 S S
wage04-2 22,773,180 7,932,895 S S
wage04-3 23,269,552 8,620,975 S S
wage04-4 28,673,482 9,383,772 S S
wage04-a 97,798,378 34,034,311 S S
wage05-1 21,721,426 7,358,822 S S
wage05-2 21,716,384 7,582,785 S S
wage05-3 25,895,877 9,134,881 15,689,149 1,071,847
wage05-4 30,344,595 9,667,405 19,318,854 1,358,336
wage05-a 99,678,282 33,743,893 61,309,507 4,624,882

wage06-1 23,653,708 8,605,217 13,883,597 1,164,894
wage06-2 23,924,694 9,082,470 13,514,676 1,327,548
wage06-3 21,323,373 8,405,353 11,707,047 1,210,973
wage06-4 28,035,179 9,988,831 16,537,826 1,508,522
wage06-a 96,936,954 36,081,871 55,643,146 5,211,937

Typically this approach is facilitated by taking advantage of
Markov chain Monte Carlo (MCMC) algorithms. For further
discussion on MI see Schafer (1999).

Treating the suppressed data as missing and the additive
structure as a multiscale problem provides a powerful environ-
ment for conducting multiscale multiple imputation. However,
longitudinal-multiscale data inherently produce redundant in-
formation (i.e., annual totals and subseries aggregate totals).
Thus, to systematically accommodate and take advantage of
these redundancies without substantial bookkeeping on the part
of the practitioner requires innovative methods involving singu-
lar covariance matrices.

The imputation model we propose presumes suppressed val-
ues are “missing at random.” However, the data are not missing
at random because the values are missing due to a p-percent
rule (Willenborg and de Waal 2001) or a more extensive set
of criteria. With nonignorable missing data it is often use-
ful, but incorrect, to fit an ignorable model. In fact, enforc-
ing the p-percent rule or more extensive suppression criteria
constraints on the imputations might approximate a nonignor-
able model reasonably well and thus lead to better imputa-
tions. However, the suppression rules used by the BLS for the
QCEW series are not published and are, in fact, not public in-
formation. A general description of the QCEW confidential-
ity procedures can be found in Statistical Working Paper 22

(http://www.fcsm.gov/working-papers/spwp22.html, chapter 3,
p. 47); the procedures in chapter 5 of the Handbook of Methods
on the BLS website are, as of this writing, out of date. Fur-
thermore, for any cell in which either the wage or employment
data are marked as sensitive, both items are suppressed. Con-
sequently, approximating a nonignorable model by enforcing
confidentiality rules is not possible in this context. Neverthe-
less, it would be possible for an intruder to take a reasonable
guess at the confidentiality rules (the outdated 80% rule may
provide a good starting point). One avenue for further research
would be to investigate how much reasonable guesses improve
or worsen estimates.

This section formally develops the BMMI scheme and pro-
vides an illustration by applying our method on two represen-
tative QCEW series as well as a simulated example. The main
point of this illustration is to demonstrate our approach through
several detailed examples. Subsequently, we provide a compre-
hensive assessment of our method’s performance in Section 4.

3.1 The Multiscale Multiple Imputation Scheme

The BMMI scheme can be viewed as a two-stage iterative
procedure. In the first stage all of the subseries (i.e., all of the
series other than the aggregate of the subseries) are modeled
individually, conditional on the missing values, using DLMs
(West and Harrison 1997). Thus considering the example se-
ries in Section 2 we have three DLMs, each modeling a series
of six years of quarterly data, excluding the annual totals. It is
important to note that, although we model each series individu-
ally, our procedure can be modified in a straightforward manner
to include correlation between series. However, this is typically
unnecessary as much of the between-series correlation is ac-
counted for through the multiscale (subseries aggregation) con-
straints. The second step of our procedure performs imputation
of the missing values for each year of data after accounting for
all of the additive constraints.

Formally our procedure proceeds as follows. We assume that
the complete data y1, . . . ,yT follow a general linear state–space
model, which can be written as (West and Harrison 1997)

yt = F′
tθ t + εt, εt ∼ N (0,Vt),

θ t = Gtθ t−1 + ωt, ωt ∼ N (0,Wt).

The first equation is known as the observation equation and the
second equation is known as the system equation. In this con-
text θ t is a latent process, Ft relates the observations to the la-
tent process, Gt describes the evolution of the latent process
through time, and Vt and Wt are the observational covariance
matrix and covariance matrix of the system equation innova-
tion, respectively. The general state–space model has become
commonplace in the time series literature owing to its versa-
tility in accommodating a wide array of data structures such
as seasonality and regression effects among others. For a com-
prehensive discussion on state–space models see Durbin and
Koopman (2001), Harvey (1989), West and Harrison (1997),
and the references therein.

Typically Ft, Gt, Vt, and Wt are known up to a few hyperpa-
rameters, as is the case in the models we employ for illustration.
In this case, estimation can be performed using MCMC (Robert
and Casella 2004; Gamerman and Lopes 2006). Each iteration

http://www.fcsm.gov/working-papers/spwp22.html
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of the MCMC algorithm is then divided into three blocks: sim-
ulation of the unknown hyperparameters, simulation of the la-
tent process, and simulation (imputation) of the missing values.
The details of the simulation of the hyperparameters is model-
specific while the latent process can be efficiently simulated
using the forward filter backward sampler (FFBS) (Carter and
Kohn 1994; Früwirth–Schnatter 1994).

In our particular case, yt contains k subseries related to dif-
ferent economic sectors. In order to model the joint evolution
of those subseries through time, F′

tθ t may contain regression
terms, seasonality, first and second-order trends, common la-
tent factors, and so on. However, in our experience, we noticed
that many of those terms are already captured by the aggregated
series and are automatically accounted for when we sample the
missing data conditional on the aggregated series. For this rea-
son, for the remainder of this article we assume yjt, j = 1, . . . , k,
follows a first-order DLM. Specifically, we have

yjt = θjt + εjt, εt ∼ N (0, σ 2
j ),

(1)
θjt = θj,t−1 + ωjt, ωt ∼ N (0,Wj).

This model can be thought of as a first-order Taylor approxi-
mation of a smooth function representing the time trend of the
series. Typically the variances σ 2

j and Wj are strongly correlated
a posteriori. Therefore, it is often computationally beneficial to
reparameterize Wj in terms of a signal-to-noise ratio. In this
direction, we define Wj = ξjσ

2
j and as a result, the hyperpara-

meters σ 2
j and ξj will be much less correlated a posteriori. This

reduction in correlation helps both in terms of speed of con-
vergence of the MCMC algorithm and in terms of choosing a
prior distribution for the hyperparameters. Finally, the model in
Equation (1) is completed with a prior θj0 ∼ N (a,R), where a
and R are user defined and usually taken to imply a vague prior.

The next step in estimation is the imputation step. Let zt′
denote the observations and their aggregates for year t′. As-
suming k = 3 then zt′ = (y1,4t′−3, . . . , y1,4t′ , y2,4t′−3, . . . , y2,4t′ ,
y3,4t′−3, . . . , y3,4t′ ,q4t′−3, . . . ,q4t′ ,a1t′ ,a2t′,a3t′)′. Further, let
θ∗

t′ = (θ1,4t′−3, . . . , θ1,4t′ , θ2,4t′−3, . . . , θ2,4t′ , θ3,4t′−3, . . . , θ3,4t′)′
and H denote the matrix that operates on the individual obser-
vations and returns the individual observations along with the
several longitudinal and subseries aggregate totals. Then it fol-
lows from Equation (1) that

zt′ |θ∗
t′ ∼ N (μt′ ,�),

where μt′ = Hθ∗
t′ and � = HVH′, with V = diag(σ 2

1 , σ 2
1 , σ 2

1 ,

σ 2
1 , σ 2

2 , σ 2
2 , σ 2

2 , σ 2
2 , σ 2

3 , σ 2
3 , σ 2

3 , σ 2
3 ). For example, in the case

considered in Section 2 (Table 1)

H =
⎛
⎝ I12

I4 I4 I4

I3 ⊗ 1′
4

⎞
⎠ ,

where ⊗ denotes the Kronecker product, Im denotes the m × m
identity matrix, and 1m is the vector of ones having length m;
thus H has a dimension of 19 × 12.

Typically, several elements of zt′, either individual or aggre-
gated values, will be suppressed; let zt′,o and zt′,m be the ob-
served and missing values of zt′, respectively. Then, the covari-
ance matrix � can further be partitioned in terms of the missing
and observed values. Specifically, define �mm, �mo = �′

om, and

�oo to be the covariance matrix of the missing data, the missing
data with the observed, and of the observed data, respectively.
Then the covariance matrix � can be written

� =
(

�oo �om

�mo �mm

)
.

Further, consider the spectral decomposition of �oo, that
is, �oo = PDP′ where P = [p1,p2, . . . ,pp] has orthonormal
columns given by the normalized eigenvectors of �oo and
D = diag(d1, . . . ,dp), with d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 corre-
sponding to the eigenvalues of �oo. In addition, let q de-
note the number of zero eigenvalues of �oo. Note that q is
equal to the number of redundancies found in the observed
data due to having knowledge about the longitudinal or sub-
series aggregated values. In order to eliminate these redundan-
cies define D∗ = diag(d1, . . . ,dp−q) to be the diagonal ma-
trix with diagonal equal to the positive eigenvalues of �oo

and P∗ = [p1,p2, . . . ,pp−q] the matrix of corresponding nor-
malized eigenvectors. Then the pseudoinverse, also known as
the Moore–Penrose inverse (Searle 1982), can be computed as
�+

oo = P∗(D∗)−1P∗′. Ultimately to impute the missing (sup-
pressed) data we need to find the conditional distribution of
missing values given the observed values. Using standard prop-
erties of normal distributions with singular covariance matrices
(Muirhead 1982; Siotani, Hayakawa and Fujikoshi 1985), we
have

zt′,m|zt′,o ∼ N (γ t,m,�m), (2)

where

γ t,m = μt′,m − �mo�
+
oo(zt′,o − μt′,o) (3)

and

�m = �mm − �mo�
+
oo�om. (4)

Remark 1. In the case where �oo is full rank, Equa-
tions (2), (3), and (4) reduce to the familiar formulas from the
standard theory of multivariate normal distributions (Mardia,
Kent, and Bibby 1979).

Remark 2. Alternatively, one can eliminate the redundant in-
formation by eliminating some redundant elements from zt′,o,
but this will require substantial bookkeeping. By contrast, our
procedure is fully automatic.

Remark 3. Usually, the covariance matrix �m is singular.
In order to simulate from Equation (2), we first compute the
spectral decomposition �m = P�D�P′

�. Let r be the rank
of �m. Additionally, let D∗

� be the diagonal matrix with di-
agonal equal to the positive eigenvalues of �m and P∗

� the ma-
trix of corresponding eigenvectors. The next step is to simulate
u ∼ N (0, Ir). Finally, a vector simulated from Equation (2) is
computed as γ t,m + P∗

�(D∗
�)1/2u.

Estimation of the model and the multiscale imputation are
performed using MCMC in a fully Bayesian analysis. In this
direction, we need to assign prior distributions for the signal-
to-noise ratio ξj and variance parameters σ 2

j (j = 1, . . . , k) de-
scribed previously. First, we note that the signal-to-noise ratio
parameters ξj are most likely small. Otherwise, the components
of the latent process will vary too much over time and ultimately
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this will make it difficult to predict the suppressed cells. As a re-
sult, we expect ξj to be significantly smaller than 1. Therefore,
we assume that the prior distribution for each ξj is IG(αj, βj)

with density

f (ξj) ∝ ξ
−(αj+1)

j exp

(
−0.5

βj

ξj

)
,

where αj and βj are fixed a priori such that there is high prob-
ability that ξj is less than 0.3. Finally, we assume that σ 2

j ∼
IG(τj, κj), with τj = κj = 0.01, j = 1, . . . , k, which is a vague
conjugate prior for σ 2

j in this context.
In order to explore the posterior distribution, we use the

Gibbs sampler (Geman and Geman 1984; Gelfand and Smith
1990). This requires the full conditional distributions for ξj and
σ 2

j , j = 1, . . . , k, which are both of standard form. Specifically,

ξj|θ jt, σ
2
j ∼ IG(α∗

j , β∗
j ), where α∗

j = αj + (T − 1)/2 and

β∗
j = βj + 0.5

T∑
t=2

(θjt − θj,t−1)
2/σ 2

j ,

and T denotes the length of the series (in our example T = 24).
Sampling the parameter σ 2

j is equally straightforward since the

full conditional for σ 2
j |ξj,yjt, θ jt is IG(τ ∗

j , κ∗
j ) where τ ∗

j = τj +
(2T − 1)/2 and

κ∗
j = κj +

T∑
t=1

(yjt − θjt)
2 + 0.5

T∑
t=2

(θjt − θj,t−1)
2/ξj.

Simulation of θ jt is performed with the usual FFBS as intro-
duced and described in Carter and Kohn (1994) and Früwirth-
Schnatter (1994). This step is fairly standard, therefore, we omit
the exact equations for the sake of brevity. For a comprehensive
discussion see Gamerman and Lopes (2006).

As we have seen, the overall algorithm for BMMI consists
of three components. First, conditional on the missing values,
we sample the hyperparameters associated with each dynamic
linear model. Second, conditional on the missing values, we
estimate the latent process using the FFBS algorithm. Finally,
we perform multiscale multiple imputation. In order to start the
Gibbs sampler, we transform data from the yearly format z∗

jt to
yjt (j = 1, . . . , k) and replace any missing cells by their series
mean. After choosing starting values and defining all MCMC
parameters, the algorithm can be summarized as follows:

Step 1. For j = 1, . . . , k, sample the latent process θ jt using
the FFBS algorithm.

Step 2. For j = 1, . . . , k, sample the hyperparameters ξj

and σ 2
j from their full conditional distributions.

Step 3. Transform data from the yjt format to the z∗
t format

and sample zt′,m from Equation (2).

Step 4. Transform data back to the yjt (j = 1, . . . , k) format
and replace any missing cells by the values obtained in Step 3.

Step 5. Repeat Steps 1 through 4 until convergence.

3.2 Illustration: QCEW

To illustrate the imputation scheme proposed in Section 3.1
we provide a limited case study. Since the analyses were per-
formed on a confidential version of the QCEW data (in order
to compare imputed values to true values), we report only mea-
sures of performance of our imputed values. We cannot simul-
taneously report the estimated values while providing specific
measures of performance, although we do impart a qualitative
assessment here. Therefore, in addition, we provide the results
of a simulated example where the suppressed cells being im-
puted can be disclosed. Subsequently, in Section 4, we provide
a detailed evaluation on the efficacy of our approach.

As a general guideline, if little or no prior information is
available then vague or (in some sense) noninformative priors
should be used. Here we use vague priors for θj0 and σ 2

j . Specif-
ically, the prior mean and variance for θj0 are set at a = 0 and
R = 1010, respectively, whereas for σ 2

j , we take τj = κj = 0.01
for j = 1,2,3. For the signal-to-noise ratio parameter ξj, we as-
sume αj = 3, βj = 0.1 which guarantees the existence of the
first two prior moments and at the same time imparts little im-
pact in the analysis. We use this set of prior specifications for
both datasets in this section and for all the datasets in Section 4.
As this set of priors performs extremely well across the several
datasets considered here, we recommend their use as a default
choice of prior distributions.

The data used here are the six years of quarterly data de-
scribed in Section 2 and shown in Tables 1 and 2. As discussed
in Section 3.1, for both datasets, at the beginning of the Gibbs
sampler the missing values are imputed using the series mean.
Next, we run a single MCMC chain for 10,000 iterations, dis-
carding the first 5000 iterations for burn-in. Convergence of the
MCMC is verified through trace plots of the posterior.

Tables 3 and 4 provide the imputed values along with their
associated 95% pointwise credible intervals. Additionally, Fig-
ures 1 and 2 show the aggregate series along with the three
subseries being estimated. It is important to note that in the
majority of cases these series contain annual totals, however,
these totals are not portrayed in Figures 1 and 2. In Figure 1
it may appear that some of the imputations are not performing
well since the imputed values and their 95% CIs lie outside the
95% CI of the latent process. However, it is important to keep in
mind that the credible intervals for the latent process fail to take
into account the additive constraints because they model each
process separately. Therefore, it is possible to obtain accurate
imputations that lie outside the 95% CI for the individual latent
processes.

Although we do not provide a measure of accuracy in this
illustration, we can see from Figures 1 and 2 that the imputa-
tion seems to have estimated plausible values for the suppressed
data. Moreover, from Tables 3 and 4 it is also apparent that the
multiscale aggregation constraints are preserved using our ap-
proach. In fact, even though we consider the imputed values
after rounding to the nearest whole dollar, the multiscale con-
straints are still exactly preserved. Finally, even for the case of
the QCEW dataset 2 (cf. Table 2 and Figure 2) where we have a
substantially higher percentage of missing and less supporting
longitudinal and subseries aggregate information, our method
appears to provide reasonable performance in spite of what ap-
pears to be a challenging pattern of missingness.
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Table 3. Imputed suppressed cells corresponding to data in Table 1 along with 95% credible intervals,
with values rounded to the nearest whole dollar

Total Series 1 Series 2 Series 3

wage01-1 399,688 49,201 197,316 153,171
wage01-2 714,639 47,043 188,083 479,513

(19,086, 75,041) (160,085, 216,040)
wage01-3 688,482 54,039 233,588 400,855
wage01-4 447,404 53,894 195,279 198,231

(25,896, 81,851) (167,322, 223,277)
wage01-a 2,250,213 204,177 814,266 1,231,770

wage02-1 462,232 49,039 226,622 186,571
wage02-2 706,801 48,763 226,219 431,819

(0, 107,340) (373,242, 487,940)
wage02-3 679,498 34,427 265,220 379,851

(0, 89,542) (324,736, 433,178)
wage02-4 553,380 17,878 216,504 318,998

(0, 72,974) (263,902, 378,480)
wage02-a 2,401,911 150,107 934,565 1,317,239

wage03-1 453,892 11,872 235,871 206,149
(0, 58,126) (159,895, 261,640)

wage03-2 627,605 46,267 222,709 358,629
(13, 101,578) (303,318, 404,883)

wage03-3 492,338 28,911 260,932 202,495
wage03-4 488,352 29,535 224,213 234,604
wage03-a 2,062,187 116,585 943,725 1,001,877

wage04-1 628,245 122,516 265,484 240,245
wage04-2 796,096 130,296 240,055 425,745
wage04-3 643,023 134,871 262,762 245,390
wage04-4 759,910 138,567 272,218 349,125
wage04-a 2,827,274 526,250 1,040,519 1,260,505

wage05-1 650,100 164,995 232,009 253,096
wage05-2 715,893 185,907 228,384 301,602
wage05-3 733,692 187,186 274,578 271,928
wage05-4 731,393 191,415 275,615 264,363
wage05-a 2,831,078 729,503 1,010,586 1,090,989

wage06-1 811,330 313,003 209,979 288,348
wage06-2 883,901 315,194 250,611 318,096
wage06-3 841,881 323,209 224,255 294,417
wage06-4 865,273 325,835 249,976 289,462
wage06-a 3,402,385 1,277,241 934,821 1,190,323

The previous illustrations are necessarily limited. Therefore,
we further demonstrate our approach through a simulated ex-
ample. Specifically, we simulate data that behave like the data
found in Table 2. In particular, we use the estimated observa-
tion variances and latent processes to simulate data according to
Equation (1) and perform the appropriate aggregations. Further,
we suppress the same cells as in Table 2. Finally, all MCMC
parameters are taken to be identical to those used in the illus-
trations for QCEW datasets 1 and 2.

Table 5 provides the simulated dataset along with the im-
puted values and their 95% credible intervals. In general, the
imputed values are “close” to the truth (i.e., 50% are within 1%,
65% are within 2%, 69% are within 5%, and 92% are within
10%). Additionally, all of the 95% credible intervals contain
the true values with many having a “narrow” width. Equally as
important, this example further illustrates that our method pre-
serves the aggregate constraints. This aspect can be crucial to
data users interested in making subject matter inference. Lastly,

we investigate the effect of the prior specification on ξj (the
signal-to-noise ratio parameter) by varying the value of βj be-
tween 0.1 and 2. For this example, we find our results to be
insensitive to this choice.

4. EMPIRICAL STUDY: QCEW

To evaluate the effectiveness of our approach we conducted
an empirical study using real data from the QCEW. Specifically
we considered 11 datasets and imputed the suppressed cells.
As in Section 3.2, owing to BLS disclosure practices, the au-
thors outside of BLS have no knowledge of the values of the
suppressed data. Instead, as would “real intruders,” we applied
the BMMI method to data obtained from the public BLS inter-
net FTP servers. Post imputation, the estimated missing values
were compared at BLS (on site) to determine their accuracy.

For all of the analyses considered here, the prior mean and
variance for θj0 are set at a = 0 and R = 1010, respectively.
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Table 4. Imputed suppressed cells corresponding to data in Table 2 along with 95% credible intervals
with values rounded to the nearest whole dollar

Total Series 1 Series 2 Series 3

wage01-1 35,247,480 6,456,128 27,555,264 1,236,088
wage01-2 29,085,928 5,638,595 22,425,971 1,021,362
wage01-3 29,331,857 6,362,500 21,759,797 1,209,560
wage01-4 32,320,399 6,729,254 24,490,149 1,100,996
wage01-a 125,985,664 25,186,477 96,231,181 4,568,006

wage02-1 25,233,545 6,191,050 17,743,550 1,298,945
wage02-2 22,103,990 5,550,102 15,493,524 1,060,364

(5,323,311, 5,786,374) (824,092, 1,287,155)
wage02-3 23,647,695 6,368,924 16,199,098 1,079,673

(6,139,738, 6,597,414) (851,183, 1,308,859)
wage02-4 27,900,353 7,204,292 19,592,672 1,103,389

(6,965,088, 7,434,342) (873,339, 1,342,593)
wage02-a 98,885,583 25,314,368 69,028,844 4,542,371

wage03-1 26,571,054 7,796,647 17,599,297 1,175,110
(7,476,104, 8,097,539) (874,218, 1,495,653)

wage03-2 25,017,823 6,602,844 17,289,908 1,125,071
(6,302,386, 6,922,295) (805,620, 1,425,529)

wage03-3 26,713,862 8,233,839 17,302,366 1,177,657
(7,912,920, 8,548,211) (863,285, 1,498,576)

wage03-4 32,011,096 8,794,890 22,044,744 1,171,462
(21,727,171, 22,363,838) (852,368, 1,489,035)

wage03-a 110,313,835 S S S
wage04-1 23,082,164 8,096,669 13,824,717 1,160,778

(13,510,783, 14,151,890) (833,605, 1,474,712)
wage04-2 22,773,180 7,932,895 13,679,769 1,160,516

(13,362,913, 13,992,710) (847,575, 1,477,372)
wage04-3 23,269,552 8,620,975 13,482,879 1,165,698

(13,170,373, 13,796,721) (851,856, 1,478,204)
wage04-4 28,673,482 9,383,772 18,108,725 1,180,985

(17,771,926, 18,429,733) (859,977, 1,517,784)
wage04-a 97,798,378 34,034,311 S S
wage05-1 21,721,426 7,358,822 13,268,901 1,093,703

(13,061,204, 13,478,068) (884,536, 1,301,400)
wage05-2 21,716,384 7,582,785 13,032,603 1,100,996

(12,823,436, 13,240,300) (893,299, 1,310,163)
wage05-3 25,895,877 9,134,881 15,689,149 1,071,847
wage05-4 30,344,595 9,667,405 19,318,854 1,358,336
wage05-a 99,678,282 33,743,893 61,309,507 4,624,882

wage06-1 23,653,708 8,605,217 13,883,597 1,164,894
wage06-2 23,924,694 9,082,470 13,514,676 1,327,548
wage06-3 21,323,373 8,405,353 11,707,047 1,210,973
wage06-4 28,035,179 9,988,831 16,537,826 1,508,522
wage06-a 96,936,954 36,081,871 55,643,146 5,211,937

In terms of ξj and σ 2
j , αj = 3, βj = 0.1, and τj = κj = 0.01

for j = 1,2,3. Next, we ran a single MCMC chain for 10,000
iterations discarding the first 5000 iterations for burn-in. Con-
vergence of the MCMC was verified through trace plots of the
posterior.

In keeping with the disclosure practices of the BLS we can-
not present imputed values and measures of accuracy simulta-
neously. Instead we display in Table 6 the cumulative percent-
age of values that fall within 1%, 2%, 5%, and 10% of their
true values. Further, the pattern of missingness is not the same
for each dataset, for example, see Tables 1 and 2. Therefore, we
present the percentage and number of missing values for each

subseries for each dataset in Table 7. In addition, Table 7 also
indicates which datasets have subseries missing the annual to-
tal.

As depicted in Table 6, we are able to impute at least 20%
of the suppressed values to within 1% of their true values in
over half of the datasets considered. Additionally, in 5 of the 11
datasets we are able to impute suppressed values to within 2%
of their true value at least 50% of the time. Similarly, in 7 of
the 11 datasets we are able to impute the suppressed values to
within 5% of their true values over 50% of the time. In fact,
in 3 of these 11 datasets we are able to impute all of the missing
values to within 5% of their true values. Finally, in 8 of the 11
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Figure 1. Aggregate series along with three subseries correspond-
ing to QCEW dataset 1. The circles are the observed data and the tri-
angles are the imputed suppressed cells. The solid line represents the
estimated latent process whereas the horizontal dashed lines and verti-
cal dashed lines correspond to the 95% pointwise credible interval for
the latent process and imputed suppressed cells, respectively. A color
version of this figure is available in the electronic version of this arti-
cle.

Figure 2. Aggregate series along with three subseries correspond-
ing to QCEW dataset 2. The circles are the observed data and the tri-
angles are the imputed suppressed cells. The solid line represents the
estimated latent process whereas the horizontal dashed lines and verti-
cal dashed lines correspond to the 95% pointwise credible interval for
the latent process and imputed suppressed cells, respectively. A color
version of this figure is available in the electronic version of this arti-
cle.
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Table 5. Simulated QCEW dataset and imputed suppressed cells along with 95% credible intervals, with values rounded to the nearest whole
dollar. The data are simulated using the estimated latent processes and observation variances from the model fit to the data from Table 2.

S indicates that the annual total has been suppressed during imputation, imputed cells are in bold face, 95% credible intervals
are in parentheses and simulated truth is given below the imputed value

Total Series 1 Series 2 Series 3

wage01-1 27,443,858 5,560,324 20,956,820 926,714
wage01-2 34,895,854 5,545,158 28,074,525 1,276,171
wage01-3 23,681,853 7,241,424 15,374,154 1,066,275
wage01-4 30,853,633 5,925,113 23,878,473 1,050,047
wage01-a 116,875,197 24,272,018 88,283,972 4,319,207

wage02-1 26,428,227 5,644,354 19,656,222 1,127,651
wage02-2 34,622,518 6,992,114 26,473,969 1,156,436

(6,760,100, 7,219,497) (929,053, 1,388,450)
7,008,673 1,139,876

wage02-3 27,218,433 7,196,340 18,855,186 1,166,907
(6,969,889, 7,416,209) (947,038, 1,393,359)

7,204,472 1,158,775
wage02-4 26,626,885 7,417,536 18,029,381 1,179,969

(7,186,112, 7,646,670) (950,835, 1,411,393)
7,392,843 1,204,661

wage02-a 114,896,067 27,250,344 83,014,759 4,630,964

wage03-1 27,546,176 6,260,091 20,136,569 1,149,517
(5,964,359, 6,579,573) (830,035, 1,445,249)

6,260,717 1,148,890
wage03-2 24,529,017 7,268,469 16,067,398 1,193,149

(6,972,584, 7,587,713) (873,905, 1,489,034)
7,327,113 1,134,506

wage03-3 32,263,843 7,863,037 23,183,411 1,217,395
(7,552,511, 8,176,789) (903,643, 1,527,921)

7,749,997 1,330,435
wage03-4 25,792,818 7,957,334 16,623,057 1,212,427

(16,311,749, 16,943,968) (891,516, 1,523,735)
16,547,690 1,287,794

wage03-a 110,131,854 29,295,161, S 75,935,068, S 4,901,625, S
wage04-1 23,366,852 6,374,607 15,766,228 1,226,017

(15,447,304, 16,084,415) (907,831, 1,544,942)
15,775,969 1,216,267

wage04-2 25,748,661 8,523,937 15,990,338 1,234,386
(15,680,075, 16,303,342) (921,381, 1,544,649)

16,073,429 1,151,295
wage04-3 28,036,930 8,738,304 18,052,181 1,246,445

(17,749,427, 18,381,373) (917,253, 1,549,200)
18,265,939 1,032,687

wage04-4 28,627,141 8,648,610 18,717,428 1,261,103
(18,405,834, 19,039,923) (938,607, 1,572,697)

18,871,679 1,106,582
wage04-a 105,779,584 32,285,458 68,987,016, S 4,507,110, S
wage05-1 20,412,883 8,634,799 10,500,630 1,277,453

(10,294,532, 10,709,460) (1,068,623, 1,483,552)
10,384,820 1,393,264

wage05-2 27,261,060 9,253,787 16,711,263 1,296,011
(16,502,433, 16,917,361) (1,089,912, 1,504,841)

16,827,073 1,180,200
wage05-3 25,511,257 8,279,555 15,880,200 1,351,502
wage05-4 20,028,561 7,747,870 11,206,373 1,074,318
wage05-a 93,213,761 33,916,011 54,298,466 4,999,284

wage06-1 21,707,795 8,444,422 11,903,157 1,360,216
wage06-2 22,878,272 8,434,868 13,048,299 1,395,105
wage06-3 33,539,086 9,102,959 22,906,572 1,529,555
wage06-4 29,724,012 9,003,361 19,368,464 1,352,187
wage06-a 107,849,165 34,985,610 67,226,492 5,637,063
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Table 6. Percentage of imputed values within 1%, 2%, 5%, and 10% of the true values for both primary and secondary cell suppressions
combined. QCEW1–QCEW11 denote the 11 different QCEW datasets used in this empirical investigation. BMMI and MICE denote

Bayesian multiscale multiple imputation and multivariate imputation by chained equation (R-contributed package), respectively

BMMI Carry forward

Data <1% <2% <5% <10% <1% <2% <5% <10%

QCEW1 7.14 42.86 57.14 71.43 0.00 0.00 7.14 28.57
QCEW2 0.00 0.00 5.00 50.00 0.00 0.00 5.00 15.00
QCEW3 25.00 50.00 100.00 100.00 0.00 25.00 50.00 50.00
QCEW4 10.00 50.00 50.00 60.00 10.00 10.00 20.00 60.00
QCEW5 48.39 70.97 83.87 93.55 0.00 12.90 16.13 29.03
QCEW6 0.00 0.00 0.00 10.00 0.00 0.00 5.00 10.00
QCEW7 21.43 28.57 50.00 57.14 0.00 0.00 7.14 28.57
QCEW8 30.00 30.00 30.00 50.00 0.00 5.00 10.00 30.00
QCEW9 0.00 9.09 13.64 31.82 0.00 0.00 9.09 22.73
QCEW10 50.00 87.50 100.00 100.00 12.50 12.50 62.50 75.00
QCEW11 62.50 75.00 100.00 100.00 12.50 12.50 25.00 50.00

MICE Equal proportion

<1% <2% <5% <10% <1% <2% <5% <10%

QCEW1 0.00 0.00 0.00 7.14 0.00 0.00 7.14 7.14
QCEW2 0.00 10.00 25.00 35.00 0.00 0.00 7.14 7.14
QCEW3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.00
QCEW4 0.00 0.00 10.00 20.00 0.00 0.00 10.00 10.00
QCEW5 0.00 0.00 10.00 20.00 3.23 16.13 35.48 67.74
QCEW6 0.00 0.00 5.00 10.00 0.00 0.00 0.00 0.00
QCEW7 0.00 7.14 14.29 35.71 0.00 0.00 21.43 42.86
QCEW8 0.00 0.00 5.00 10.00 0.00 0.00 0.00 10.00
QCEW9 0.00 0.00 4.55 9.09 22.73 22.73 40.91 54.55
QCEW10 12.50 12.50 25.00 62.50 0.00 0.00 0.00 0.00
QCEW11 12.50 12.50 18.75 56.25 6.25 18.75 37.50 81.25

datasets we can impute the data to within 10% of the their true
values over 50% of the time. In all cases the 95% credible in-
terval contained the true value.

Several observations are worth noting. First, visual inspec-
tion of the patterns of suppressed cells in conjunction with the
performance of the BMMI method did not reveal any strong
patterns. However, it does seem that the BMMI method per-

Table 7. Percentage of missing values by series within a particular
dataset. The number in parenthesis denotes the number of missing
values out of the 24 quarters and number missing out of 6 annual

totals respectively. QCEW1–QCEW11 denote the QCEW datasets
used in this empirical investigation

Percent and number missing

Data Aggregate Series 1 Series 2 Series 3

QCEW1 0.00 23.33 (7,0) 6.67 (2,0) 16.67 (5,0)

QCEW2 0.00 0.00 (0,0) 33.33 (8,2) 33.33 (8,2)

QCEW3 0.00 6.67 (2,0) 6.67 (2,0) 0.00 (0,0)

QCEW4 0.00 0.00 (0,0) 16.67 (4,1) 16.67 (4,1)

QCEW5 0.00 23.33 (6,1) 30.00 (7,2) 50.00 (13,2)

QCEW6 0.00 0.00 (0,0) 33.33 (8,2) 33.33 (8,2)

QCEW7 0.00 0.00 (0,0) 23.33 (6,1) 23.33 (6,1)

QCEW8 0.00 0.00 (0,0) 33.33 (8,2) 33.33 (8,2)

QCEW9 0.00 36.67 (8,3) 0.00 (0,0) 36.67 (8,3)

QCEW10 0.00 13.33 (4,0) 0.00 (0,0) 13.33 (4,0)

QCEW11 0.00 0.00 (0,0) 26.67 (8,0) 26.67 (8,0)

forms better on series where there are many more secondary
suppressions than primary. Further, it seems that the BMMI
method less accurately imputes primary suppressed cells when
they are suppressed due to a small number of establishments or
employers than for other suppression reasons.

By construction the BMMI method respects the aggregate
constraints. As a consequence, when only two suppressions are
imposed, which is typically the case in situations considered
here, the error for one imputed cell is the negative of the error
of its imputed complementary cell. Therefore, the percentage
of error to the true value is smaller for large cells than it is
for small cells. The primary suppressed cells are often, but far
from always, the smaller cell; thus, in general, the imputations
are often closer percentage-wise to the secondary suppressions
than they are to the primary suppressions.

Agencies considering the use of cell suppression may exhibit
little concern if secondary suppressions are accurately imputed
(assuming they are not sensitive) so long as primary suppres-
sions are poorly imputed. Therefore, it is of particular inter-
est to evaluate the performance of the BMMI methodology in
the context of only primary suppressions. For primary suppres-
sions, Table 8 displays the cumulative percentage of values that
fall within 1%, 2%, 5%, and 10% of their true values. In this
case, we are able to impute over 30% of the values to within
1% of their true values for 4 of the 11 datasets. Additionally,
we can impute over 50% of the values to within 2% of their
true values in 4 of the 11 datasets and over 80% of the values to
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Table 8. Percentage of imputed values within 1%, 2%, 5%, and 10% of the true values for primary cell suppressions only. QCEW1–QCEW11
denote the 11 different QCEW datasets used in this empirical investigation. BMMI and MICE denote Bayesian multiscale multiple imputation

and multivariate imputation by chained equation (R-contributed package), respectively

BMMI Carry forward

Data <1% <2% <5% <10% <1% <2% <5% <10%

QCEW1 0.00 16.67 33.33 33.33 0.00 0.00 0.00 16.67
QCEW2 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00
QCEW3 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00
QCEW4 0.00 0.00 0.00 20.00 0.00 0.00 20.00 40.00
QCEW5 0.00 50.00 50.00 100.00 0.00 50.00 50.00 50.00
QCEW6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QCEW7 33.33 50.00 83.33 83.33 0.00 0.00 0.00 33.33
QCEW8 30.00 30.00 30.00 50.00 0.00 0.00 0.00 40.00
QCEW9 0.00 9.09 9.09 18.18 0.00 0.00 9.09 18.18
QCEW10 50.00 50.00 100.00 100.00 50.00 50.00 50.00 50.00
QCEW11 33.33 66.67 100.00 100.00 0.00 0.00 0.00 16.67

MICE Equal proportion

<1% <2% <5% <10% <1% <2% <5% <10%

QCEW1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QCEW2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QCEW3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
QCEW4 0.00 0.00 0.00 0.00 0.00 0.00 20.00 20.00
QCEW5 0.00 0.00 0.00 0.00 0.00 50.00 50.00 100.00
QCEW6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QCEW7 0.00 0.00 0.00 33.33 0.00 0.00 0.00 0.00
QCEW8 0.00 0.00 10.00 20.00 0.00 0.00 0.00 10.00
QCEW9 0.00 0.00 0.00 0.00 45.45 45.45 81.82 100.00
QCEW10 0.00 0.00 50.00 50.00 0.00 0.00 0.00 0.00
QCEW11 0.00 0.00 0.00 33.33 16.67 33.33 33.33 50.00

within 5% of their true values for 4 of the 11 datasets. Finally,
in 3 of the 11 datasets we are able to impute 100% of the values
to within 5% of their true values whereas in 4 of the 11 datasets
we are able to impute 100% of the values to within 10%.

Of course, we do not expect our method to perform well in
all circumstances. For example, the pattern and/or percentage
of missingness may be such that the multiscale nature and ser-
ial correlation of the data afford little added benefit. One such
example is given by QCEW6, where values are suppressed for
years 5 and 6, including the annual totals, for both subseries 2
and 3. In this case, the imputation method is essentially trying
to forecast two years ahead (eight steps ahead) based on four
years of data (16 data points). Moreover, judging by the spec-
tral decomposition of the observation covariance matrix, we are
not acquiring much additional information as a result of the ad-
ditive relationships.

To evaluate the effectiveness of our method, we compared
our approach with two naïve approaches and one more or less
“standard” approach that can be easily implemented using the
R programming language (R Development Core Team 2009).
The first approach we considered was “carry forward.” For this
method we took the last nonmissing value to be our imputed
value. In the case that there were no previous nonmissing val-
ues we used the first subsequent nonmissing value as our im-
puted value. The second method we considered was imputation
by “equal proportion.” For this imputation method we set our
imputed value equal to the average proportion of the subseries

aggregate total, taken over each quarter with nothing missing.
For the series we considered in this comparison, this was possi-
ble since no subseries aggregate totals were missing. Finally,
we considered imputation using “multivariate imputation by
chained equations” (MICE) (Van Buren and Oudshoorn 1999)
found in the R-contributed package “mice” (R Development
Core Team 2009). For a complete description of this method
see Little and Rubin (2002, p. 217).

In general, our method substantially outperformed all three
of the other methods, as shown in Tables 6 and 8. Additionally,
it is important to stress that our method preserves the inherent
additive structure, which the naïve approaches and MICE fail
to do. If a data intruder simply wants to estimate missing cells
then this is not a problem. However, for the typical “data user,”
interested in conducting analyses, preserving these additive re-
lationships is crucial.

5. DISCUSSION

The imputation approach that we present provides a natural
framework for serially correlated multiscale data. The method
is flexible and can be applied across a broad array of multiscale
data structures. Further, our method provides estimates of at-
tributes of the data that may be of interest to the practitioner
utilizing the data for applied research. For example, in addi-
tion to accurately imputing “missing” values, our framework
can provide estimates of trend, seasonality, and regression ef-
fects along with associated measures of uncertainty.
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In addition, our approach is computationally feasible and
produces estimates sufficiently rapidly to allow imputation in
practical situations. In fact, in our illustrations in Section 3.2
and empirical study in Section 4, we implemented our proce-
dure using the same signal-to-noise prior specification through-
out and each analysis ran in a matter of a few minutes on a lap-
top computer (MacBook Pro 2.5 GHz Intel Core Duo Processor,
4 GB 667 MHz DDR2 SDRAM). Another computational ben-
efit is that our method requires no parameter specification by
the user. Given the choice of the particular DLM, we handle the
unknown “problem-specific” parameters by employing a set of
default priors that require no subjective specification.

Our approach to multiple imputation couples DLMs with
normally distributed random variables having singular covari-
ance matrices. This produces a flexible framework capable of
taking advantage of both inherent constraints present in mul-
tiscale (aggregated) data and serial correlation. In this context
the multiscale aspect of our approach, in conjunction with the
singular covariance matrix, is critical because it allows us to
capitalize effectively on redundant information in a mathemati-
cally rigorous and yet also fully automatic manner.

In general, no imputation method can be expected to perform
well in situations where the percentage of missingness is ex-
cessive. In many instances our approach can overcome a high
percentage of missing data by borrowing strength through lon-
gitudinal and subseries aggregate relationships. However, there
are equally as many cases where the pattern of missingness pre-
cludes such benefit. In those cases, without any additional infor-
mation a priori the performance of our method suffers.

Nevertheless, the effectiveness of our approach is demon-
strated through an illustration (Section 3.2) and an extensive
empirical study (Section 4). In particular, we apply our method
to 11 QCEW datasets and show that in many instances we are
able to impute suppressed (missing) cells to within 1% accu-
racy. In doing so we expose the vulnerability of “cell suppres-
sion” as a method for eliminating disclosure risks in longitudi-
nal databases.

Several SDL techniques are available to statistical agencies
and can be used for disclosure protection within QCEW. In par-
ticular, remote analysis servers can be established that will re-
lease only the results of statistical analyses of the data. In this
case there will be no release of the QCEW data. Alternatively,
it will be possible to release only carefully aggregated data that
will limit the risk of disclosure. Finally, our method can be used
to replace sensitive (plus complementary) cells with partial syn-
thesis (Reiter 2003). However, this will need to be accompanied
by additional synthesis; otherwise, this will present the same or
even larger disclosure risks than the corresponding cell suppres-
sions since the agency now approximately provides the intruder
the model.

Importantly, our approach can be used to assess the vulner-
ability of longitudinal confidential databases when the method
of protection is cell suppression. We envision that it will be of
great importance to federal statistical agencies employing cell
suppression. An agency can implement our approach prior to
releasing data to determine if there are any unsuspected disclo-
sure risks. Releases deemed to have high disclosure risks can
be addressed prior to dissemination. In fact, agencies can de-
velop models that enforce (and do not enforce) the confiden-
tiality rules as part of their disclosure checks. This will enable

agencies to determine how much the protection relies on keep-
ing the confidentiality rules secret. Finally, the method is ap-
plicable to any multiscale temporal data protected under cell
suppression and because of the computational efficiency of our
approach can be implemented on large scale databases in real
time.

[Received November 2008. Revised October 2009.]
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