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Abstract

Due to relatively high levels of sampling variability, direct design-based variance estimators

are often smoothed before publication. For example, some federal statistics programs publish the

medians of a sequence of monthly direct variance estimates, or functions of these medians. The

properties of these smoothed estimators depend on several underlying conditions, including sample

size; effective degrees of freedom for the direct estimators; correlation of the direct estimators across

months; and temporal patterns in the true variances. We compare and contrast these properties with

the corresponding properties of generalized variance function (GVF) estimators.
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1. Introduction

In large-scale periodic sample surveys, standard design-based variance estimators often

display substantial variability over periods and among cross-sectional subpopulations. For

such cases, a survey organization may need to address the following questions.

1. To what extent can the observed variability be attributed to, respectively:

(a) Sampling variability of the variance estimator itself

(b) Observable factors (e.g., the number of respondents in the specified time peri-

ods) that may have a direct effect on the true design variance

(c) Other factors that are not readily observable but that may nonetheless have a

substantial effect on the true design variance

2. Based on answers to the questions in (1):

(a) What are some appropriate methods for “smoothing” or otherwise combining

information from variance estimators over multiple periods?

(b) What are appropriate inferential uses of the resulting variance estimators?

To address the questions in areas 1 and 2, this paper will use the following notation. Let

θjt be a finite-population parameter for domain j and period t, j = 1, . . .J; t = 1, . . .T ;

let θ̂jt be the corresponding design-based point estimator; and define Vjt = Vp(θ̂jt), where

Vp(·) represents variance evaluated with respect to the sample design. In addition, let V †
jt

represent a general estimator of the design variance Vjt. The remainder of this paper will

consider several classes of estimators V †
jt, including direct design-based variance estimators
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†
jt, we will consider three evaluation criteria:

A. The expectation of V †
jt. We generally prefer to use estimators V †

jt that are approximately

unbiased for the true design variance Vjt

B. The stability of V †
jt. We generally prefer to use estimators V †

jt that have relatively small

variances. We often will characterize the stability of V †
jt through a Satterthwaite-type

“degrees of freedom” term d†jt =
{

Vp(V
†
jt)

}−1

2 (Vjt)
2

C. Performance of the associated confidence intervals θ̂jt ± t
d
†
jt

,1−α
2

(V †
jt)

1

2 where t
d
†
jt

,1−α
2

is a customary
(

1 − α
2

)

quantile of a t distribution on d†jt degrees of freedom. We

generally prefer estimators V
†
jt that lead to confidence intervals that have true cov-

erage rates greater than or equal their nominal rates 1 − α; and that have relatively

small widths.

For example, criteria (A) through (C) are of interest for the Current Employment Statis-

tics (CES) of the U.S. Bureau of Labor Statistics. The CES survey collects data on employ-

ment, hours, and earnings from 390,000 nonfarm establishments monthly. Employment is

the total number of persons employed full or part time in a nonfarm establishment during

a specified payroll period. An establishment is defined to be an economic unit, generally

located at a single place, which is engaged predominantly in one type of economic activity.

The CES sample design uses stratified sampling of unemplyment insurance (UI) accounts

with strata defined by state, industry and employment size class (BLS Handbook, 2011).

The primary CES design goal is to meet the precision requirements specified for the na-

tional estimates. However, within some domains, effective sample sizes become so small

that the standard design based variance estimators are not precise enough to satisfy the

needs of prospective data users (Eltinge, Fields, Fisher, Gershunskaya, Getz, Huff, Tiller

and Waddington, 2001; and Gershunskaya and Lahiri, 2005). It is necessary to have stable

estimators of Vjt for the finer domains. At present, for a given domain, the CES program

publishes standard errors based on three-year averages of the temporal medians of the esti-

mators, V̂jt, where V̂jt is based on balanced repeated replication with Fay factors; and for

a given year the monthly indices t cover the six months of April through September.

The remainder of this paper will focus on estimation and inference issues motivated

by the abovementioned CES application. However, the general ideas considered here are

potentially applicable in settings beyond the CES. For example, the U.S. Consumer Price

Index (CPI) publishes measures of sampling variability based on medians of standard errors

computed for each of twelve consecutive months. For the CPI, principal interest in variance

estimation centers on the variances for the estimated index itself; one-month relative change

in the estimated index; three-month change; and twelve-month change. For each of these

CPI cases, estimation at the national level and for four geographical regions are of interest.

In addition, Jang et al. (2006) considered the use of median design effects for the GVF

formulation with the 2003 Scientists and Engineers Statistical Data System (SESTAT) data.

2. Notation and Models

Let V̂jt be a standard design-based estimator of Vp(θ̂jt), and define the estimation error

εjt = V̂jt − Vjt. (1)

V̂jt; temporal medians of the direct estimators Ṽjt; temporal means of the direct estimators 
V̄jt; and more complex estimators based on generalized variance functions Vj

∗
t. For any

estimator V



Question (1.a) centers on the error terms εjt. In some applications, V −1

jt V̂jt djt is distributed

as a chi-square random variable on djt degrees of freedom, where djt is a fixed term. In

that case, εjt has a mean equal to 0 and a variance equal to d−1

jt 2 V 2
jt.

To address questions (1.b) and (1.c), consider the model

log(Vjt) = Xjtγ + qjt (2)

where Xjt is a B-dimensional row vector of observable predictors; γ is a B-dimensional

column vector of coefficients; qjt is a random “equation error” term with mean equal to

zero; and log(·) is the natural logarithmic transformation.

An expanded version of model (2) is

log(Vjt) = γ0 + X∗
j·γ1 + X∗

·tγ2 + X∗
jtγ3 + qjt (3)

where we partition the full JT × B matrix of predictors

X = (1, X∗
Dom·, X∗

·T ime, X∗
Dom T ime) ; (4)

1 is the (J × T ) × 1 vector of ones; X∗
Dom· is the submatrix of columns of X that depend

on the domain j but not the time t; X∗
·T ime is the submatrix of columns of X that depend

on the time t but not on j; and X∗
Dom T ime is the submatrix of columns of X that depend on

both j and t.

In general, we may wish to use model (3) to suggest ways in which combine variance

information across grouping variables for which the Vjt differences are relatively small.

For example, if γ1, γ2, γ3 and the variance of qjt were all approximately equal to zero, then

all log(Vjt) terms would be approximately equal to γ0 and we may wish to combine all

of our variance information through a single mean or median. Similarly, if γ2, γ3 and the

variance of qjt were all approximately equal to zero, and if γ1 were nonzero, then one may

choose to combine information across time, but not across domains. For this case, two

potential estimators are the temporal mean and the temporal median.

Relatively simple versions of the domain-specific temporal mean and median based

variance estimators are

V̄j· = M−1

t0+M
∑

t=t0+1

V̂jt

and

Ṽj· = cMd median
{

V̂jt, t = t0 + 1, t0 + 2, . . . , t0 + M
}

(5)

respectively, where M is the total number of months used in computation of the median;

and cMd is a multiplier intended to ensure that Ṽj· is approximately unbiased for the corre-

sponding true variance Vjt.

Conversely, if γ1, γ3 and the variance of qjt were all approximately zero, and γ2 were

nonzero, then one may choose to combine information across domains but not time. Use

of medians or other outlier-resistant estimation methods may be of special interest when

individual variance estimators V̂jt are at risk of taking on relatively extreme values.

Finally, consider cases in which the errors εjt are substantial; the equation errors qjt are

relatively small; and the regression terms Xjtγ may vary substantially with respect to j or

t. For those cases, it may be appropriate to use a generalized variance function model to

“smooth” the variance estimators across time periods. See, e.g., Johnson and King (1987),

Valliant (1987), O’Malley and Zaslavsky (2005), Wolter (2007) and Cho et al. (2012a) for

some background on generalized variance functions.



3. Temporal and Cross-Sectional Means and Medians

3.1 Properties of smoothed variance estimators

In evaluation of the properties of Ṽj·, for example, as an estimator of the true design vari-

ance Vjt for a given month, principal attention centers on the following

A. The design or design-model expectation, variance and approximate distribution of Ṽj·−

Vjt. In particular, define the following terms

(i) Let c−1

Mdt = V −1

jt Ep

(

Ṽj·

)

.

If the abovementioned median were design-unbiased for Vjt, then cMdt = 1.

Thus, deviation of cMdt from 1 provides an indication of the design bias of the

simple temporal median as an estimator of the month-specific variance Vjt.

(ii) Let bMdt = V −2

jt Vp

(

Ṽj·

)

, the relative variance of the temporal median as an

estimator of Vjt.

(iii) In addition, define

δMdt = 2 c−2

Mdt b
−1

Mdt

= 2
[

Ep

(

Ṽj·

)]2 [

Vp

(

Ṽj·

)]−1

. (6)

Under Satterthwaite-type approaches and regularity conditions, the expression

V −1

jt cmdt Ṽj· δMdt

may follow approximately a chi-square distribution on δMdt degrees of free-

dom.

B. The properties considered in A generally will depend on:

(i) the distribution of the sampling errors εjt, including their variances and their

temporal correlations;

(ii) the mean structure for Vjt reflected in the regression term Xjtγ from model (2);

(iii) the distribution of the equation errors qjt; and

for the current discussion, we assume that the true variances are constant across months,

i.e.,

Vjt = Vj· ∀t = t0 + 1, t0 + 2, . . . , t0 + M. (7)

3.2 Simulation results

Table 1 presents population medians of a chi-square distribution on d degrees of freedom

divided by d. It shows that medians have a bias especially for cases that involve relatively

small values of d. Consequently, for cases in which unbiased estimation of Vjt is important,

one would need to adjust the temporal medians.

We will now examine properties of median and mean by comparing their expectation,

variance and degrees of freedom values. Table 2 presents the sample median and mean of

M independent χ2
d/d random variables for specified values of M and d. Each row is based



Table 6 presents confidence interval properties after adjusting median values and ad-

justing degrees of freedom for each estimator, V̂ , V̄ and Ṽ . Median values are adjusted by

multiplying cMdt (discussed in Section 3.1) to ensure that Ṽj· is approximately unbiased for

the corresponding true variance Vjt. For the independent-observation case, all three have

coverage rates close to nominal level. V̄ has the smallest mean-width and inter-quartile

range (IQR) while the bias-adjusted Ṽ is slightly less efficient as measured by width and

IQR.

4. Graphical Comparison of the Relative Effects of εjt, qjt and Xjtγ

4.1 Error effect with approximately constant E(Vjt) and no temporal correlation of

error terms

To explore the competing effects of sampling errors, equation errors and GVF mean struc-

ture, we consider several hypothetical cases.

Case 1: E(Vjt) is constant, V (qjt)
.
= 0, and M is large.

In this case, the GVF estimator V ∗
jt and the median-based estimator Ṽjt are both almost

identical to the true variance Vjt, while the direct variance estimator V̂jt may differ sub-

stantially from Vjt if V (εjt) is not small. For this case, either V ∗
jt or Ṽjt may be considered

a satisfactory estimator of Vjt.

Case 2: E(Vjt) is constant and V (qjt) is nonzero.

Then for sufficiently large M , V ∗
jt and Ṽjt are approximately equal to each other, but their

properties as predictors of the true Vjt will depend on the relative magnitudes of V (εjt) and

V (qjt).

Case 2a: V (εjt) << V (qjt).

Then one generally prefers to use the direct estimator V̂jt instead of either V ∗
jt or Ṽjt, which

are essentially oversmoothed estimators.

Case 2b: V (εjt) >> V (qjt) > 0 and M is small.

on 10, 000 replications. The term δMd provides the approximate “degrees of freedom” term 
attributable to the sample median and mean. Note that in each case, d < δMd < M · d for 
the sample median, and d < δMd ≈ M · d for the sample mean. In other words, under 
idealized χ2

d conditions, Ṽ  is less stable than V̄  .
We also examined two cases in which variance estimator values are correlated across 

months. Table 3 presents properties of the sample median and mean of M consecutive 
diagonal elements from a W ishartd(V (ρ)) random matrix, where M = 6, d = 6 and 
V (ρ) is an M ×M equicorrelation matrix with off-diagonal elements equal to the specified 
value of ρ. Note especially that for each value of ρ = 0.1 through 0.9, the resulting 
δMdρ values of the median and mean are less than the values of δ66 in Table 2 for the 
independent-observation cases. Similarly, Table 4 presents properties of the sample median 
of M consecutive diagonal elements from a W ishartd(VAR(ρ)) random matrix where 
M = 6, d = 6 and VAR(ρ) is an M × M correlation matrix for a first-order autoregressive 
model with autoregressive parameter ρ.

We further examined cases in which values are from different distributions, chi-square 
or Wishart. Table 5 presents properties of the sample median of M consecutive diagonal 
elements of a lognormal random vector with first and second moments constrained to match 
the first and second moments of a W ishartd(V (ρ)) distribution as specified for Table 3.

Note that the resulting approximate “degrees of freedom” terms δ∗Md are considerably less 
than the corresponding δMdρ terms for the median reported in Table 3, and are slightly less

than the corresponding δ∗Mdρ in Table 4.



Case 4a: Assume that {V (εjt)}
1

2 is small relative to the changes in the true Vjt. Then

either direct estimator V̂jt or the GVF estimator V ∗
jt may be satisfactory estimators of the

true Vjt, but Ṽjt will generally be unsatisfactory because it fails to reflect the important

time trends in the true Vjt.

Case 4b: Assume that {V (εjt)}
1

2 is large relative to the changes in the true Vjt. Then the

GVF estimator V ∗
jt may be more satisfactory estimators of the true Vjt than direct estimator

V̂jt. Ṽjt will generally be unsatisfactory because it fails to reflect the important time trends

in the true Vjt.

5. Illustration with Variance Estimates from the Current Employment Statistics

Program

Sections 4.1 through 4.3 illustrated the hypothetical Cases 1 through 4 defined by the rel-

ative magnitudes of V (εjt), V (qjt), Corr(εj,t−1, εjt) and variability of Xjtγ . Several of

these cases correspond to empirical results obtained for the Current Employment Statistics

Program. For example, Cho et al. (2012b) explored variance function models for data

from the years 2005 through 2010. Their empirical results indicated that a log-linear model

(8) provides a satisfactory fit for point estimators of population totals for employment in a

given ”supersector” industry.

log(Vjt) = γ0 + γ1ln(njt) + γ2ln(t) + qjt (8)

Then the GVF estimator Vj
∗
t may be an imperfect predictor of the true design variance Vjt, 

but still may be preferable to Ṽjt, which has a larger error as a predictor for Vjt.
Case 2c: Both V (εjt) and V (qjt) are large, and M is moderate or small.

Then it is possible that none of Vj
∗
t nor Ṽjt nor V̂jt are satisfactory predictors for Vjt.

4.2 Error effect with approximately constant E(Vjt) and temporal correlation of

error terms

Due to the use of rotation samples and estimators that combine data from several consec-

utive periods, the estimation errors εjt may be correlated over time. In addition, changes 
in population conditions may lead to temporal correlation of the qjt terms. For example, 
changes in the economic cycle may lead to inflation or deflation in the true Vjt that is not 
captured by the predictors Xjt used in our GVF model (2), and these changes may persist 
over a substantial number of periods.

Case 3: Estimation error terms εjt with strong temporal correlation and M is small or 
moderate.

Case 3a: Zero temporal correlation in qjt and V (qjt) is close to zero and small relative to
V (Ṽjt). Then the GVF Vj

∗
t is clearly preferable to Ṽjt.

Case 3b: Zero temporal correlation in qjt; and V (qjt) is greater than zero and not small 
relative to V (Ṽjt). As with case 2c, it is possible that neither V̂jt nor Ṽjt may be satisfactory 
and choices among use of V̂jt nor Vj

∗
t or Ṽjt would depend on assessment of the relative 

magnitudes of V (εjt), V (qjt) and Corr(εj,t−1, εjt).

4.3 Error effect with changing E(Vjt)

Now consider the case in which E(Vjt) is not constant. To simplify this discussion, we 
assume V (qjt) = 0.

Case 4: Assume that Vjt increases substantially over t (i.e., the true variance increases as 
the reference period moves away from the benchmark period)



In addition, the errors εjt may be strongly correlated due to the forms of the population 
total estimator and CES rotation sample pattern, which tended to use most of the same 
sample units across consecutive months. V (εjt) was computed using balanced half-sample 
methods with Fay factors, per Judkins (1990).

Figures 9 and 10 present temporal plots of the direct variance estimator V̂jt, the GVF 
based estimator Vj

∗
t, the mean based estimator V̄jt, and the median based estimator Ṽjt.

Month 1 corresponds to March of 2009, which is the benchmark month; Month 2 cor-

responds to April 2009; and Month 19 corresponds to September 2010. Note that the mean 
and median estimators are computed from the direct estimators for the six months, April 
through September 2010 (Month14-Month19). In addition, the coefficients γ used to com-

pute Vj
∗
t are based on V̂jt data from 2008-2010 across all 14 supersector industry groups. 

For the total employment, median values are always larger than mean values for all in-

dustries. It is because the direct variance estimator of total employment is increasing with 
respect to the month, i.e., variance increases as it gets farther away from the benchmark 
month. However, for one-month change and one-month relative which are not presented 
here, median values are always smaller than mean values. That is because temporal trends 
with respect to months have been removed in cases of one-month change and one-month 
relative, and also because of variance estimators have skewed distributions.

Figure 9 presents results of variance estimators of total employment for the durable 
manufacturing industry in 2009. Note that it does not exhibit any strong evidence of out-

lying V̂jt values. Figure 10 presents results of variance estimators of total employment for 
the wholesale trade industry in 2009. Note that the V̂jt value for April is exceptionally
small relative to the fitted GVF estimate Vj

∗
t for that month. Thus, Figure 10 describes a 

case in which one may wish to consider outlier-resistant methods for estimation of a gen-

eralized variance function model. Examples of such methods would include M-estimation 
and outlier-resistant versions of kernel smoothing. Application of these methods will be 
considered in future work.

6. Summary and Future Work

This paper has explored some properties of temporal medians and means of standard design 
based on variance estimators.

First, the current simulation work has focused on cases in which scaled versions of 
the underlying design-based estimators follow standard distributions like the chi-square, 
Wishart or lognormal distributions. However, temporal medians and other outlier-resistant 
estimators are of special interest for cases in which the direct design-based estimators fol-

low heavy-tailed distributions like a contaminated lognormal distribution. Consequently, 
it would be useful to extend the current simulation work to explore the properties of the 
temporal mean or temporal median of V̂jt under heavy-tailed conditions.

Second, the current simulation work was based on the assumption that the true vari-

ances Vjt were constant over time. For many cases, the CES and other survey applications, 
the true variances Vjt are not constant over time. Consequently, it is of interest to develop 
methods for estimation of generalized variance functions that can account for non-constant 
true variances, and that are also relatively robust against the presence of outliers. This 
would involve extensions of previous literature on analysis of complex survey data in the 
presence of outliers, e.g., Chambers (1986), Zaslavsky et al. (2001), Beaumont and Rivest 
(2009) and references cited therein.
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Table 1: Population medians of a chi-square distribution on d degrees of freedom divided

by d

d 1 2 3 4 5 6 7 8 9 10 15 20

Median 0.45 0.69 0.79 0.84 0.87 0.89 0.91 0.92 0.93 0.93 0.96 0.97

Table 2: Properties of the sample median and the sample mean of M independent χ2
d/d

random variables

d M Median Mean

Mean Variance δMd Mean Variance δMd

2 3 0.80 0.29 4.37 0.94 0.23 6.03

2 6 0.78 0.16 7.82 1.00 0.17 11.98

2 12 0.74 0.08 13.54 1.00 0.08 24.35

6 3 0.94 0.14 12.74 1.00 0.11 17.83

6 6 0.92 0.06 26.34 1.00 0.06 36.16

6 12 0.91 0.03 47.19 1.00 0.03 73.15

10 3 0.96 0.09 21.59 1.00 0.07 29.78

10 6 0.95 0.04 45.10 1.00 0.03 60.37

10 12 0.94 0.02 80.63 1.00 0.02 121.41

Table 3: Properties of the sample median and mean of M consecutive diagonal elements

from a Wishartd(V (ρ)) random matrix, where M = 6, d = 6 and V (ρ) is an M × M
equicorrelation matrix with off-diagonal elements equal to the specified value of ρ.

ρ Median Mean

Mean Variance δMdρ Mean Variance δMdρ

0.1 0.93 0.07 26.12 1.00 0.06 34.75

0.2 0.93 0.08 22.70 1.00 0.07 30.02

0.3 0.94 0.09 19.44 1.00 0.08 24.60

0.4 0.95 0.11 16.13 1.01 0.10 19.61

0.5 0.95 0.13 13.48 1.00 0.12 16.04

0.9 0.99 0.29 6.79 1.00 0.29 7.02



Table 4: Properties of the sample median of M consecutive diagonal elements from a

Wishartd(VAR(ρ)) random matrix where M = 6, d = 6 and VAR(ρ) is an M × M
correlation matrix for a first-order autoregressive model with autoregressive parameter ρ.

ρ Mean Variance δ∗Md

0.1 0.89 0.07 22.07

0.2 0.89 0.07 21.71

0.3 0.89 0.08 20.44

0.4 0.89 0.09 18.57

0.5 0.90 0.10 16.45

0.9 0.98 0.32 6.09

Table 5: Properties of the sample median of M consecutive diagonal elements of a lognor-

mal random vector with first and second moments constrained to match the first and second

moments of a Wishartd(V (ρ)) distribution as specified for Table 3.

ρ Mean Variance δ∗Mdρ

0.1 0.88 0.07 21.25

0.2 0.89 0.08 20.23

0.3 0.90 0.09 17.50

0.4 0.91 0.11 14.72

0.5 0.91 0.14 12.07

0.9 0.99 0.36 5.41

Table 6: Properties of nominal 95% confidence Interval Properties after adjusting median

values and adjusting degrees of freedom for each estimator

V † df Coverage Mean Quantiles of Widths

Rate Width 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

V̂ 6 0.9496 4.69 1.85 2.54 2.97 3.70 4.61 5.57 6.52 7.09 8.28

V̄ 36 0.9528 4.03 2.96 3.26 3.42 3.71 4.02 4.34 4.64 4.83 5.18

Ṽ 26 0.9526 4.07 2.80 3.16 3.37 3.69 4.06 4.45 4.79 5.02 5.44
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Figure 1: Case 1
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Figure 2: Case 2a



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Month

V
a
ri
a
n
c
e

Vmed

V*

Vtrue

Vhat

Figure 3: Case 2b
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Figure 4: Case 2c
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Figure 5: Case 3a
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Figure 6: Case 3b
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Figure 7: Case 4a
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Figure 9: Log (Variance Estimators) of Total Employment for Durable Manufacturing
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Figure 10: Log (Variance Estimators) of Total Employment for Wholesale Trade




