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Abstract

Due to relatively high levels of sampling variability, direct design-based variance estimators
are often smoothed before publication. For example, some federal statistics programs publish the
medians of a sequence of monthly direct variance estimates, or functions of these medians. The
properties of these smoothed estimators depend on several underlying conditions, including sample
size; effective degrees of freedom for the direct estimators; correlation of the direct estimators across
months; and temporal patterns in the true variances. We compare and contrast these properties with
the corresponding properties of generalized variance function (GVF) estimators.
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1. Introduction

In large-scale periodic sample surveys, standard design-based variance estimators often
display substantial variability over periods and among cross-sectional subpopulations. For
such cases, a survey organization may need to address the following questions.

1. To what extent can the observed variability be attributed to, respectively:

(a) Sampling variability of the variance estimator itself

(b) Observable factors (e.g., the number of respondents in the specified time peri-
ods) that may have a direct effect on the true design variance

(c) Other factors that are not readily observable but that may nonetheless have a
substantial effect on the true design variance

2. Based on answers to the questions in (1):

(a) What are some appropriate methods for “smoothing” or otherwise combining
information from variance estimators over multiple periods?

(b) What are appropriate inferential uses of the resulting variance estimators?

To address the questions in areas 1 and 2, this paper will use the following notation. Let
t;; be a finite-population parameter for domain j and period ¢,j = 1,...J;t = 1,...T}
let éjt be the corresponding design-based point estimator; and define Vj; = Vp(éjt), where
Vp(+) represents variance evaluated with respect to the sample design. In addition, let V;t
represent a general estimator of the design variance Vj;. The remainder of this paper will

consider several classes of estimators VjT , including direct design-based variance estimators
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Vjt; temporal medians of the direct estimators ‘7jt; temporal means of the direct estimators
Vjt; and more complex estimators based on generalized variance functions Vﬁ For any
estimator VJTt, we will consider three evaluation criteria:

A. The expectation of VjTt We generally prefer to use estimators VjTt that are approximately
unbiased for the true design variance Vj;

B. The stability of VjTt We generally prefer to use estimators VjTt that have relatively small

variances. We often will characterize the stability of VjTt through a Satterthwaite-type

~1
“degrees of freedom” term djt = {Vp(VjTt)} 2 (Vj1)?

C. Performance of the associated confidence intervals éjt Tt | _a (VT ) 2 where t
Gt T 2

+
Jt dj, 1-5

is a customary (1 — %) quantile of a ¢ distribution on d}t degrees of freedom. We

generally prefer estimators VJTt that lead to confidence intervals that have true cov-
erage rates greater than or equal their nominal rates 1 — «; and that have relatively
small widths.

For example, criteria (A) through (C) are of interest for the Current Employment Statis-
tics (CES) of the U.S. Bureau of Labor Statistics. The CES survey collects data on employ-
ment, hours, and earnings from 390,000 nonfarm establishments monthly. Employment is
the total number of persons employed full or part time in a nonfarm establishment during
a specified payroll period. An establishment is defined to be an economic unit, generally
located at a single place, which is engaged predominantly in one type of economic activity.
The CES sample design uses stratified sampling of unemplyment insurance (UI) accounts
with strata defined by state, industry and employment size class (BLS Handbook, 2011).
The primary CES design goal is to meet the precision requirements specified for the na-
tional estimates. However, within some domains, effective sample sizes become so small
that the standard design based variance estimators are not precise enough to satisfy the
needs of prospective data users (Eltinge, Fields, Fisher, Gershunskaya, Getz, Huff, Tiller
and Waddington, 2001; and Gershunskaya and Lahiri, 2005). It is necessary to have stable
estimators of V}; for the finer domains. At present, for a given domain, the CES program
publishes standard errors based on three-year averages of the temporal medians of the esti-
mators, Vjt, where Vjt is based on balanced repeated replication with Fay factors; and for
a given year the monthly indices ¢ cover the six months of April through September.

The remainder of this paper will focus on estimation and inference issues motivated
by the abovementioned CES application. However, the general ideas considered here are
potentially applicable in settings beyond the CES. For example, the U.S. Consumer Price
Index (CPI) publishes measures of sampling variability based on medians of standard errors
computed for each of twelve consecutive months. For the CPI, principal interest in variance
estimation centers on the variances for the estimated index itself; one-month relative change
in the estimated index; three-month change; and twelve-month change. For each of these
CPI cases, estimation at the national level and for four geographical regions are of interest.
In addition, Jang et al. (2006) considered the use of median design effects for the GVF
formulation with the 2003 Scientists and Engineers Statistical Data System (SESTAT) data.

2. Notation and Models

Let Vjt be a standard design-based estimator of Vp(éjt), and define the estimation error

ejt = Vit = Vi, (1)



Question (1.a) centers on the error terms €;;. In some applications, Vj;l Vjt d ;¢ is distributed
as a chi-square random variable on d;; degrees of freedom, where d;; is a fixed term. In
that case, €;; has a mean equal to 0 and a variance equal to aij_t1 2 ijt

To address questions (1.b) and (1.c), consider the model

log(Vje) = Xy + g 2)

where X; is a B-dimensional row vector of observable predictors; 7 is a B-dimensional
column vector of coefficients; g;; is a random “equation error” term with mean equal to
zero; and [og(-) is the natural logarithmic transformation.

An expanded version of model (2) is

log(Vjt) = o + Xjy1 + Xiv2 + X5y + qje 3)

where we partition the full J7' x B matrix of predictors

X = (lv XEom-v -*Timev XEom Time) ; (4)

1is the (J x T') x 1 vector of ones; X7, . is the submatrix of columns of X that depend
on the domain j but not the time ¢; X7, . is the submatrix of columns of X that depend
on the time ¢ but noton j; and X7, 7..,. 1S the submatrix of columns of X that depend on
both j and ¢.

In general, we may wish to use model (3) to suggest ways in which combine variance
information across grouping variables for which the Vj; differences are relatively small.
For example, if 71, 72, 73 and the variance of ¢;; were all approximately equal to zero, then
all log(V}) terms would be approximately equal to 7y and we may wish to combine all
of our variance information through a single mean or median. Similarly, if -2, y3 and the
variance of g;; were all approximately equal to zero, and if 7, were nonzero, then one may
choose to combine information across time, but not across domains. For this case, two
potential estimators are the temporal mean and the temporal median.

Relatively simple versions of the domain-specific temporal mean and median based
variance estimators are

V=M Y W
t=to+1
and
f/j.:chmedian{Vjt,t:t0+1,t0+2,...,t0—|—M} (5)

respectively, where M is the total number of months used in computation of the median;
and cpyq is a multiplier intended to ensure that ‘7] is approximately unbiased for the corre-
sponding true variance V.

Conversely, if 1, v3 and the variance of ¢;; were all approximately zero, and 2 were
nonzero, then one may choose to combine information across domains but not time. Use
of medians or other outlier-resistant estimation methods may be of special interest when
individual variance estimators Vjt are at risk of taking on relatively extreme values.

Finally, consider cases in which the errors ¢;; are substantial; the equation errors ¢;; are
relatively small; and the regression terms X j;y may vary substantially with respect to j or
t. For those cases, it may be appropriate to use a generalized variance function model to
“smooth” the variance estimators across time periods. See, e.g., Johnson and King (1987),
Valliant (1987), O’Malley and Zaslavsky (2005), Wolter (2007) and Cho et al. (2012a) for
some background on generalized variance functions.



3. Temporal and Cross-Sectional Means and Medians

3.1 Properties of smoothed variance estimators

In evaluation of the properties of \7j., for example, as an estimator of the true design vari-
ance V)j; for a given month, principal attention centers on the following

A. The design or design-model expectation, variance and approximate distribution of ‘7] —
Vijt. In particular, define the following terms

(i) Let eyt = Vir By (V)
If the abovementioned median were design-unbiased for Vj;, then cprqr = 1.

Thus, deviation of cps4; from 1 provides an indication of the design bias of the
simple temporal median as an estimator of the month-specific variance V.

(ii) Let byt = Vj;z Vi (\73), the relative variance of the temporal median as an
estimator of V.

(iii) In addition, define

Omdt = 2CX/[2dt X;dt
) ) R

Under Satterthwaite-type approaches and regularity conditions, the expression

_1 g
Vi ¢mat Vj. Oma

may follow approximately a chi-square distribution on d74; degrees of free-

dom.

B. The properties considered in A generally will depend on:

(i) the distribution of the sampling errors €;;, including their variances and their
temporal correlations;

(ii) the mean structure for V;; reflected in the regression term X ;v from model (2);
J g gt

(iii) the distribution of the equation errors g;;; and

for the current discussion, we assume that the true variances are constant across months,
ie.,

Vit =V Vi=to+1,t9+2,...,t0+ M. @)

3.2 Simulation results

Table 1 presents population medians of a chi-square distribution on d degrees of freedom
divided by d. It shows that medians have a bias especially for cases that involve relatively
small values of d. Consequently, for cases in which unbiased estimation of V}; is important,
one would need to adjust the temporal medians.

We will now examine properties of median and mean by comparing their expectation,
variance and degrees of freedom values. Table 2 presents the sample median and mean of
M independent X?l /d random variables for specified values of M and d. Each row is based



on 10, 000 replications. The term §;4 provides the approximate “degrees of freedom” term
attributable to the sample median and mean. Note that in each case, d < dyrqg < M - d for
the sample median, and d < dprq =~ M - d for the sample mean. In other words, under
idealized x3 conditions, V is less stable than V.

We also examined two cases in which variance estimator values are correlated across
months. Table 3 presents properties of the sample median and mean of M consecutive
diagonal elements from a Wisharty(V (p)) random matrix, where M = 6,d = 6 and
V(p) is an M x M equicorrelation matrix with off-diagonal elements equal to the specified
value of p. Note especially that for each value of p = 0.1 through 0.9, the resulting
Ondp values of the median and mean are less than the values of dgg in Table 2 for the
independent-observation cases. Similarly, Table 4 presents properties of the sample median
of M consecutive diagonal elements from a Wisharty(Vagr(p)) random matrix where
M =6,d=6and Var(p)isan M x M correlation matrix for a first-order autoregressive
model with autoregressive parameter p.

We further examined cases in which values are from different distributions, chi-square
or Wishart. Table 5 presents properties of the sample median of M consecutive diagonal
elements of a lognormal random vector with first and second moments constrained to match
the first and second moments of a Wisharty(V (p)) distribution as specified for Table 3.
Note that the resulting approximate “degrees of freedom” terms 03, are considerably less
than the corresponding 074, terms for the median reported in Table 3, and are slightly less
than the corresponding 03,4, in Table 4.

Table 6 presents confidence interval properties after adjusting median values and ad-
justing degrees of freedom for each estimator, V, V and V. Median values are adjusted by
multiplying cpsq¢ (discussed in Section 3.1) to ensure that ‘7] is approximately unbiased for
the corresponding true variance Vj;. For the independent-observation case, all three have
coverage rates close to nominal level. V' has the smallest mean-width and inter-quartile
range (IQR) while the bias-adjusted V is slightly less efficient as measured by width and
IQR.

4. Graphical Comparison of the Relative Effects of ¢;;, ¢;; and X,y

4.1 Error effect with approximately constant /(V;;) and no temporal correlation of
error terms

To explore the competing effects of sampling errors, equation errors and GVF mean struc-
ture, we consider several hypothetical cases.

Case 1: F/(V}) is constant, V' (¢;;) = 0, and M is large.

In this case, the GVF estimator Vj’; and the median-based estimator V}; are both almost
identical to the true variance Vj;, while the direct variance estimator Vjt may differ sub-
stantially from Vj; if V(ejt) is not small. For this case, either VJ’; or T7jt may be considered
a satisfactory estimator of V};.

Case 2: F/(V};) is constant and V'(g;;) is nonzero.

Then for sufficiently large M, V7, and T7jt are approximately equal to each other, but their
properties as predictors of the true Vj; will depend on the relative magnitudes of V' (€;;) and
V(g5t)-

Case 2a: V(ej) << V(qjr). A )

Then one generally prefers to use the direct estimator Vjy instead of either V; or Vj;, which
are essentially oversmoothed estimators.

Case 2b: V' (¢j¢) >> V(gj¢) > 0 and M is small.



Then the GVF estimator V; may be an imperfect predictor of the true design variance Vj,

but still may be preferable to Vjt, which has a larger error as a predictor for V.
Case 2c: Both V' (¢j;) and V' (g;;) are large, and M is moderate or small.

Then it is possible that none of V; nor Vjt nor Vjt are satisfactory predictors for V.

4.2 Error effect with approximately constant F(V;) and temporal correlation of
error terms

Due to the use of rotation samples and estimators that combine data from several consec-
utive periods, the estimation errors €;; may be correlated over time. In addition, changes
in population conditions may lead to temporal correlation of the g;; terms. For example,
changes in the economic cycle may lead to inflation or deflation in the true V}; that is not
captured by the predictors X j; used in our GVF model (2), and these changes may persist
over a substantial number of periods.

Case 3: Estimation error terms €;; with strong temporal correlation and M is small or
moderate.

Case 3a: Zero temporal correlation in g;; and V' (g;¢) is close to zero and small relative to
V(Vjt). Then the GVF Vi is clearly preferable to V.

Casé 3b: Zero temporal Jeorrelation in gjt; and V (gj;) is greater than zero and not small
relative to V(V ). As with case 2c, it is possible that neither Vt nor Vt may be satisfactory

and choices among use of Vi nor V3 or V]t would depend on assessment of the relative
magnitudes of V' (ej), V(qjti and C’orr(e] t—1, €jt)-

4.3 Error effect with changing (V)

Now consider the case in which £(V};) is not constant. To simplify this discussion, we
assume V' (gj:) = 0.

Case 4: Assume that V}; increases substantially over ¢ (i.e., the true variance increases as
the reference period moves away from the benchmark period)

Case 4a: Assume that {V(ejt)}% is small relative to the changes in the true Vj;. Then
either direct estimator Vjt or the GVF estimator V; may be satisfactory estimators of the
true Vj;, but T7jt will generally be unsatisfactory because it fails to reflect the important
time trends in the true V.

1, ) .

Case 4b: Assume that {V'(e;;)}2 is large relative to the changes in the true Vj;. Then the
GVF estimator V};; may be more satisfactory estimators of the true Vj; than direct estimator
Vjt. T7jt will generally be unsatisfactory because it fails to reflect the important time trends
in the true Vj;.

5. Illustration with Variance Estimates from the Current Employment Statistics
Program

Sections 4.1 through 4.3 illustrated the hypothetical Cases 1 through 4 defined by the rel-
ative magnitudes of V'(e;¢), V(g;i), Corr(ej—1, €;:) and variability of X ;. Several of
these cases correspond to empirical results obtained for the Current Employment Statistics
Program. For example, Cho et al. (2012b) explored variance function models for data
from the years 2005 through 2010. Their empirical results indicated that a log-linear model
(8) provides a satisfactory fit for point estimators of population totals for employment in a
given “supersector” industry.

log(Vjs) = vo + mln(ne) + veln(t) + gj¢ (®)



In addition, the errors €;; may be strongly correlated due to the forms of the population
total estimator and CES rotation sample pattern, which tended to use most of the same
sample units across consecutive months. V'(¢;;) was computed using balanced half-sample
methods with Fay factors, per Judkins (1990).

Figures 9 and 10 present temporal plots of the direct variance estimator Vjt, the GVF

based estimator V7, the mean based estimator V4, and the median based estimator V.
Month 1 corrésponds to March of 2009, which is the benchmark month; Month v cor-

responds to April 2009; and Month 19 corresponds to September 2010. Note that the mean
and median estimators are computed from the direct estimators for the six months, April
through September 2010 (Month14-Month19). In addition, the coefficients v used to com-
pute V7 are based on Vjt data from 2008-2010 across all 14 supersector industry groups.
For the total employment, median values are always larger than mean values for all in-
dustries. It is because the direct variance estimator of total employment is increasing with
respect to the month, i.e., variance increases as it gets farther away from the benchmark
month. However, for one-month change and one-month relative which are not presented
here, median values are always smaller than mean values. That is because temporal trends
with respect to months have been removed in cases of one-month change and one-month
relative, and also because of variance estimators have skewed distributions.

Figure 9 presents results of variance estimators of total employment for the durable
manufacturing industry in 2009. Note that it does not exhibit any strong evidence of out-

lying Vjt values. Figure 10 presents results of variance estimators of total employment for

the wholesale trade industry in 2009. Note that the Vjt value for April is exceptionally
small relative to the fitted GVF estimate V; for that month. Thus, Figure 10 describes a

case in which one may wish to consider outlier-resistant methods for estimation of a gen-
eralized variance function model. Examples of such methods would include M-estimation
and outlier-resistant versions of kernel smoothing. Application of these methods will be
considered in future work.

6. Summary and Future Work

This paper has explored some properties of temporal medians and means of standard design
based on variance estimators.

First, the current simulation work has focused on cases in which scaled versions of
the underlying design-based estimators follow standard distributions like the chi-square,
Wishart or lognormal distributions. However, temporal medians and other outlier-resistant
estimators are of special interest for cases in which the direct design-based estimators fol-
low heavy-tailed distributions like a contaminated lognormal distribution. Consequently,
it would be useful to extend the current simulation work to explore the properties of the

temporal mean or temporal median of V;; under heavy-tailed conditions.
Second, the current simulation work was based on the assumption that the true vari-

ances V)j; were constant over time. For many cases, the CES and other survey applications,
the true variances Vj; are not constant over time. Consequently, it is of interest to develop
methods for estimation of generalized variance functions that can account for non-constant
true variances, and that are also relatively robust against the presence of outliers. This
would involve extensions of previous literature on analysis of complex survey data in the
presence of outliers, e.g., Chambers (1986), Zaslavsky et al. (2001), Beaumont and Rivest
(2009) and references cited therein.
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Table 1: Population medians of a chi-square distribution on d degrees of freedom divided
by d

d 1 2 3 4 5 6 7 8 9 10 15 20

Median | 0.45 0.69 0.79 0.84 0.87 089 091 092 093 093 096 0.97

Table 2: Properties of the sample median and the sample mean of M independent x2/d
random variables

d | M Median Mean

Mean Variance ;4 | Mean Variance Opd
213 0.80 029 437 ] 094 0.23 6.03
216 0.78 016 7.82| 1.00 0.17 11.98
2 112 0.74 0.08 1354 | 1.00 0.08 24.35
6 | 3 0.94 0.14 1274 | 1.00 0.11 17.83
6 | 6 0.92 0.06 2634 | 1.00 0.06  36.16
6 | 12| 091 0.03 47.19| 1.00 0.03 73.15
10| 3 0.96 0.09 2159 | 1.00 0.07  29.78
10| 6 0.95 0.04 4510 1.00 0.03  60.37
10| 12 | 094 0.02 80.63| 1.00 0.02 121.41

Table 3: Properties of the sample median and mean of M consecutive diagonal elements
from a Wisharty(V (p)) random matrix, where M = 6,d = 6 and V' (p) isan M x M
equicorrelation matrix with off-diagonal elements equal to the specified value of p.

0 Median Mean

Mean Variance Jp7q, | Mean Variance dpz4,
0.1 093 0.07 26.12 | 1.00 0.06 34.75
02| 093 0.08 2270 | 1.00 0.07 30.02
03] 094 0.09 1944 | 1.00 0.08 24.60
04| 095 0.11 16.13 1.01 0.10 19.61
05| 095 0.13 13.48 1.00 0.12 16.04
0.9 ] 0.99 029 6.79 | 1.00 029 7.02




Table 4: Properties of the sample median of M consecutive diagonal elements from a
Wisharti(Var(p)) random matrix where M = 6,d = 6 and Vag(p) is an M x M

correlation matrix for a first-order autoregressive model with autoregressive parameter p.

p | Mean Variance  dj,,
0.1 | 0.89 0.07 22.07
02| 0.89 0.07 21.71
03| 0.89 0.08 20.44
04| 0.89 0.09 18.57
05| 090 0.10 16.45
09| 098 032 6.09

Table 5: Properties of the sample median of M consecutive diagonal elements of a lognor-
mal random vector with first and second moments constrained to match the first and second

moments of a Wishart;(V(p)) distribution as specified for Table 3.

p | Mean Variance 4}/,
0.1 | 0.88 0.07 21.25
02 ] 0.89 0.08 20.23
03| 090 0.09 17.50
04| 091 0.11 14.72
05| 091 0.14 12.07
09| 099 036 541

Table 6: Properties of nominal 95% confidence Interval Properties after adjusting median
values and adjusting degrees of freedom for each estimator

VT | df | Coverage | Mean Quantiles of Widths

Rate Width | 0.01 0.05 0.10 025 0.50 0.75 090 0.95 0.99
V]e 0.9496 469 | 1.85 254 297 370 461 557 652 7.09 828
V 36| 0.9528 403 | 296 326 342 371 402 434 464 483 5.18
V | 26| 09526 4.07 | 280 3.16 337 3.69 406 445 479 502 544
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Figure 5: Case 3a
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Figure 6: Case 3b
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Figure 7: Case 4a
=]
m
= m O
o ¢ =
8 + o +
QQO +
B @6
¢ = ®
566 D....gD......
59 = 5
.é.é .D.....;QSDD
o]
? = + Vmed
+ + V*
O
o Vtrue
= Vhat
5]
| | | | | | | | | | | | | | | | | | | | | | | | |
01234567 8 9101112131415161718192021222324

Month

Figure 8: Case 4b




21

O0.00.000000QH%O!Q
s B ++m
= LT
A A A A A A A A E A X A A A A A A A
207 D++
N
) il
3! P
< s ®
5 +
>
@197 E
9
. = Vhat
N - Vstar
« Vmean
18 B} - Vmed

2 3 456 78 91011121314151617 1819
April 2008 — Sept 2009

Figure 9: Log (Variance Estimators) of Total Employment for Durable Manufacturing
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Figure 10: Log (Variance Estimators) of Total Employment for Wholesale Trade





