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Abstract

The Current Employment Statistics Survey, administered by the U.S. Bureau of Labor
Statistics, publishes total employment estimates for thousands of domains at detailed
geographical and industrial levels. Some of these domains do not have adequate sample
size for the direct probability sample-based estimates to be reliable. Small area estimation
methods are used to integrate information from historical sources and correlated domains
to improve estimation efficiency. In this paper, we explore alternatives to the Fay-Herriot
two-stage hierarchical model that relax distributional and independence assumptions
among random effects indexed by domain and month in order to more fully borrow strength
to improve the efficiency of published employment estimates. We compare the
performances of our alternative models on both synthetic data and in application to
estimates from the Current Employment Statistics survey.
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1. Introduction

Complex surveys usually produce reliable estimates for given sets of population targets.
However, at more detailed levels than planned at the design stage, domain-indexed sample
sizes may be small, thus rendering the purely sample-based direct domain estimates that
are erratic. Model-based approaches to improve estimates in such “unplanned” domains
form a wide collection of techniques within Small Area Estimation (SAE) methods (see
Pfeffermann, 2002, 2013, Rao and Molina, 2015, for review of SAE).

We consider application of small area modeling techniques to employment estimates from
the Current Employment Statistics (CES) survey, which is administered by the U.S. Bureau
of Labor Statistics (BLS). CES is a large-scale establishment survey that publishes monthly
estimates of employment and other indicators of the US economy at the national total level,
as well as for thousands of domains at detailed geographical and industrial levels. Sample
is scarce in many of these domains, so that direct sample-based estimates are volatile and
unreliable, and model-based estimation is required.

The classical Fay-Herriot model (Fay and Herriot, 1979) has been successfully applied for
the CES estimates at the States’ major industry levels (supersectors)®. In this paper, we

L Any opinions expressed in this paper are those of the authors and do not constitute policy of the
Bureau of Labor Statistics.

2 Although the model is fitted using data from all States, the model-based estimates are published
only for select States that have small sample in a given supersector.



study estimation at detailed industry levels, where the Fay-Herriot model assumptions may
not hold. While striving to maintain the general simplicity and computational scalability of
the two-level model, we introduce a suite of alternative formulations: each proposed model
relaxes and generalizes some of the Fay-Herriot assumptions.

The Fay-Herriot model may be viewed as a special and relatively simple case of the general
linear mixed model. In this sense, the multitude of existing models falling into the class of
the general linear mixed models can be regarded as generalizations of the Fay-Herriot
model, such as the time series and cross-sectional models of Pfeffermann and Burck
(1990), Rao and Yu (1994), Datta et al. (2002) (see Rao and Molina, 2015, for more
examples, including the multivariate Fay-Herriot and spatial models.)

We adopt the Bayesian paradigm for model development and view the Fay-Herriot model
as a hierarchical Bayes formulation. Our approach develops a sequence of related models,
where each model relaxes some assumptions of the base Fay-Herriot model, thus providing
a study of how progressively relaxing distributional and independence assumptions of the
Fay-Herriot model may improve estimation efficiency. Our models are related by uses of
similarly constructed prior distributions for relaxing independence and distributional
assumptions to promote ease-of-comprehension and comparison. The Bayesian approach
we choose provides associated variance measures for our model-based estimators that
account for the uncertainties in the parameter estimates.

Our models are implemented in Stan modeling language (Gelman et al., 2015) using a
Variational Bayes (Kucukelbir et al. 2016) algorithm. The Stan code is easy to read and
implement. See the computation Section 4.1 for discussion and details.

We begin exposition of our models by first observing that the distribution of the residuals
for our CES data expresses heavy tails, so we relax the assumption of normality of the
sampling errors by replacing it with the Student’s t distribution (which is also considered
by Huang and Bell, 2006).

We proceed by further relaxing the assumption of normality of area random effects (where
the random effect is a latent response that we extract as denoised estimates) by replacing
the normal distribution prior with a finite mixture of the normal distributions. In the case
of CES data, it is reasonable to expect that subgroups of industries or localities to express
diverging employment trends. If those differences are clear cut, then it may be appropriate
to include this information in the model; however, more typically there is no a priori
information for defining and labeling the subgroups, since underlying economic drivers of
employment continue to evolve. Thus, by assuming a mixture distribution prior, we let the
data determine the probabilities of belonging to various clusters for each of the
participating domains.

We further consider several multivariate versions of the models, thus borrowing
information both cross-sectionally (as is in the Fay-Herriot case) and over time. Rao and
Yu (1994), among others, considered similar setup. Their assumptions are different from
our approach, most notably in the area random effects distribution, where our model allows
for clustered random effects. Similar to the Rao-Yu model, the multivariate formulation
also captures autocorrelations in sampling errors.

Our models are applied to the real CES data and results are evaluated using comparison to
the external “gold standard” derived from the Quarterly Census of Employment and Wages
(QCEW), another BLS program. While timeliness of the estimates is a special feature of
the CES survey, QCEW is an important source that provides a census of employment based
on the administrative data. The census counts from QCEW become available to the public



on a lagged (6 — 9 month) basis. Due to its administrative nature and the quarterly reporting
pattern, QCEW is affected by measurement error, although it does not contain sampling
error as does CES. Despite these drawbacks, QCEW plays an important role for the CES
survey, providing it with the sampling frame and the annual benchmark levels, as well as
the historical series that can be used for research.

Besides using QCEW levels for comparison with the modeling results, we also investigate
properties of the models based on simulations. We construct synthetic data by adding noise
to the QCEW series, i.e., by treating the QCEW series as truth not affected by the sampling
error.

In Section 2, we describe features of the CES estimation. Models are introduced in Section
3. Our models are applied to both CES and synthetic data in Section 4. We conclude with
a summary discussion in Section 5.

2. CES Data Construction

Estimates of employment from the CES survey are published every month at the national
level (across industries defined by the North American Industry Classification System
(NAICS)) as well as for a multitude of domains constructed from combinations
geographies and sub-industries.

We now briefly describe how the CES data are transformed to perform estimation. For a
given month, t, the target of the CES estimation is the change in employment from the
previous to current month, for various domains, i =1,...,N defined by intersections of

industry and geography. The ratio, R
with,

i+ » constructs the target employment change, specified
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where Yy, is the employment of business j attimet, w; is the sampling weight of unit

j, and St(i) is a set of units sampled in domain i that respond and provide positive

employment inputs in both previous and current months to provide a “matched” set of
respondents. The presence of matched sets of sampled units is typically high from one
month to another but there are also unmatched units. In particular, monthly sets of
respondents do not include neither emerging (“births”) nor the discontinued (*deaths”)

businesses. The sample estimate ﬁyt expresses a slight bias due to its inability to account
for births and deaths. To obtain the estimate of employment level, the following formula

A

is used that includes the bias correction term N,
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where YAi,t is the estimate of employment level in domain i at month t; adjustment NAi’t is
the projected net difference of employment added by births and lost from deaths of
businesses in domain i (in the current paper, the set of adjustments N; , is considered fixed

and known; for more detail on the net birth-death adjustment see BLS Handbook of
Methods 2004.)

The estimated relative change in employment level is

R-’ _ AI,'[ . (4)

it-1

We construct expression (3) to produce estimated employment as,
~ t ~
Yi,t = Yi,oH Ri,r’ (5)
=1

where Y; , is a known “benchmark” employment level at month 0, available on a lagged

basis from the Quarterly Census of Employment and Wages (QCEW). Every year, the
estimation cycle starts at month 0 and after twelve months the CES estimated employment

level Y, ,, is compared to the census data, QCEW, that become available with a lag of about

6 to 9 months. At that point, the levels are revised (in a procedure commonly known as the
annual revision), and a new cycle of estimation starts with this true census level as the new
month 0. Employment seasonal patterns in the QCEW are affected by the quarterly
submission of administrative data provided by units (business establishments). CES
estimates are unaffected by this quarterly seasonal influence due to a monthly submission
cycle. So we may not compare monthly QCEW and CES estimates, which is discussed, in
detail, in Section 4. Nevertheless, the annual levels from QCEW are consider “gold
standard” and the quality of the CES employment estimates of levels are judged based on
the size of the annual revision that benchmark to the QCEW.

To summarize, each month we are interested in estimating the ratios R, defined by (1).

The estimators F'i“ are calculated directly from the sample data using formulas (2), (3),

and (4). These ratios, along with their respective sampling variances V., constitute the

it
domain-level data supplied for the modeling. The domain-level auxiliary information used
in the models is the employment ratio, obtained as a forecast from the historical QCEW
series. For this paper, we used five-year averages of historic QCEW ratios

5
RI=Y. Ri,(t—lZm)/S as auxiliary information.

m=1
Before fitting the models, we standardized the input values as follows:
Yie :(Iii’t -~ ﬁ)/ﬁ, X; =(Rﬂ -R" )/ﬁ .and o7, =V, /V,where R, R" and V
R-H

are the average values of respective original data R, ,, R/},

and v;,. To obtain the model

estimate R

i1 » We perform a back transformation.



After we obtain the model-based estimate F?i’t of R,

the estimate of the employment
level VM is constructed by successively multiplying the estimates Iii’t by the starting level,
similar to (5) and as shown in (37) in Section 4.2 below.

As mentioned in the introduction, the Fay-Herriot model is currently implemented in CES
for State-level estimates for industry supersectors. The model is fitted separately for each
supersector. The model-based estimates are published only for selected States that have
small samples in a given supersector.

The current paper describes the endeavor in extending the model for application to the
detailed industrial series within States.

3. The proposed models

Our goal is to explore the modeling of domains defined at more detailed levels. Some
assumptions of the Fay-Herriot model employed for those broader (coarser) level industry
domains may not hold at the lower, sub-industry levels. The different structure of the
detailed-level data potentially requires different modeling formulations to more efficiently
borrow information across domains as well as among repeated monthly measures.
Candidate models must, however, remain computationally scalable to support the tight
monthly production process and be relatively straightforward for ease-of-explanation to
BLS customers. We, therefore, restrict ourselves to the basic construction of an observed
process and a latent response process constructed by the Fay-Herriot.

The available data for each domain i =1,...,N consist of the direct survey estimate Y

with the sample variance af and the auxiliary information X; (a vector, in general.) For
the multivariate models, the added dimension is denoted by the time index, t=1,...,T .

Note that, although the sample variances are known only approximately, they are
customarily treated as fixed and known and supplied as part of the data.

For modeling, the data is standardized as described above in Section 2.

3.1 Model 1 (FH): The Fay-Herriot Model
The first model considered is the usual Fay-Herriot model.

For each area i =1,..., N, assume the following cross-sectional two-level model:
Y, =6 +e, (6)
‘9i :ﬂ0+ﬂlxi +U;, (7)

where the sample errors are assumed to be independent and normally distributed with mean
zero and variances o,

ind

e ~N(0,07). (8)

Random effects are independent and identically normally distributed variables with mean
zero and variance 72,

01N (0,%). )



Parameters /3, .,/ ,* are unknown and need to be estimated from the data.

3.2 Model 2 (FHt): Student’s t-distributed sampling errors

In the Fay-Herriot model, an important assumption stated in (8) is that the sampling errors
are normally distributed. The normality assumption may not hold, especially when
the domain sample sizes are small, thus precluding invocation of the Central Limit
Theorem. In addition, the ratio form of the direct survey estimator (4) suggests that
survey errors have heavier tails than those of the normal distribution. Indeed, for the
estimator used in CES, it has been observed that, while the distribution of the
survey errors is nearly symmetric, the tails of the distribution are much heavier than
under the normality (see Figure 1.) Therefore, we consider a modification of the Fay-

Eleiif raadgli BstiemiBgdhene sampling errors. We introduce latent parameters &8, to

I
model the t distribution as the scale mixture of the normal distributions (Huang and Bell,
2006, considered similar assumptions).

In summary, Model 2 keeps assumptions (6), (7), and (9) and replaces assumption (8) by
(10) and (11):

ind
& ~N(0,075 ); (10)
parameter &, has the inverse gamma distribution with the scale and shape parameters
v/2:

0, ~ InvGamma(K,Kj, (11)
2 2

where parameter v represents the degree of freedoms of the Student’s t distribution. Under
this construction, integrating over the random effects &, induces a marginal t distribution

for the errors. (The integration is performed numerically under our estimation procedure
discussed in Section 4).

3.3 Model 3 (CFHTt): Clustered random effects

Assumption (9) that random effects are independent and identically distributed as normal
may not hold.

Sub-industry and sub-State domain CES employment estimates would be expected to be
correlated due to underlying similarities in economic factors. That dependence may be
captured by a (probabilistic) clustering within each State or larger industry classification.
To account for the possibility of dependence across domains, our next model allows for
clustering among them by replacing the assumption of independent and identically
distributed normal random effects with a mixture of the normal distributions.

Namely, assume the following Model 3:
yi =0 +e, (12)
G = px +u, (13)

ind

& ~N (0,675, ), (14)



0, ~ InvGamma[K,Kj. (15)
2 2

Assumptions (12)-(15) are similar to (6), (7), (10), (11), except that the linear model (13)
has no intercept term; instead, the distribution of random effects is parameterized with the

location parameter vector p = (4, ..., 14 ) -

Random effects U, assume a K -component mixture of normal distributions with equal

variances 7, and location parameter p = (4, ..., 14 ) :

U; iij’j z::lek N (,Uk ' z_uz )v (16)

where 6, is the probability of belonging to the mixture part k , k =1,...,K ;Z:ﬂ@k =1.

Probabilities ® =(4,,..., 6, ) are given a symmetric Dirichlet prior

0~ Dirichlet(ﬁ,...,ﬁ). (17)
K K

Under (17), as the number of clusters K goes to infinity, the concentration parameter

a/K approaches zero, and model (16) for the random effect approaches the Dirichlet

process mixture model (see Neal 2000). In practice, the maximum number of mixture
components K is supplied by the modeler and can be set to some number larger than the
number of components expected in the data. As K increases, the inverted bell-shaped form
of the Dirichlet distribution becomes more pronounced, thus penalizing complexity by
encouraging sparsity in the number of non-zero mixture components estimated by the data.
This construction allows the data to learn the number of true clusters or mixture
components.

3.4 Model 4 (mFHt): Multiple time points, independent sampling errors

The Fay-Herriot model is simple and easy to implement in the CES production
environment. While we would like to avoid unduly complicated models, we weigh the
potential improvement in estimation efficiency from extending our modeling options to
include multiple time points. This modeling extension to multiple time points would allow
borrowing information not only over domains for a given month but also across months.

To formulate the multiple time points model, we introduce additional index t=1,...,T .
The assumptions for Model 4 are:

Yie = ai,t €0 (18)
ai,t = ﬂtxi,t U, (19)
ind
&.~N (Ov O-iz,té},t)’ (20)
0, ~ InvGamma(K,Kj. (21)
’ 2 2

Assumptions (18)-(21) are similar to the assumptions of the FHt model.



Assume a proper conditional autoregressive (CAR) structure for the precision matrix of
multivariate Gaussian priors on the random effects and model coefficients:

iid

u~N; (.Q,"). Q, =4, (D-p,Q), (22)

B =N, (0.Q), Q,=4(D-p,0). (23)

In the above formulas, symbol N, signifies the multivariate T-dimensional Gaussian
distribution.

The T x T adjacency matrix € specifies the dependence structure. It has nonzero elements
in positions (i, j) wherever domain i is the “neighbor” of domain j and 0’s in all other

places. In our model, 1’s appear in the first off-diagonals of the adjacency matrix to capture
time-based dependence on a line,

01
1 01
10
1
10

The entries of the diagonal matrix D depend on the number of “neighbors” specified in
matrix €2 ; namely, each entry in the diagonal equals the sum of the row elements of €.
In our first-order CAR model, the first and last months of estimation each have 1 less
“neighbor” than the other months (which each have a preceding and following month as
neighbors). This difference in the number of neighbors is encoded in the diagonal of matrix
D, where the first and last entries are 1’s and the rest are 2’s. The implication is that the
estimated precisions for the first and last months are lower compared to other months:

1

1

Thus, precision matrices Q, and Qﬁ in formulas (22) and (23) are the tridiagonal matrices
with zero entries outside the diagonal and first off-diagonals. Parameters A, /”tﬂ are

precision parameters that determine the scale of the CAR prior and p,, p, represent the

strength of correlations between the adjacent months, and also serve to ensure that the
precision matrix is of full rank (Jin et al., 2005, discuss the structure of the precision
matrices.) The support of these strength of correlation parameters is between 0 and 1,
where a value near 0 indicates there is no dependence and the prior on the random effects
and regression coefficients revert to independent normals with precisions controlled by the
number of neighbors and the precision parameters. As the strength of correlation



parameters approaches 1, the autocorrelation increases. These parameters receive uniform
priors p, ~U (0,1) and p, ~U (0,1), which are updated by the data.

The same specifications for T x T € and D matrices are used in all remaining models
that follow in the sequel.

3.5 Model 5 (mFHtc): Multiple time points, correlated sampling errors

In Model 4 above, we assume existence of a dependence structure among the T repeated
measures in time for each latent response (indexed by domain), which we model under a
CAR multivariate Gaussian prior. The sampling errors are, however, assumed to be
independent in Model 4. The sampling errors may express correlation, however, since the
sets of sampled units that compose each domain largely overlap across the set of repeated
measures. In the case of CES, previous research (Scott et al., 2012, Scott and Sverchkov,
2005, Gershunskaya, 2015.) shows that there is small negative correlation between the
sample estimates of relative employment change in adjacent months. The negative sign of
the correlation is related to the construction of the form for the estimator as the ratio of
highly correlated estimates of employment levels.

Briefly, let YALt =Y, +1,, Where 7, represents the sampling error for the estimate of
level in domain i at month t. Suppose sampling errors follow autoregressive scheme
AR(1) with autocorrelation p, , and let the variance V, be approximately the same for
months that are close in time. For simplicity, consider estimates of monthly changes,
A\fi,t :Y’\i,t —YAM_1 (the values of ratios of employment estimates are in the neighborhood

of 1.) The variance of the change estimate is Var (AYM) = 2V, (1— ,on) , the covariance is

COV(AYAM,AYALM) z—(1—p,7)2vi . Thus, correlation between the sampling errors of

. .1 . . .
changes for the adjacent months is _E(l_p”); i.e., when p, 1s close to 1, correlation

between estimates of changes is small and negative.

Model 5 was constructed from Model 4 by modifying assumption (20) of independence of
sampling errors assumptions.

Vi =0+ (088,) (24)
0= PXig Ui, (25)
e =(e06r)~N; (0.Q7),  Q.=D-pQ, (26)
Oy ~ InvGamma(%,%), (27)
u, - N (1.Q.}), Q,=4,(D-p,Q), (28)

B - N; (0.Q;'). Q=4 (D-p,Q). (29)



Statement (26) imposes the CAR correlation structure model for sampling errors. In this
case, we set the precision parmeter equal to 1 since the known variances provide the scale.

Strength-of-correlation parameter p, is assigned prior p, ~U (—1,0) based on the

previous work that discovered a negative correlation of ratio survey estimates in adjacent
months. We set the support of the strength of correlation parameter for the latent random

effects p, to (0,1) under our assumption of adjacency-dependence among the multiple

latent response values over the 12 months for each domain. By setting the support range
for parameters p, and p, to not overlap, we establish their mutual identifiability.

3.6 Model 6 (mCFHtc): Multiple time points, clustered random effects and correlated
sampling errors

The last model considered may be viewed as the multivariate generalization of Model 3.
We assume that random effects come from a mixture of multivariate normal distributions.
The other assumptions of Model 6 are the same as in Model 5.

2
Yie =06, +8, (Giz,té‘i,t) , (30)
ai,t = ﬂtxi,t +U, (31)
ind
& :(ei,l""’ei,T)~ N, (Ongl)v Q.=D-pL, (32)
0, ~ InvGamma(K,Kj. (33)
’ 2 2
Assume that random effects come from the mixture distribution:
iid K
u; "'Z‘gkNT (“k'Qﬂi)’ Qu = A (D~ pu L), (34)
k=1
with
iid
m =N (0.Q). Q,=4,(D-p,2), (35)
iid 4
B ~N:(0.Q)). Qs =4 (D-p,2). (36)

We note that each mixture component, k , is indexed by both its own mean and variance
under this construction, which is more flexible than the use of a common variance under
Model 3.

In fitting the above models, for the rest of the parameters, we choose proper priors with
hyperparameter values that are easily updated by the data. Namely, the prior distribution

for the degrees of freedom parameter v is InvGamma(l,l); priors for precision
parameters A, 772 are set to Gamma(l,l) ; the prior for the concentration parameter «
of the Dirichlet distribution is also Gamma(l,l); strength of correlation parameters p
are sampled from the uniform distribution with appropriate support intervals, (—1, O) or

(0,1), as discussed in Section 3.5.



4. Applications to CES data and simulation study
4.1 Computation

We used the Automatic Differentiation Variational Inference (ADVI) algorithm
(Kucukelbir et al., 2015) implemented in RStan VV2.9.0 package, which is the R interface
for the Stan modeling language (Gelman et al., 2015), to implement our models. The
variational inference ADVI scheme, implemented in Stan, factors the joint posterior
distribution for the set of model parameters and employs a normal distribution for each
distribution component after transforming the support for the associated parameter to the
real line. The approximate posterior is then estimated using gradient-descent method to
minimize the "error lower bound" (ELBO) derived from minimizing the Kullback-Leibler
divergence between the approximate density and the true distribution. The Jacobians for
the inverse transformations of the parameters are carried along in the objective function.

Full Stan scripts for Models 1-6 are given in Appendix. The same script can be used to run
Markov Chain Monte Carlo (MCMC) and ADVI algorithms in Stan. The advantage of the
ADVI over an MCMC algorithm is that it is relatively fast and scalable. It must be noted
that the ADVI algorithm is susceptible to local optima. We conducted a simulation study
(not included) to ensure ADVI returns correct parameter values under our prior
formulations. In the study, we used parameter values similar to what is expected in CES.
A pilot run on the CES data showed that both algorithms returned the same values for our
sets of true parameters.

We set the truncation level for maximum number of clusters, K , to 20 in both clustering
models (3 and 6), which is sufficiently high since only about 3 to 5 of the cluster

probabilities 6, ’s are estimated as non-zero.

4.2 Application to CES

Our data are defined for a set of N = 2233 sub-industry-by-State domains; the data series
are based on September 2008 as the starting point. We chose this particular year estimation
cycle because of the non-trivial employment pattern that occurred during the period of the
“great recession”, which induced a marked shift in employment trends from previous years.

The survey direct estimates are given by (4). Variances of éi,t are assumed to be known,
as earlier discussed. In the current application, similar to the classical case of Fay and
Herriot (1979), variances were obtained using a generalized variance function approach.

We obtained model estimates F~2i’t (based on standardized employment counts) for relative

monthly changes for each month over the 12-month estimation period. For the cross-
sectional Models 1-3, we fit one month of estimates at a time; for Models 4-6, the preceding
twelve months of data were used to derive the estimate for a given month t, t=1,..., T .

The estimates of employment levels at month t are obtained from the set of ﬁi,w

r=1..,t as

~ t ~

Yie= Yi,OH R (37)
=1

Due to different seasonality patterns between the employment series derived from the
administrative QCEW data and CES, the most meaningful comparison of the two series is



after 12 months of estimation. Results for each major industry and overall, presented in
Table 1, are based on the mean absolute deviation (MAD):

MAD = N> IV, =Y. (38)

where Y;,, comes from the (QCEW) census data and is used as “the gold standard” for the
estimates.

Table 1: Real data results (levels after 12 months of estimation, MAD)
Industry N Direct FH FHt CFHt mFHt mFHtc mCFHtc

1000 50 804 734 1077 829 1146 1093 769
2000 141 2152 1990 1825 1798 1933 1942 1903
3100 234 1112 1022 1220 1140 1269 1118 1035
3200 140 955 877 1156 971 925 878 856

4100 124 1485 1270 1232 1198 1229 1241 1234
4200 286 1439 1836 1468 1443 1484 1471 1488

4300 194 1310 1099 915 947 933 900 937
5000 83 1204 1122 810 812 794 792 739
5500 149 1473 1121 1081 1099 1068 1085 1141
6054 150 1447 1173 1223 1168 1113 1102 1127
6055 45 1066 849 807 863 793 844 892
6056 115 2344 1935 2235 2154 2193 2048 1977
6561 59 1901 1782 1511 1618 1386 1429 1428

6562 214 1551 1334 1230 1257 1282 1289 1313
7071 59 2047 1362 1016 1306 1115 1029 1335
7072 80 1912 1672 1753 1509 1659 1554 1638
8000 110 1773 1355 1085 1094 1093 1203 1212
Overall | 2233 1502 1355 1292 1262 1285 1257 1256

Table 1 shows values of MAD for the survey direct estimator and the model-based
estimators for each major industry and overall; for each line, the smallest among
methods are bold-faced. Judging from the overall results, any of the models considered
is an improvement compared to the direct estimator. All models except Model 1 (FH)
are designed to curb the effects from outliers occurring in the direct survey estimates.
Their overall performances are similar and better than the performance of the FH
model. There is a small, but notable, incremental improvement for multivariate models
that account for a negatively correlated error structure. We explore this improvement in the
simulation study section that follows.

The results also vary by industry. The FHt model is better than FH in most industries,
but does worse in some industries, most notably Mining (1000), both Manufacturing
Durable (3100) and Nondurable (3200) Goods, and Administrative and Support and
Waste Management and Remediation Services (6056). This may happen because, in the

year considered, the auxiliary history-based value of X, was not a good predictor for

the current economy. As a result, it is likely that the linear part £, + X, of both FH

and FHt was misspecified. If this is the case, the variance of random effects would be
estimated as large and this, in turn, would have the effect of placing more weight on the
direct estimator in the usual weighted average form of the FH estimator. The overall result
is that FH is more robust to model misspecification, in the sense that it returns the value



that is close to the direct estimator rather than to the synthetic part ﬁA’O + ﬁlxi of the

weighted average. In FHt, the assumption is that the direct estimator has the t-distributed
errors, that is, a priori, the direct estimator is treated with less trust. The t distribution on
sampling errors would cause lower weight on the direct estimator and more weight on the
model synthetic estimate. In the case when the model is wrong, this may lead to
unfavorable results.

Interestingly, this situation is somewhat corrected in CFHt, the other univariate model
that accounts for possible clustering of the domains. Suppose the true model is not

linear B, + B,X but has, say, the parabolic form. The clustering assumption for the

distribution of the random effects would compensate for the misspecification of the
functional form of the model.

Turning to multivariate models, mFHt and mFHtc also performed worse than FH in
the two industries of Mining and Durable Goods Manufacturing, but performed
uniformly better across other industries.

Conclusions on the relative performances of our models are limited by fitting to the CES
data because of differences in seasonality, the presence of measurement error in the QCEW
we use as the gold standard and because our CES data are a single realization. We next
employ a simulation study that corrects for these limitations.

4.3 Simulation study

We generated synthetic data based on the “true” census (QCEW) series. We added the
Student’s t-distributed and correlated noise to QCEW-based ratios R;, for the 2008

estimation cycle time period of interest. To generate the data, we used the given sample
variances and assumed small negative correlation p, =—0.1 in the sampling errors

between the adjacent months (as also noted in Section 3.5, this choice of value for the
autocorrelation is based on previous research.)

Figure 1 plots the density of the standardized CES data (black solid line) and the
standardized simulated data (red lines) against the normal density (green line). The CES

data is standardized as Z; , = (IQ -Ri; )/ V;. , and the same standardization is used for

it
the simulated data. The plots demonstrate that the CES data density has heavier tails than

the tails of the normal distribution and that we have effectively replicated this feature in
our simulated data.

A different approach to design the simulation study would be to generate both signal and
noise from a model; however, since the true model for signal is unknown, we decided to
avoid simulating the signal and use the census data at hand.

There are several advantages in evaluation based on our simulation procedure to generate
the synthetic data: (1) simulations allow us to circumvent differences in seasonality
between the census and CES series; (2) with the real data, we only assume that the census
series represent the truth; for the simulated data, they become in fact the true values; (3)
with the real data, sampling variances are only assumed to be known; for simulations,
variances really are known; (4) evaluation now can be based on multiple simulation runs
rather than on a single realization of the real data.



Figure 1. Standardized direct estimates vs normal vs simulated densities
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In Figure 2, we plot posterior mean model estimates for one example domain, out of the
total of 2233 domains considered in the study. This example (domain #55 in Education,
supersector 6561) serves as illustration of the CES (annual) estimation cycle and how the
estimators perform over this period.

The months are plotted on the x-axis, the employment levels are on the y-axis. The
estimation procedure starts at month t=0, which is September, 2008, in our case. The black
line with larger black circles shows the true QCEW-based series. At the time of estimation,
the truth is, of course, unknown — QCEW data become available with the lag of 6 to 9
months. The blue line represents the direct sample-based estimator. As we can see, the
values of the monthly direct estimator may be extreme, most notably the changes in months
2-to-3 and 3-to-4. The direct estimates are notorious for containing extreme values.
However, by the 12-th month of estimation, the direct estimator comes back closer to the
QCEW.

Apparently, the extreme changes, as in months 3 and 4, affect the results for the FH
estimator (the brown line). This is corrected in the FHt model, as well as in all the other
models.



Figure 2. Estimation in Domain #55 of Industry 6561
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The largest improvement from our models comes from this correction to extreme values in
the direct sample estimates. The multivariate models perform consistently better in this
case than the univariate models, though the improvement is much less. The mCFHtc model

best captures the dips in employment at months 2 and 10.

Figure 3 presents boxplots that display the distribution (within 95% credible intervals) of
the modeled estimates around the true QCEW-based monthly ratios. Simulations as we
designed them — using the monthly QCEW values as truth — give us opportunity to compare
the results of modeling for each month over the estimation period. Panels in Figure 3
represent months from 1 to 12 (i.e., October through September, with September 2008 as
the benchmark month 0). The boxplots are given for four estimators: FH, FHt, CFHt, and
mCFHtc. The true value in each month is subtracted from the set of posterior draws for
each model. Models other than FH generally perform similarly — and better than FH — in
the efficient coverage of the truth. The distribution of the FHt model estimators in most
months has narrower credible intervals; however, in about half of the months the 25-75%
guantiles of the FHt distribution do not include the true values; the clustering models
perform relatively better in covering the true values, although in most months their
distribution is slightly wider than the distribution of the FHt estimator.



Figure 3. Posterior distributions (within 95% credible intervals) in Domain #55 of Industry 6561
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Table 2: Simulation Study (levels after 12 months of estimation, MAD)
Industry N Direct FH FHt CFHt mFHt mFHtc mCFHtc

1000 50 726 650 733 596 741 617 561
2000 141 1794 1365 1473 1400 1355 1318 1282
3100 234 858 720 994 937 791 713 662
3200 140 661 555 752 634 586 556 521
4100 124 1143 805 844 778 740 691 672
4200 286 3863 1787 1247 1227 1165 1168 1212
4300 194 1831 1152 839 833 799 795 827
5000 83 721 583 632 579 617 620 602
5500 149 1102 752 757 732 687 675 680
6054 150 1196 905 985 925 872 821 820
6055 45 771 590 547 559 485 503 507

6056 115 2266 1853 1852 1766 1940 1802 1738
6561 59 3674 2633 1313 1628 1256 1330 1446
6562 214 1181 844 854 819 751 748 757
7071 59 2738 1805 1235 1393 1170 1221 1279
7072 80 1748 1358 1418 1398 1336 1321 1345
8000 110 1747 1020 920 939 968 1025 1048

Overall | 2233 1722 1122 1032 1002 950 927 927

FHt
CFHE
MOFHtc
FH

FHt
CFHE
MCF Htc



Numerical evaluation is presented in Table 2. The results are based on average over
S =5 sets of simulated data. For employment levels, after 12 months of estimation, the
following mean absolute deviation measure for each industry was used:

MAD = s—lN‘lz;ZLMn Y]

As in the case of the real data, any of the models is an improvement relative to the direct
estimator. Similar to the real data results, FHt model is worse than FH in a few industries,
notably, in Mining and Manufacturing. As noted in Section 4.2, FHt gives more weight to
the auxiliary historical value that was not a good predictor in that year, given the linear
model considered. Similarly to the real data case, this unfortunate effect is alleviated by
the CFHt model.

The multivariate models give results that are better than the results from the univariate
models; accounting for correlation in sampling errors helped in most industries. An
interesting result of note is that, similar to the univariate case, clustering in the multivariate
model improved estimates in the Goods Producing industries.

5.  Summary and Discussion

In this paper, we presented a collection of hierarchical models of similar construction
to the Fay-Herriot that estimate a de-noised latent response process. Each model
relaxed some of the assumptions of the base Fay-Herriot model formulation to allow
the data to better learn the distribution and dependence structure in the survey direct
estimates. The computations were implemented by application of the ADVI algorithm
with the use of the Stan modeling language, such that our models may be readily
employed by both BLS and among practitioners. The computations are relatively fast
and easy to implement in the production environment.

Relaxing the assumption of normality of the sampling errors and replacing it with the
Student’s t distribution lead to significantly improved estimators. The other
enhancements displayed small but notable improvements. Accounting for possible
clustering of random effects benefited several industries, especially in the Goods
Producing sector; accounting for correlation in sampling errors also improved
estimates in some industries.

This paper’s results may be regarded as a pilot study. The models need to be tested on
multiple years of the CES data, as well as for the other CES estimation structure that
is currently used for publication at detailed geography. Our simulation study,
however, does provide a more general indication that our multivariate and
probabilistic clustering models would be expected to out-perform on multiple years of
CES data because we generated multiple samples under conditions where we know
the true values and have removed seasonality differences.

Appendix

A. Model 1 (FH)

data{
int<lower=1> N;
row_vector[N] y;
row_vector<lower=0>[N] sigma_y;
row_vector[N] x;

}



parameters{
row_vector[N] u; /* random effects */
real mu; /* mean (global intercept) of u_i */
real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0> lambda;
real<lower=0> lambda_u;
real beta;

} /* end parameters block */

transformed parameters{
row_vector[N] fitted_values; /* fitted values */
{/* block to declare local variables, xb */
row_vector[N] xb;
for(iin 1:N)
{
xbl[i] <- x[i] * beta;
fitted_values[i]  <- xb[i] + uli];
}/* end loop i over domains */
} /* end local block to declare xb */
} /* end transformed parameters block */

model{
// prior N random effects, u
{/* local block for parameters */
lambda_u ~gamma( 1.0, 1.0);
tau_mu  ~gamma( 1.0, 1.0);
mu ~ normal(0,inv(sqrt(tau_mu)));
u  ~normal(mu,inv(sqrt(lambda_u))); /* N x 1 vectorized */
}/* end local block for parameters */

// prior on precision, lambda

lambda ~gamma( 1.0, 1.0 );
// prior for fixed effect, beta
beta ~ normal(0,inv(sqrt(lambda)));

// observed response likelihood
y ~ normal( fitted_values, sigma_y);

}/* end model{} block */

B. Model 2 (FHt)

data{
int<lower=1> N; // number of domains
row_vector[N]y; // set of N observations
row_vector<lower=0>[N] sigma_y; // known standard deviations
row_vector[N] x; // set of predictors

} /* end data block */

parameters{
row_vector[N] u; /* random effects */



real mu; /* mean (global intercept) of u_i */
real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0> lambda;
real<lower=0> lambda_u;
real beta;
real<lower=0> nu;
row_vector<lower=0>[N] delta;
} /* end parameters block */

transformed parameters{
row_vector[N] fitted_values; /* fitted values */
row_vector<lower=0>[N] sqrt_delta;
{/* block to declare local variables, xb */
row_vector[N] xb;
for(iin 1:N)
{
xbl[i] <- x[i] * beta;
fitted_values[i]  <- xb[i] + uli];
sqrt_deltali] <- sqrt( delta[i] );
}/* end loop i over domains */
} /* end local block to declare xb */
} /* end transformed parameters block */

model{
// prior N random effects, u
{/* local block for parameters */
lambda_u ~gamma( 1.0, 1.0);
tau_mu  ~gamma( 1.0, 1.0);
mu ~ normal(0,inv(sgrt(tau_mu)));
u ~normal(mu,inv(sqrt(lambda_u))); /* N x 1 vectorized */
}/* end local block for parameters */

// prior on precision, lambda

lambda ~gamma( 1.0, 1.0 );
// prior for fixed effect, beta
beta ~ normal(0,inv(sqrt(lambda)));

// observed response likelihood

nu ~inv_gamma( 1.0, 1.0 );
delta ~inv_gamma(0.5%nu, 0.5%nu); /* N x 1 vectorized */
y ~ normal( fitted_values, sigma_y .* sqrt_delta );

}/* end model{} block */

C. Model 3 (CFHt)

data{
int<lower=1> N; // number of domains
row_vector[N]y; // set of N observations
row_vector<lower=0>[N] sigma_y; // known standard deviations
row_vector[N] x; // set of predictors
int<lower=1> K; // *maximum* - truncated number of clusters

} /* end data block */



transformed data{

vector<lower=0>[K] ones_K;

ones_K <- rep_vector(1,K); /* dirichlet prior on alpha has equal shapes */
} /* end transformed data block */

parameters{
row_vector[N] u; /* random effects */
row_vector[K] mu; /* cluster centers */
simplex[K] theta; /* mixture probabilities */
real alpha; /* DP concentration parameter */
real<lower=0> lambda_u;
real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0> lambda;
real beta;
real<lower=0> nu;
row_vector<lower=0>[N] delta;

} /* end parameters block */

transformed parameters{
row_vector[N] fitted_values; /* fitted values */
row_vector<lower=0>[N] sqrt_delta;
{/* block to declare local variables, xb */
row_vector[N] xb;

for(iin 1:N)

{
xb[i] <- x[i] * beta;
fitted_values[i]  <- xb[i] + uli];
sqrt_deltali] <- sqrt( deltali] );

}/* end loop i over domains */
}/* end local block to declare xb */
} /* end transformed parameters block */

model{

// priors for mean and covariance cluster locations

alpha ~ gamma( 1.0, 1.0); /* DP concentration parameter */

theta ~ dirichlet( alpha/K * ones_K ); /* instantiate a truncated DP prior */
{ /* local block for priors for K sets of cluster centers and variances*/

tau_mu ~gamma( 1.0, 1.0 );

for(kin 1:K)

{

mu(k] ~ normal(0,inv(sqrt(tau_muy)));

}
} /* end local block for cluster parameters */
{

/* mixture prior for u[i],i=1,.., N */

lambda_u ~gamma( 1.0, 1.0);
for(iin 1:N) /* by row of Nx T, u */
{

real ps[K];

for( kin 1:K)



{
/* increment log posterior for clustering model on u */
ps[k] <- log(theta[k]) + normal_log(uli], mu[k], inv(sqrt(lambda_u)));
}
increment_log_prob( log_sum_exp(ps) );
} /* end loop over case observation, i */

}

// prior for fixed effect, beta

// prior on precision, lambda

lambda ~gamma( 1.0, 1.0 );

beta ~ normal(0,inv(sqrt(lambda)));

// observed response likelihood

nu ~inv_gamma( 1.0, 1.0 );

delta ~inv_gamma( 0.5%nu, 0.5*nu ); /* N x 1 vectorized */
y ~ normal( fitted_values, sigma_y .* sqrt_delta );

}/* end model{} block */

D. Model 4 (mFHt)
functions{
// sum a matrix, by rows
vector row_sums(matrix X)
{
vector[rows(X)] s ;
s <- X * rep_vector(1, cols(X)) ;
returns;
}

} /* end user functions{} block */

data{
int<lower=1> N; // number of domains
int<lower=1>T; // number of times points - months
row_vector[T] y[N]; // set of N, T x 1 multivariate observations
row_vector<lower=0>[T] sigma_y[N]; // known area standard deviations
matrix[N,T] x; // matrix of (time-indexed) predictors
matrix<lower=0>[T,T] Omega; // T x T CAR adjacency matrix

} /* end data block */

transformed data{
vector[T] zros_T;
vector<lower=0>[T] d;
matrix[T,T] D;
zros_T <- rep_vector(0,T); /* vector of zeros for sampling Tx1 fixed effects, beta */
d <- row_sums(Omega); /* diagonal entries of precision matrix */
D <- diag_matrix(d);
} /* end transformed data block */

parameters{
row_vector[T] u[NJ]; /* random effects */
row_vector[T] mu; /* T x 1 mean of u_i */



real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0,upper=1>rb; /* strength of correlation parameter */
real<lower=0,upper=1>r_u; /* strength of correlation parameter */
/* for Q = lambda *(D - rb*Omega) in beta ~ N_{T}(0,Q"{-1}) */
real<lower=0> lambda;
real<lower=0> lambda_u;
vector[T] beta;
real<lower=0> nu;
row_vector<lower=0>[T] delta[N];

} /* end parameters block */

transformed parameters{
row_vector[T] fitted_values[N]; /* fitted values */
row_vector<lower=0>[T] sqrt_delta[N];
{/* block to declare local variables, xb */
matrix[N,T] xb;
for(iin 1:N)
{
for(jin 1:T)
{
xbl[i,j] <= x[i,jl * betal[jl;
fitted_valuesli,j] <- xb[i,j] + uli,jl;
sqrt_deltali,j] <- sqrt( delta[i,j] );
}/* end loop j over time points */
}/* end loop i over domains */
} /* end local block to declare xb */
} /* end transformed parameters block */

model{
// prior N x T random effects, u
{/* local block for priors for T x T CAR precision */
matrix[T,T] Q; /* T x T CAR precision matrix for mu[k] */

r_u ~ beta(1.0,1.0);
lambda_u ~gamma( 1.0, 1.0);
tau_mu ~gamma( 1.0, 1.0 );
Q <-lambda_u * (D - r_u * Omega);
/* prior for Tx 1 mu */
mu ~normal(0,inv(sqrt(tau_mu))); /* vectorized */
/* CAR prior for ufi],i=1,..,n*/
for(iin 1:N)
{
ulil ~ multi_normal_prec( mu, Q);

}/* end loop i over domains */
} /* end local block for cluster parameters */

// prior for time-indexed fixed effects, T x 1,beta
{ /* local variable block for Q in prior for T x 1, beta */
matrix[T,T] Q; /* T x T CAR precision matrix for beta */
/* T x T precision matrix, Q, for T x 1 vector regression coefficients, beta */
Q <-lambda * (D - rb * Omega);
/* TxT, Q <- tb * (D-rb*Omega) = CAR precision matrix */
rb ~uniform( 0, 1);



// prior on P x P covariance matrix, Lambda

lambda ~gamma( 1.0, 1.0 );
/* Implement a beta ~ N_{T}0,Q*{-1}) */
beta ~ multi_normal_prec( zros_T, Q);

} /* end local variable blocks for Q, Sigma_beta and Lbeta */

// observed response likelihood

nu ~inv_gamma( 1.0, 1.0 );
for(iin 1:N ) /* by row of y */
{

to_vector(delta[i]) ~inv_gamma(0.5*nu, 0.5*nu );
yli] ~ normal( fitted_values[i], sigma_y[i] .* sqrt_deltali] ); // vectorized for T x 1 response
}
} /* end model{} block */

E. Model 5 (mFHtc)
functions{
// sum a matrix, by rows
vector row_sums(matrix X)
{
vector[rows(X)] s ;
s <- X * rep_vector(1, cols(X)) ;
returns;
}

} /* end user functions{} block */

data{
int<lower=1> N; // number of domains
int<lower=1>T; // number of times points - months
row_vector[T] y[N]; // set of N, T x 1 multivariate observations
row_vector<lower=0>[T] sigma_y[N]; // known area standard deviations
matrix[N,T] x; // matrix of (time-indexed) predictors
matrix[T,T] Omega; // T x T CAR adjacency matrix for prior on cluster centers
} /* end data block */

transformed data{
vector[T] zros_T;
vector<lower=0>[T] d;
matrix[T,T] D;
zros_T <- rep_vector(0,T); /* vector of zeros for sampling Tx1 fixed effects, beta */
d <- row_sums(Omega); /* diagonal entries of precision matrix */
D <- diag_matrix(d);
} /* end transformed data block */

parameters{
row_vector[T] u[N]; /* latent random effects receiving Gaussian mixture prior */
row_vector[T] mu; /* Tx 1 mean of u_i */
real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0,upper=1>rb; /* strength of correlation parameter */
real<lower=0,upper=1>r_u; /* strength of correlation parameter */



/* for Q = lambda *(D - rb*Omega) in beta ~ N_{T}(0,Q"{-1}) */
real<lower=0> lambda;
real<lower=0> lambda_u;
vector[T] beta;
real<lower=0> nu;
row_vector<lower=0>[T] delta[N];
real<lower=-1,upper=0>r_e;
} /* end parameters block */

transformed parameters{
row_vector[T] fitted_values[N]; /* fitted values */
row_vector<lower=0>[T] sqrt_delta[N];
{/* block to declare local variables, xb */
matrix[N,T] xb;
for(iin 1:N)
{
for(jin 1:T)
{
xbl[i,j] <- x[i,jl * betalj];
fitted_valuesli,j] <- xb[i,j] + uli,j];
sqrt_deltali,j] <- sqrt( deltali,j] );
}/* end loop j over time points */
}/* end loop i over domains */
}/* end local block to declare xb */
}/* end transformed parameters block */

model{
// prior N x T random effects, u
{/* local block for priors for T x T CAR precision */
matrix[T,T] Q; /* T x T CAR precision matrix for mu[k] */

ru ~beta(1,1);
lambda_u ~gamma( 1.0, 1.0);
tau_mu ~gamma( 1.0, 1.0 );
Q <-lambda_u * (D - r_u * Omega);
/* prior for Tx 1 mu */
mu ~normal(0,inv(sqrt(tau_mu))); /* vectorized */
/* CAR prior for ufi],i=1,..,n*/
for(iin 1:N)
{
ulil ~ multi_normal_prec( mu, Q);

}/* end loop i over domains */
} /* end local block for cluster parameters */

// prior for time-indexed fixed effects, T x 1,beta
{ /* local variable block for Q in prior for T x 1, beta */
matrix[T,T] Q; /* T x T CAR precision matrix for beta */
/* T x T precision matrix, Q, for T x 1 vector regression coefficients, beta */

Q <-lambda * (D - rb * Omega);
/* TxT, Q <- tb * (D-rb*Omega) = CAR precision matrix */
rb ~ uniform(0, 1);

// prior on P x P covariance matrix, Lambda



lambda ~gamma( 1.0, 1.0 );
/* Implement a beta ~ N_{T}(0,Q"{-1}) */
beta ~multi_normal_prec( zros_T, Q);
}/* end local variable blocks for Q, Sigma_beta and Lbeta */

// observed response likelihood

nu ~inv_gamma( 1.0, 1.0 );

{/* local block to build T x T error covariance matrix */
matrix[T,T] Q;
matrix[T,T] L;

Q <- (D - r_e* Omega);

L <- cholesky_decompose(inverse_spd(Q));
for(iin 1:N) /* by row of y */

{

matrix[T,T] L_i;
to_vector(deltali]) ~inv_gamma( 0.5*nu, 0.5%nu );
L_i <-diag_post_multiply(L,(sigma_y[i] .* sqrt_deltali]));
ylil ~ multi_normal_cholesky( fitted_values[i], L_i); /* Tx 1 */
}/* end loop i over areas */
} /* end local block */
} /* end model{} block */

F. Model 6 (MCFHtc)
functions{
// sum a matrix, by rows
vector row_sums(matrix X)
{
vector[rows(X)] s ;
s <- X * rep_vector(1, cols(X)) ;
returns;

}

data{
int<lower=1> N; // number of domains
int<lower=1> K; // *maximum?* - truncated number of clusters
int<lower=1>T; // number of times points - months
row_vector[T] y[N]; // Set of N, T x 1 multivariate observations

row_vector<lower=0>[T] sigma_y[N]; // known area standard deviations

matrix[N,T] x; // matrix of (time-indexed) predictors

matrix<lower=0>[T,T] Omega; // T x T CAR adjacency matrix for prior on cluster centers

} /* end data block */

transformed data{
vector<lower=0>[K] ones_K;
vector[T] zros_T;
vector<lower=0>[T] d;
matrix[T,T] D;

ones_K <- rep_vector(1,K); /* dirichlet prior on alpha has equal shapes */
zros_T <- rep_vector(0,T); /* vector of zeros for sampling Tx1 fixed effects, beta */

d <- row_sums(Omega); /* diagonal entries of precision matrix */
D <- diag_matrix(d);
} /* end transformed data block */



parameters{
row_vector[T] u[NJ]; /* latent random effects receiving Gaussian mixture prior */
simplex[K] theta; /* mixture probabilities after marginalizing over inclusions*/
row_vector[T] mu[K]; /* cluster centers */
real<lower=0> tau[K]; /* cluster precision parameters for T x T Rw(1) CAR precision matrix
*/
real<lower=0,upper=1> rho[K]; /* cluster strength of correlation parameters */
real alpha; /* DP concentration parameter */
real<lower=0,upper=1>rb; /* strength of correlation parameter */
real<lower=0,upper=1> rmu; /* strength of correlation parameter */
/* for Q = lambda *(D - rb*Omega) in beta ~ N_{T}(0,Q"{-1}) */
real<lower=0> lambda;
real<lower=0> lambda_mu;
vector[T] beta;
real<lower=0> nu;
row_vector<lower=0>[T] delta[N];
real<lower=0> eta; /* squared exponential formula precision parameter */
real<lower=-1,upper=0>r_e;
} /* end parameters block */

transformed parameters{
row_vector[T] fitted_values[N]; /* fitted values */
row_vector<lower=0>[T] sqrt_delta[N];
{/* block to declare local variables, xb */
matrix[N,T] xb;
for(iin 1:N)
{
for(jin 1:T)
{
xb[i,j] <-x[i,j] * betaljl;
fitted_valuesli,j] <- xb[i,j] + uli,jl;
sqrt_deltali,j] <- sqrt( delta[i,j] );
}/* end loop j over time points */
}/* end loop i over domains */
}/* end local block to declare xb */
} /* end transformed parameters block */

model{
// priors for mean and covariance cluster locations
alpha ~ gamma( 1.0, 1.0 ); /* DP concentration parameter */
theta ~ dirichlet( alpha/K * ones_K); // instantiate a truncated DP prior
{ /* local variable block for mu[k] and invSigmal[k] */
matrix[T,T] Q; /* T x T CAR precision matrix for mu[k] */
/* prior for T x 1, mu[k] */
/* T x T precision matrix, Q, for T x 1 vector regression coefficients, beta */
rmu ~uniform( 0, 1);
lambda_mu ~gamma( 1.0, 1.0 );
Q <-lambda_mu * (D - rmu * Omega);
for(kin 1:K)
{

mulk] ~ multi_normal_prec(zros_T, Q); /* T x 1 cluster centers */



}/* end loop k over clusters */
} /* end construction of local variables, invSigma */

// prior for latent response, u_{i} ~ prod_{k=1}*{K}theta_k *N(u_{i},mu_k,Sigma_k)
{/* local block for invSigmalk], k = 1,...,K */
matrix[T,T] invSigma[K]; /* invSigmalk] <- tau[k] * (D-rho[k]*Omega) */
rho ~ uniform( 0, 1); /* K x 1 vector of cluster-indexed strength of correlation */
/* priors for invSigmalk] */
tau ~ gamma( 1.0, 1.0 ); /* K x 1 vector of cluster-indexed precision parameters */
for(kin 1:K )
{
/* Construct set of K (cluster-indexed) T x T CAR precision matrices, invSigma */
/* for mixture distribution for N x T, u */
invSigmalk] <-tau[k] * (D - rho[k] * Omega);
}/* end loop over k */

for(iin 1:N) /* by row of Nx T, u */

{
real ps[K];
for( kin 1:K)
{
/* increment log posterior for clustering model on u */

ps[k] <- log(theta[k]) + multi_normal_prec_log(u[il, mu[k], invSigma[k]);

}
increment_log_prob( log_sum_exp(ps) );

}/* end loop i over case observations */

} /* end local block in mixture prior for u */

// prior for time-indexed fixed effects, T x 1,beta
// and TxT precision, Q (constructed as a CAR, RW(1))
/* sample parameters that compose PxP, Lambda and TxT Q */
{/* local variable block for Q */
matrix[T,T] Q; /* T x T CAR precision matrix for beta */
/* T x T precision matrix, Q, for T x 1 vector regression coefficients, beta */

Q <-lambda * (D - rb * Omega);
/* TxT, Q <- tb * (D-rb*Omega) = CAR precision matrix */
rb ~ uniform(0, 1);

// prior on P x P covariance matrix, Lambda

lambda ~gamma( 1.0, 1.0 );
/* Implement a beta ~ N_{T}(0,Q*{-1}) */
beta ~ multi_normal_prec( zros_T, Q);

} /* end local variable blocks for Q, Sigma_beta and Lbeta */

// observed response likelihood

nu ~inv_gamma( 1.0, 1.0 );

{/* local block to build T x T error covariance matrix */
matrix[T,T] Q;
matrix[T,T] L;
Q <- (D - r_e* Omega);
L <- cholesky_decompose(inverse_spd(Q));
for(iin 1:N) /* by row of y */



{
matrix[T,T] L_i;

to_vector(delta[i]) ~inv_gamma( 0.5*nu, 0.5%nu );
Li <- diag_post_multiply(L ,(sigma_y[i] .* sqrt_delta[i]));
ylil ~ multi_normal_cholesky( fitted_valueslil, L_i);
}
}
}
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