An official website of the United States government
JOLTS Experimental State Estimates Methodology
The JOLTS sample of 21,000 establishments does not directly support the production of sample based state estimates. However, state estimates have been produced by combining the available sample with model-based estimates. These data are experimental. As such, they have not been subject to the same level of review as the current official JOLTS national and regional estimates. BLS is inviting data users to comment on both the methodology used to produce these estimates and on the usefulness of these data. Starting October 2021, JOLTS state-level estimates will be made available in an official monthly release. These estimates consist of four major estimating models; the Composite Regional model (an unpublished intermediate model), the Synthetic model (an unpublished intermediate model), the Composite Synthetic model (published historical series through the most current benchmark year), and the Extended Composite Synthetic model (published current-year monthly series). The Composite Regional model uses JOLTS microdata, JOLTS regional published estimates, and Current Employment Statistics (CES) employment data. The Composite Synthetic model uses JOLTS microdata and Synthetic model estimates derived from monthly employment changes in microdata from the Quarterly Census of Employment and Wages (QCEW), and JOLTS published regional data. The Extended Composite Synthetic extends the Composite Synthetic estimates by ratio-adjusting the Composite Synthetic by the ratio of the current Composite Regional model estimate to the Composite Regional model estimate from one year ago. The Extended Composite Synthetic model (and its major component—the Composite Regional model) is used to extend the Composite Synthetic estimates because all of the inputs required by this model are available at the time monthly estimate are produced. In contrast, the Composite Synthetic model (and its major component—the Synthetic model) can only be produced when the latest QCEW data are available. The plan is to use Extended Composite Synthetic model estimates to extend the Composite Synthetic model estimates during the annual JOLTS re-tabulation process. The extension of the Composite Synthetic model using current data-based Composite Regional model estimates will ensure that the Composite Synthetic model estimates reflect current economic trends. The following outlines each model in a non-technical summary format. Each model is summarized separately, and answers the following:
Composite Regional ModelWhat Approach?The Composite Regional approach calculates state-level JOLTS estimates from JOLTS microdata using sample weights, and the adjustments for non-response (NRAF). The Composite Regional estimate is then benchmarked to CES state-supersector employment to produce state-supersector estimates. The JOLTS sample, by itself, cannot ensure a reasonably sized sample for each state-supersector cell. The small JOLTS sample results in quite a number of state-supersector cells that lack enough data to produce a reasonable estimate. To overcome this issue, the state-level estimates derived directly from the JOLTS sample are augmented using JOLTS regional estimates when the number of respondents is low (that is, less than 30). This approach is known as a composite estimate which leverages the small JOLTS sample to the greatest extent possible and supplements that with a model-based estimate. Previous research has found that regional industry estimates are a good proxy at finer levels of geographical detail. That is, one can make a good prediction of JOLTS estimates at the regional-level using only national industry-level JOLTS rates. The assumption in this approach is that one can make a good prediction of JOLTS estimates at the state-level using only regional industry-level JOLTS rates. In this approach, the JOLTS microdata-based estimate is used, without model augmentation, in all state-supersector cells that have 30 or more respondents. The JOLTS regional estimate will be used, without a sample-based component, in all state-supersector cells that have fewer than five respondents. In all state-supersector cells with 5–30 respondents an estimate is calculated that is a composition of a weighted estimate of the microdata-based estimate and a weighted estimate of the JOLTS regional estimate. The weight assigned to the JOLTS data in those cells is proportional the number of JOLTS respondents in the cell (weight=n∕30, where n is the number of respondents). What data inputs?
How are data used?
How are outputs produced?
What are the limitations?
What more is needed?These estimates are based upon a model. There is, as of yet, no methodology in place that can produce an estimate of error for the estimates the model produces. Research on a methodology to produce an error estimate is currently underway and will be available in the October 2021 release for August state estimates. The Composite Regional supersector estimates are summed across state industry supersectors to the nonfarm level. Synthetic ModelWhat approach?The Synthetic model differs fundamentally from the Composite Regional model. The Synthetic approach does not use JOLTS microdata but rather it uses data from the QCEW that have been linked longitudinally (Longitudinal Database—LDB), the QCEW-LDB. The Synthetic model attempts to convert QCEW-LDB monthly employment change microdata into JOLTS job openings, hires, quits, layoffs and discharges, and total separations data. What data inputs?
How are data used?
How are the outputs produced?
What are the limitations?
What more is needed?These estimates are based upon a model. There is, as of yet, no methodology in place that can produce any estimate of error for the estimates the model produces. Research on a methodology to produce an error estimate is currently underway and will be available in the October 2021 release for August state estimates. Composite Synthetic ModelWhat approach?The Composite Synthetic model is nearly identical to the Composite Regional model. The primary difference is the use of the Synthetic model estimates (described in the first section) rather than JOLTS published regional estimates when there is an insufficient amount of JOLTS microdata to produce a state-supersector estimate. Just like the Composite Regional approach, the JOLTS microdata-based estimate is used in all state-supersector cells that have 30 or more respondents. However, in contrast to the Composite Regional approach, the Composite Synthetic approach uses the Synthetic estimate in all state-supersector cells that have fewer than five respondents. In all state-supersector cells with 5–30 respondents an estimate is calculated that is a composition of a weighted estimate of the microdata-based estimate and a weighted estimate of the Synthetic estimate. The weight assigned to the JOLTS data in those cells is proportional the number of JOLTS respondents in the cell (weight=n∕30, where n is the number of respondents). The Composite Synthetic supersector estimates are summed across state-supersectors to the nonfarm level. What data inputs?
How are data used?
How are outputs produced, and what are the limitations?
What more is needed?These estimates are based upon a model. There is, as of yet, no methodology in place that can produce any estimate of error for the estimates the model produces. Research on a methodology to produce an error estimate is currently underway and will be available in the October 2021 release for August state estimates. Extended Composite Synthetic ModelWhat Approach?The Extended Composite Synthetic model is designed to project the Composite Synthetic forward until QCEW-LDB data are available to produce Composite Synthetic estimates. The Composite Synthetic estimates are extended using the ratio of the current Composite Regional state industry estimate to the Composite Regional state industry estimate from one year ago. This approach ensures that the Extended Composite Synthetic state estimates reflect current JOLTS regional and industry-level economic conditions. The Extended Composite Synthetic estimates reflects current JOLTS state economic conditions to the extent that sufficient JOLTS microdata are available. What data inputs?
How are data used?The Composite Synthetic model estimates are produced at a lag since QCEW-LDB data are only available at a 6–9 month lag relative to JOLTS data. The Composite Regional model estimates, in contrast, are not produced at a lag and are available concurrent with JOLTS data. Therefore, Composite Synthetic estimates can be extended by ratio-adjusting the Composite Synthetic estimates by the ratio of current Composite Regional estimates to the Composite Regional estimates from one year ago at the state-industry-level as follows: Where
State-level estimates are produced by summing the Extended Composite Synthetic estimates over industry. How are outputs produced, and what are the limitations?
What more is needed?These estimates are based upon a model. There is, as of yet, no methodology in place that can produce any estimate of error for the estimates the model produces. Research on a methodology to produce an error estimate is currently underway and will be available in the October 2021 release for August state estimates. Seasonal AdjustmentMost series published by the Job Opening and Labor Turnover Survey (JOLTS) program have a regularly recurring seasonal movement that can be measured from past data. Seasonal adjustment eliminates the component of the change attributable to the normal seasonal variation and makes it possible to observe the cyclical and other nonseasonal component movements in the series. Seasonally adjusted series are published monthly for JOLTS estimates. The JOLTS program uses X-13-ARIMA-SEATS software developed by the U.S. Census Bureau to seasonally adjust the monthly estimates. The X-13-ARIMA-SEATS software is available on the U.S. Census Bureau website. The JOLTS program employs a concurrent seasonal adjustment methodology to seasonally adjust its estimates. Under concurrent methodology, new seasonal factors are calculated each month using all relevant data up to and including the current month period. Seasonal adjustment input filesAll controllable variables remain fixed during the year. For example, the ARIMA model, outliers, transformation specification, and historical data are held constant. Once a year, as part of the annual JOLTS benchmark procedure, all seasonal adjustment specifications are reviewed for each series. Any changes are implemented and kept constant until the next annual benchmark. Also during the annual benchmark, estimates for the 5 most recent years are readjusted using the new specifications. Estimates are only revised back for a 5-year period.
Additive and multiplicative modelsThe model specifications provide the mode (additive or multiplicative) selected for each JOLTS series by state. Depending on the relationship between the original series and each of the components, the mode of seasonal adjustment may be additive or multiplicative. Formal tests are conducted to determine the appropriate mode of adjustment.
The multiplicative mode assumes that the magnitude of the seasonal pattern is proportional to the level, which implies that the size of the seasonal fluctuations increases and decreases with the level of the series. With this mode, the monthly seasonal factors are ratios, with all positive values centered around one. The seasonally adjusted values are computed by dividing each month's original value by the corresponding seasonal factor.
In contrast, the additive mode assumes that the magnitude of the seasonal pattern is independent of the level of the series. In this case, the seasonal factors represent positive or negative deviations from the original series and are centered around zero. The seasonally adjusted values are computed by subtracting the corresponding seasonal factor from each month's original value.
Regional raking procedureA raking procedure is used to ensure that the sum of the seasonally adjusted state series is consistent with the published seasonally adjusted total at the regional levels. The raking procedure begins by seasonally adjusting the regional and state level series independently. The seasonally adjusted state series are summed to the regional levels to get the regional totals. Ratios of seasonally adjusted state-to-regional levels are calculated. The regional totals summarized from the seasonally adjusted state series are subtracted from the official regional seasonally adjusted estimates to determine the amount that must be raked. The total amount that must be raked is multiplied by the ratios to determine what percentage of the raked amount should be applied to each state. Once the seasonally adjusted state series receive their proportional amount of the raked values, the two groups are aggregated again to regional totals. At this point their sum should be equal to the official regional seasonally adjusted estimate.
Sample allocationWhat is the sample size allocation for the inputs used to produce the JOLTS state estimates?The JOLTS experimental state estimates sample allocation table below provides a snapshot of the sample used to produce December 2019 and December 2020 state estimates. Sample are utilized in both components of the model. The sample component incorporates JOLTS state respondent data. The model component incorporates JOLTS regional-level respondent data, CES state respondent data, and QCEW establishment counts.
Last Modified Date: June 30, 2021 |